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[1] A variety of methods exist to estimate the elastic thickness (Te) of the lithosphere. In this contribution,
we attempt to provide an indication of how well the fan wavelet coherence method recovers Te, through
synthetic modeling. The procedure involves simulating initial topographic and subsurface loads and
emplacing them on a thin elastic plate of known Te, generating the postloading topography and gravity. We
then attempt to recover that Te distribution from the gravity and topography through the wavelet method,
hence discovering where its strengths and weaknesses lie. The Te distributions we use here have elliptical
and fractal geometries, while the initial loads are fractal. Importantly, we have found that this widely used
synthetic loading calibration method will tend to result in underestimates of Te no matter which recovery
method is used. This is due to random correlations between the initial loads which, on average, serve to
increase their coherence at all wavelengths and spatial locations. For the fan wavelet method, the degree of
underestimation from this ‘‘background’’ source is approximately 10% of the true Te. In addition, the fan
wavelet coherence method will provide underestimates of (1) the true Te when the study area size is of the
order of the highest flexural wavelength or less, (2) relative Te differences when the Te anomaly is narrow
compared to its flexural wavelength, and (3) steep Te gradients. Significantly, we find that the recovery is
not greatly affected by the assumption of uniform Te in the inversion of the coherence. We also find that Te
recovery from the coherence is only weakly dependent upon the initial subsurface-to-surface loading ratio
( f ). In contrast to the coherence, Te recovery from the admittance is highly ‘‘noisy,’’ with discontinuities
and overestimates of Te frequently arising. This is most likely due to the high sensitivity of the admittance
to f and is likely to apply to real data as well.
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1. Introduction

[2] A relatively recent development in the spectral
method of elastic thickness estimation saw the
introduction of the continuous wavelet transform

(CWT), in which the spectral properties of a signal
are localized at each grid point. This feature lends
itself to flexural analyses, where the flexural rigid-
ity of the lithosphere can vary spatially. Stark et al.
[2003] based their analysis upon the derivative of
Gaussian (DOG) wavelet family, while Kirby and
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Swain [2004] used rotated Morlet wavelets in a so-
called ‘‘fan’’ geometry. Applications of these meth-
ods were made to southern Africa by Stark et al.
[2003], and to the Irish Atlantic margin by Daly et
al. [2004] using the DOG wavelets; and by Swain
and Kirby [2006] to Australia, and Tassara et al.
[2007] to South America using the fan wavelet.

[3] The effectiveness of any data analysis/inver-
sion method when estimating Te can be assessed
through synthetic modeling, first developed by
Macario et al. [1995]. In this study, we apply the
(isotropic) fan wavelet coherence method to syn-
thetic gravity and topography data generated from
the flexure of a thin elastic plate with known values
of both elastic thickness (Te), and ratio between the
initial subsurface and surface load amplitudes (f ).
In this fashion, we hope to determine a measure of
this method’s Te recovery capability in a variety of
simulated tectonic settings. In brief, a wavelet
coherence is computed at each grid node of the
data area (Appendix B), then inverted for estimates
of both Te and f (Appendix C). In the work by
Kirby and Swain [2004] we used the expression for
the theoretical coherence and an assumed, uniform
value for f (i.e., constant in both space and wave
number domains), which we call the ‘‘uniform f
method.’’ However, in the work by Swain and
Kirby [2006] we extended the method of Forsyth
[1985] to compute a predicted wavelet coherence,
which provides both Te and f estimates directly
from the observed gravity and topography data: the
‘‘wavelet-Forsyth method.’’ For completeness, in
Appendix C2 we give the wavelet versions of the
Banks et al. [2001] equations, because we used this
method in the work by Tassara et al. [2007].
Finally, we also present a new algebraic method
to estimate the coherence transition wavelength
(Appendix D).

2. Synthetic Models

2.1. Model Generation

[4] Two grids, generated by a random process and
having fractal spectra, are taken to be the initial
surface and subsurface loads acting on a thin elastic
plate of known Te and f. We used the RAN2
random number generator from Press et al.
[1992] and the spectral synthesis method of Peit-
gen and Saupe [1988] to generate the load surfa-
ces, with both surfaces having fractal dimensions
of 2.5, unless otherwise specified. Macario et al.
[1995] determined that the recovered Te is relative-
ly insensitive to the choice of fractal dimension, a

result we have also found with the wavelet method.
In all synthetic models we take the subsurface
loading to occur at the Moho, to which we assign
a mean depth of 35 km, and, unless otherwise
specified, we set f = 1. All grids used in the
synthetic modeling were generated with a 20 km
grid spacing, and, unless otherwise specified, had
dimensions of 5100 � 5100 km.

[5] For nonuniform Te distributions, the deflections
of the loaded plate must be obtained by a numerical
solution of a fourth-order partial differential equa-
tion (Appendix A). We employed a finite differ-
ence method of solution with periodic boundary
conditions. The resulting deflections of the surface
and Moho interfaces then give the final topography
and Bouguer gravity anomaly of the plate.

2.2. Land/Ocean Loading

[6] Since many study areas contain both continen-
tal and oceanic lithosphere, with the latter being
subject to an additional water load, we developed
synthetic models that account for this, to test
whether our inversion equations were valid in such
‘‘mixed-loading’’ regimes. Starting with the initial
fractal loads, where negative values of the topog-
raphy indicate oceanic regions, the final loads after
flexure are determined by an iterative procedure
which accounts for water infilling the depressions
below ‘‘sea level’’ after each flexure iteration. A
stable value of the final topography is usually
reached after five iterations.

[7] Then, rather than performing two separate
analyses and inversions on land and ocean areas,
as did Pérez-Gussinyé et al. [2004], we scale
oceanic bathymetry to an equivalent topography
before wavelet transformation, as was done by
Stark et al. [2003], and compute Te for the whole
area (in one run) using only the land-loading
equations. We did this because we found that using
actual bathymetry and mixed-loading inversion
equations gave Te discontinuities at the coastlines.
And though we have not tried it, we suspect that
the masking method of Pérez-Gussinyé et al.
[2004] will also generate coastline discontinuities
due to Fourier transform edge effects. The equiv-
alent topography at sea is computed from actual
bathymetry (h) via:

h xð Þ ! rc � rw
rc

� �
h xð Þ 8h xð Þ < 0 ð1Þ

and represents the location of the sea floor as what
it would be if there were no water present
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(provided isostasy operates). Values of the densi-
ties are given in Table 1.

[8] This method also makes an approximation in
the inversion relationships in the oceans: even with
equivalent topography, use of the land-loading
deconvolution equations at sea biases the recovered
Te to higher values and f to lower values. While we
do not correct for this bias at present, Appendix C3
shows how it can be modeled, with the bias being
less than the likely Te error. Nevertheless, the results
from our synthetic modeling do show a slight
upward bias when we invert for Te from mixed-
loading models, and are presented in sections 4.1.1,
5 and 7.1.

3. Wavelets and Te Resolution

[9] As will be seen from the synthetic model
results in this paper, low-Te features are better
recovered than high-Te features when using the
fan wavelet method. This contrast between Te
estimation in strong and weak plates can be
explained by considering both the nature of wave-
lets and the assumptions we make when inverting
the wavelet coherence.

3.1. Wavelet Transform

[10] The CWT is a convolution of a space(x)-
domain signal, say g(x), with the complex
conjugates of a family of scaled wavelets, y:

~g s; x; qð Þ ¼ g xð Þ *y*sq xð Þ ð2Þ

where s is the scale of the wavelet, and q is its
azimuthal orientation (if the wavelet is anisotro-
pic). The wavelet coefficients, ~g(s, x, q), contain, in
essence, a localized amplitude/phase spectrum of
the signal at each spatial location. The space

dependence of the wavelet coefficients exists by
virtue of the translation performed during convolu-
tion; their ‘‘frequency’’ dependence is revealed by
the scaling of the wavelets.

[11] Importantly, wavelets must be localized in
both space and wave number domains, but a
‘‘trade-off’’ exists between their precision in these
domains, governed by a so-called ‘‘uncertainty
relation’’:

DxDk � 2p ð3Þ

[e.g., Addison, 2002], where Dx is the precision or
uncertainty of the wavelets in the space domain,
and Dk is the precision in the wave number
domain. This leads to an inverse proportionality
between spatial and wave number precision. Large-
scale wavelets are broad functions in the space
domain, but have a narrow bandwidth; small-scale
wavelets are spatially narrow and have a larger
bandwidth (Figure 1). Hence, the large-scale
wavelets capture a great deal of the signal, and
while the corresponding wavelet coefficients
accurately represent the long wavelengths of the
signal, they tend to be spatially imprecise. Con-
versely, small-scale wavelets are highly localized,
thus revealing the signal’s short wavelengths,
though these are smeared over adjacent wave-
lengths because of the larger bandwidth of these
wavelets. Nevertheless, Kirby [2005] showed that
if the Morlet wavelet is used, then the resulting
wavelet power spectrum closely approximates the
Fourier power spectrum (see also Appendix B1).

3.2. Coherence Transition

[12] However, the wavelet coherence method relies
upon the analyzing wavelet at a certain scale being
able to resolve the coherence transition wavelength
(lt) in particular, defined as the wavelength at
which the coherence has a value of 1

2
. We call

those wavelets of such scale ‘‘transition wavelets.’’
So in regions of high Te when lt is large, the
transition wavelets will be large-scale and will
have been convolved with a great deal of the data.
This means that data from surrounding regions
with a low Te will ‘‘contaminate’’ the wavelet
coherence, at least over areas close to an apprecia-
ble change in Te. Thus, if the high-Te region is too
narrow for the transition wavelets to exclusively
cover it, then the recovered Te there will be under-
estimated. This underestimation will be less pro-
nounced in regions where the Te contrast is small,
and particularly when the absolute value of Te is

Table 1. Symbols and Values of Constants

Constant Symbol Value Units

Young’s modulus E 100 GPa
Newtonian
gravitational constant

G 6.67259
� 10�11

m3kg�1s�2

Poisson’s ratio v 0.25
Acceleration due to
gravity

g 9.79 ms�2

Mean Moho depth zm 35 km
Mantle density rm 3300 kg m�3

Crustal density rc 2800 kg m�3

Sea water density rw 1030 kg m�3
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low, since the transition wavelets will be of small
spatial extent because of a lower lt here.

[13] To quantify these effects we derive an alge-
braic equation relating both Te and f to transition
wavelet width. For the wavelet width, we use the
diameter of the Gaussian envelope of the Morlet
wavelet in the space domain at that particular scale/
wavelength (equation (B5)). For lt, we obtain its
expression as a function of Te and f from the
solution to the quartic equation describing half-
coherence (Appendix D).

[14] Figure 2 shows a plot of the wavelet width
needed to resolve a given Te, for three different
values of f. The factor p is the fraction of the
maximum amplitude of the wavelet at a given scale
(0 < p < 1) (Appendix B1). In this study, we use the
p = 0.01 width of the Gaussian envelope (rather
than, say, its p = 0.5 width) since this describes
almost the full spatial extent of the wavelet (99.8%
of its area), and hence gives a proper representation
of the amount of data it is convolved with. As
expected, the plot shows that the wavelet width
must increase as Te increases in order to resolve the
large lt. However, it can also be seen that when f is
very high then a smaller wavelet can successfully
resolve a given Te (see Appendix D).

Figure 2. The width of the Gaussian envelope of the
transition (Morlet) wavelet in the space domain, at a
fraction p = 0.01 of the maximum wavelet amplitude, as
a function of Te, and for three different values of the
loading ratio, f. The curves were computed using
equation (B5), with lt obtained from the solution to
equation (D5).

Figure 1. Cross sections through the 2-D Morlet wavelet at large and small scales, in the (left) space domain (real
part) and (right) wave number domain. Dashed black line is the Gaussian envelope.
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[15] In practice, it is advisable to choose the high-
est and lowest wavelet scale such that the transition
wavelets have scales in the midwavelengths, where
the uncertainty relation gives them optimal space
and frequency domain precision. While this choice
depends upon the dimensions of the study area and
its grid spacing, the study area size does still need
to be large enough to accommodate the spatial
extent of the necessary transition wavelets (given
the expected Te in the region), else the recovered Te
will be underestimated. The maximum wavelet
scale we use is of the order of the area dimensions,
which limits the scale and spatial width of the
transition wavelets, and hence limits the maximum
possible recovered Te. The effect of choosing a
small study area upon Te estimation with the fan
wavelet method is shown in section 7.4.

3.3. Other Spectral Methods

[16] All the above effects are similar to bias expe-
rienced in multitaper methods [e.g., Simons et al.,
2000; Swain and Kirby, 2003; Pérez-Gussinyé et
al., 2004], where the recovered Te is underesti-
mated when the window size is too small for the
transition wavelength to be faithfully resolved.
And while Macario et al. [1995] found that de-
creasing window size led to an overestimated Te,
this is most likely due to the mirrored periodogram
method they used, rather than the window size (see
section 6). It is important to remember that, when
used to recover spatial variations in Te, the multi-
taper method divides the study area into subsets, or
‘‘windows,’’ with a single coherence/admittance
estimate computed for each window: the window
size is chosen somewhat arbitrarily. The wavelet
method, in contrast, does not need to use such
‘‘moving windows’’ because the wavelets sample
all of the data in the study area at all scales at once,
yielding local spectra at each grid node.

[17] Furthermore, space domain convolution meth-
ods [e.g., Braitenberg et al., 2002] will also be
affected by the magnitude of the transition wave-
length. High-Te features have a large flexural
wavelength, which is a physical parameter, and
not an artifact of the spectral methods. Hence, a
very broad convolution kernel (the isostatic re-
sponse function) is needed to faithfully reproduce
these large flexural ‘‘depressions.’’ Convolution
with such a broad kernel in the space domain will
lead to a smoothed signal, just as in the spectral
methods. Hence, space domain convolution also

needs large windows or data areas, if Te is large in
the study area.

3.4. Decoupling and Uniform Te
Assumptions

[18] Both the uniform f wavelet method and the
wavelet-Forsyth method assume the independence
of adjacent spectra: the ‘‘decoupling assumption’’
[Stark et al., 2003; Kirby and Swain, 2004; Swain
and Kirby, 2006]. This enables the inversion of the
observed wavelet coherence at each grid node
independently of the coherence at neighboring
nodes. Of course, as discussed above, we expect
a degree of coupling between the wavelet trans-
forms at adjacent nodes due to the finite spatial
extent of the wavelets.

[19] A separate assumption is made by load-decon-
volution methods that Te is uniform, so that the
load equations can be formulated in the wave
number domain where they are linear. These
assumptions have some implications for the
method which are explored in section 8.

4. Elliptical Te Structures

4.1. Wide Plateau

[20] Figure 3a shows a ‘‘tectonic plate’’ comprising
an elliptical plateau of Te = 110 km (major axis
2400 km, minor axis 1200 km) smoothly dropping
(over a ramp distance of 600 km) to a plain of Te =
20 km. One hundred pairs of initial fractal loads
were then emplaced upon this plate, yielding 100
final gravity/topography pairs. Each pair was then
inverted using the fan wavelet method for its
recovered Te.

4.1.1. Mixed Versus Land Loading

[21] Figure 3b shows the result of inverting a
gravity/topography pair generated from one partic-
ular random seed (005), when continental topog-
raphy formed the load on the input Te distribution
(‘‘land-loading’’). Figure 3c shows the result (from
a gravity/topography pair generated from the same
random seed, 005) when the finite difference equa-
tions that generate the gravity/topography pair take
into account the fact that some regions are under-
water. As discussed in section 2.2, the mixed-load-
ing case gives a slightly better recovery (in terms of
Te magnitude) than with land-only loading. This is
confirmed by the statistics (section 4.1.3) for the fit
between the input and recovered models and also by
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the other models considered (e.g., Figure 8c).
Importantly though, the slight differences between
Figures 3b and 3c show that the mixed-loading
flexure equations are a reasonable approximation,
and that the equivalent topography and land-loading
equations are applicable to real-Earth situations.

4.1.2. Random Correlations

[22] Figure 3d shows the recovered Te from another
random seed (033). It is evident that, even though
the model Te is the same, the different random
fractal loads are generating significant differences
in the recovered elastic thicknesses. To investigate
why this should be so, we turned to the fractal
surfaces used as initial loads on the plate. Recall,
the coherence method [Forsyth, 1985] is applicable
only under the assumption that the surface and
subsurface loads are statistically uncorrelated.

However, owing to the inherent nature of the
fractal surface generation method, random correla-
tions between the two surfaces often arise, and as
noted by Macario et al. [1995] any increase in
correlation lowers the recovered Te.

[23] To investigate the nature of these random
correlations, we calculated the wavelet coherence
between all 100 fractal surface pairs that were used
as initial loads. Figure 4 shows results for two out
of the 100 models (005 and 015). Figure 4 (top)
shows north-south profiles at 2560 km easting
from the recovered Te in each case, and it can be
seen that they show large differences. Figure 4
(middle) shows slices through the wavelet coher-
ence between the initial loads at 2560 km easting.
Figure 4 (bottom) shows such slices through the
observed wavelet coherence between the final
gravity/topography after loading. Of immediate

Figure 3. (a) Model Te distribution. (b) Recovered Te from model 005 (land loading). (c) Recovered Te from model
005 (mixed loading). (d) Recovered Te from model 033 (mixed loading).
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concern are the incidences of high coherence
between the initial loads, which occur at random
spatial locations and wavelengths, and reach mag-
nitudes of over 0.5. Remember, the coherence
method requires zero coherence everywhere be-

tween the initial loads, and it seems that even
setting Macario’s correlation coefficient to zero
(as we did) does not remove these random corre-
lations. The black and white lines in Figure 4
(middle and bottom) indicate the coherence transi-
tion wavelength of the Te model, which we would
expect to mark out the contour of 0.5 coherence.
However, Figure 4 shows that the observed half-
coherence contour is generally at wavelengths less
than the flexural wavelength, implying an under-
estimated Te.

[24] The effect of these initial load correlations
upon the final gravity/topography coherence is
readily apparent in Figure 4. The areas of high
initial load coherence map directly into high final
coherence at the same wavelength/location, and
serve to increase the final coherence. This increase
in final coherence results in a reduced Te upon
inversion. Again, this phenomenon is seen by
comparing the Te profiles for each model with the
regions of anomalous initial coherence: the Te
anomalies can largely be mapped back to initial
load coherence anomalies around the flexural
wavelength. Note that initial coherence anomalies
far from the transition wavelength do not corrupt
the inversion.

[25] Averaging the individual coherences between
each of the 100 initial load pairs gives a ‘‘back-
ground coherence.’’ This averaged coherence has a
mean value of 0.18 (and not zero, as it should be),
with minimum and maximum values of 0.1 and
0.34, respectively.

[26] To properly assess the recovery accuracy of
the wavelet method, the random correlations be-
tween initial loads should be removed, or at least
reduced. Therefore we computed the recovered Te
from each of 100 synthetic model pairs and aver-
aged these Te grids. This gives an assessment of the
method that is independent of the particular initial
fractal load pair and their random correlations.

4.1.3. Results

[27] The averaged recovered Te for the mixed-
loading case is shown in Figure 5f. The overall
misfit between the model and recovered average Te
is 3.0 ± 10.2 km (mean difference ± difference
standard deviation). We do not show the result for
the land-only loading case because it is very
similar, showing a difference of 4.3± 10.3 km with
the model Te. The slightly better recovery capabil-
ity of the mixed-loading case is discussed in
section 4.1.1. Note that the recovered Te is very

Figure 4. Coherence of the loads before and after
(land-only) loading on the elliptical Te structure in
Figure 3a, for two individual models (005 and 015). (top)
Profiles extracted from the recovered Te at 2560 km
easting (red), together with a similar profile extracted
from the model Te in Figure 3a (black). (middle) Wavelet
coherence between the initial loads at 2560 km easting
(EFW is equivalent Fourier wavelength) and (bottom)
wavelet coherence between the final gravity and
topography at the same easting. The half-coherence
contour is plotted in black in Figure 4 (bottom). The
thicker black and white lines in the coherence plots mark
the location of the coherence transition wavelengths for
the model Te from equation (D5) for f = 1. Color scale in
Figure 4 (middle and bottom) is coherence, but note the
difference between these scales.
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Figure 5. Elliptical Te recovery. (a–e) Model Te, (f–j) averaged recovered Te (over 100 results), and (k–o) north-
south cross sections, at 2560 km easting, of the model (black) and average recovered (red) Te. All mixed loading.
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smooth, with minimal evidence of the higher-
frequency anomalies present in Figures 3b–3d that
arise from the random correlations.

[28] Figure 5f shows that the wavelet method has
underestimated the higher-Te part of the model,
though Figure 5k shows more detail, being a north-
south cross section through the model and recov-
ered average Te at 2560 km easting. Generally, the
recovered Te is flattened (by approximately 20 km
at the plateau center), and broadened (by approx-
imately 300 km either side of the plateau base),
though the overall elliptical shape is preserved.
From Figure 2, a region with Te = 110 km needs
a transition wavelet of width 	5000 km for its
successful resolution (for f = 1), going some way to
explaining the diminished recovered amplitude of
the plateau, whose minor axis is only 1200 km. In
the Te = 20 km plain away from the ellipse, the
recovery is good, to within 2 km.

4.2. Other Elliptical Structures

[29] The results for the recovery from other ellip-
tical Te distributions are shown in Figure 5, where
the structure width and Te magnitude has been
varied. Figures 5b, 5g, and 5l show how the
recovery degrades when the minor axis in Figure
5a is decreased, because the transition wavelet
width is now significantly greater than the anomaly
width, and more information from the surrounding
(low-Te) region is included in the wavelet coeffi-
cients, and therefore coherence. Figures 5c, 5h, and
5m show the effect of reversing the structure in
Figure 5b. In this case the recovered structure is
not simply the reverse of the recovered structure in
Figure 5g, because the surrounding large-width
Te = 110 km transition wavelets are contami-
nating the recovery of the ellipse. Hence, rather
than Te being underestimated by the fan wavelet
method, we should say that it is relative Te differ-
ences that are underestimated.

[30] While the recovery of the high-Te model was
good, but not ideal, that of a low-Te feature is much
better. In contrast to Te = 110 km, the transition
wavelets for Te = 20 km are only of width 
1400
km, explaining why the Te = 20 km ellipse in
Figure 5i is better resolved in both spatial extent
and in Te magnitude than its counterpart in Figure
5f. Both ellipses have a minor axis of 1200 km,
which is less than the transition wavelet width for
Te = 110 km, but is of the same order as the
transition wavelet width for Te = 20 km. Further-
more, the recovery is also good for a reversed

model with a narrower ellipse, shown in Figures
5e, 5j, and 5o.

[31] Note that the Te recovery in Figures 5i and 5j
shows much more short-wavelength variation than
the higher Te results (see the cross sections in
Figure 5). This is because when the transition
wavelength is longer, the transition wavelets are
large-scale and spatially wide, and the resulting
coherence is spatially smoothed out. This phenom-
enon is visible in all wavelet transform power
spectra, and can be seen in Figure 4 (middle),
where the long-wavelength coherence contains
much less spatial detail than does the short-wave-
length coherence.

5. Uniform Te Plates

[32] The above results for the Te ellipses show an
underestimation of Te of around 10–20%, depend-
ing upon (1) the spatial location relative to the
high-Te ellipse and (2) the absolute and relative Te
values. However, by applying the procedure to
plates with a uniform Te distribution, it is possible
to remove the dependence of the recovery upon Te
anomaly width and relative amplitude, and thus
estimate a ‘‘background’’ underestimation or over-
estimation percentage due to other effects. To this
end, we computed 100 gravity/topography pairs
(setting f = 1) for plates with a range of uniform Te
values, from 10 km to 150 km, and attempted to
recover the model Te in each case. We performed
these computations on synthetic models generated
from both mixed and land loading.

[33] The percentage difference between the model
and average recovered Te, relative to the model Te,
is shown in Figure 6. For both mixed and land
loading, as Te increases its recovered value becomes
more underestimated, but the amount of underesti-
mation is relatively constant and independent of Te.
This also applies to the standard deviations.
For mixed loading, the mean underestimation is
approximately 8.7% of the true Te, while the mean
error is approximately 1.6% of the true Te. For land
loading, these statistics are 11.8 ± 1.5%, which
supports our finding that use of the mixed-loading
inversion equations with equivalent topography
provides slight upward biases in Te (Appendix C3).

[34] That these uniform plates have no Te anoma-
lies, yet still show an underestimation, points to a
second reason for the Te underestimation we ob-
serve, and one that does not involve transition
wavelet widths. We believe that this inherent
underestimation of Te for synthetic models is due
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to the nonzero coherence between initial loads at
random wavelengths and spatial locations, as dis-
cussed in section 4.1.2, and will apply to all Te
recovery experiments on synthetic models. It is
difficult to quantify the exact effect of this back-
ground coherence, but we reason that it will serve to
increase the final coherence at the transition wave-
length by a small but significant amount, thus pro-
viding an underestimate of Te. To support this
conclusion, we note that Macario et al. [1995]
reported a general decrease in the recovered Te as
the correlation coefficient between the synthetic
loads was increased, though there is no consistency
to their difference percentages like those we observe.

[35] However, we note that it is likely that the
specific value of this underestimation percentage
will depend upon both the analysis method and the
study area dimensions, and the value of 8.7%
(11.8%) that we observe applies only to this
particular analysis.

6. Effect of Mirroring

[36] The preprocessing technique of mirroring the
gravity/topography data before performing a Four-

ier transform has been performed in many studies
[e.g., Zuber et al., 1989; Lowry and Smith, 1994;
Macario et al., 1995; Hartley et al., 1996; McKen-
zie and Fairhead, 1997; Poudjom Djomani et al.,
1999; Ojeda and Whitman, 2002; Stephen et al.,
2003; Stark et al., 2003]. Authors using mirroring
with Fourier-based coherence methods, such as
periodogram, maximum entropy and multitaper
methods, have reported that the recovered Te is
usually overestimated when mirroring is performed
[e.g., Lowry and Smith, 1994; Ojeda and Whitman,
2002; Stephen et al., 2003]. The mirroring intro-
duces artificial long-wavelength signals into the
data, which have the effect of shifting the coher-
ence transition to smaller wave numbers [Lowry
and Smith, 1994; McKenzie and Fairhead, 1997;
Ojeda and Whitman, 2002]. However, Stark et al.
[2003] used mirroring with their wavelet method,
and found less of a problem. This difference with
the Fourier results, they said, was because the
wavelets are localized in both space and wave
number domains and thus the artificial wavelengths
do not contaminate the entire signal, as they do
with Fourier methods.

[37] Here we investigate the effect of mirroring
upon wavelet Te recovery. Figure 7a shows the
same ellipse as in Figure 5a, but moved to the area
edge, and with a circular plateau (diameter 600 km)
also of magnitude Te = 110 km, dropping sharply
(over a distance of 100 km) to Te = 20 km on the
plain. The averaged recovered Te when the syn-
thetic data were not mirrored about their edges is
shown in Figure 7b, while Figure 7c shows the
result when they were mirrored.

[38] Figure 7b shows that if this mirroring is not
performed, then the high Te plateau on the western
edge becomes ‘‘wrapped around,’’ appearing also
on the eastern edge. This phenomenon is not an
artifact of the periodic boundary conditions as-
sumed in the flexure algorithm, because if it were,
then a high Te would also be recovered on the
right-hand edge with the mirrored data (Figure 7c).
Therefore, mirroring has the effect of avoiding Te
wraparound when a high-Te structure abuts the
edge of the data area. This wrapping occurs at
the Fourier transform stage of the wavelet trans-
formation (or equivalently, in the convolution),
when the data grids are juxtaposed without mirror-
ing, and the transition wavelets ‘‘map’’ the high Te
onto the opposite side. While mirroring removes
this phenomenon, if possible the study area should
be chosen so that high-Te structures are more
centrally located.

Figure 6. Uniform Te recovery (f = 1, 5100� 5100 km
area), showing the difference between the average
recovered and model values, as a percentage of the
model [100(Te

mod � Te
rec)/Te

mod]. Error bars are one
standard deviation of the percentage difference
(=100 sT rec

e
/Te

mod, from propagation of variances). The
red symbols are from mixed-loading synthetic models,
and the blue symbols are from land-only models.
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[39] We agree with Stark et al. [2003], finding very
little difference between the unmirrored and mir-
rored elastic thicknesses in the central areas of
Figures 7b and 7c, and also no difference between
the elliptical part of the elastic thicknesses in
Figures 5f and 7c, taking into account the shift in
the ellipse. However, note that the gravity/topog-
raphy grids in this particular analysis are periodic
and that the study areas are relatively large: in
sections 7.3 and 7.4 we address the case of mirror-
ing nonperiodic data over smaller areas.

[40] Comparison of Figure 7c with 7a shows that
although the small circular feature has clearly been
retrieved, both its amplitude and gradient are
greatly reduced. The reason is that the wavelets
cannot fully resolve it, as its diameter is much
smaller than even the p = 0.5 width of the Te = 110
km transition wavelet. However, a similar phenom-
enon occurs with sharp, circular Te = 5 km zones of
diameter 400 km, which we would expect to be
recovered well because this diameter is greater than
the p = 0.1 wavelet width. In this case the problem
can be attributed to failure of the decoupling
assumption (section 3.4). This supposes that adja-
cent spectra are independent whereas in fact they
are not, and for steep Te gradients this can lead to
complexities in the 3-D coherence and hence to
distortion of the recovered Te distribution. The
effect of steep Te gradients upon its recovery is
explored further in section 8. However we have not
found it to be a serious shortcoming of the method
if the Te gradients are not too large.

7. Fractal Te Structures

[41] As a further test of the wavelet coherence
method, we attempted to recover an elastic thick-

ness from synthetic gravity/topography data gener-
ated from loading of a plate with a fractal Te
distribution. Whereas the application to geometri-
cally shaped Te distributions described above is a
useful indicator of the method’s recovery accuracy,
fractal Te distributions are likely to be closer to the
real Earth’s Te structure. We used the spectral
synthesis method of Peitgen and Saupe [1988]
with a fractal dimension of 2.0 to generate the
distributions shown in Figure 8a (‘‘fractal 1’’), and
Figure 9a (‘‘fractal 2’’). The spatial dimensions of
the grids were 8620 � 8620 km for fractal 1, and
10,220 � 10,220 km for fractal 2.

7.1. Wave Number–Independent
Loading Ratio

[42] As a first test, the initial loads were given
equal fractal dimensions of 2.5. For fractal 1 we
tested both land-only and mixed loading, while for
fractal 2 we used land-only loading.

[43] Figure 8b shows the averaged recovered Te for
fractal 1, while Figure 9b shows that for fractal 2. It
is evident that the long-wavelength structure of the
models has been recovered well in both cases,
while the short-wavelength Te variations have been
smoothed to a degree proportional to the absolute
value of Te in the locality. This effect has been
discussed in sections 3 and 5, and is also illustrated
in Figure 8c, which shows cross sections through
the model (black curve) and average recovered Tes
(red curve) for fractal 1. Again, high-Te anomalies
are more underestimated, because of their width
being less than the transition wavelet width. As
seen before (section 4.1) the mixed-loading case
gives a slightly better recovered Te than land-only
loading (blue curve in Figure 8c), with the misfits

Figure 7. (a) Model Te distribution. (b and c) Recovered Te from average of 100 models, computed without and
with mirroring of the gravity/topography data, respectively (mixed loading).
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being 7.4 ± 7.9 km for the former, and 10.5 ± 8.4 km
for the latter.

7.2. Wave Number–Dependent Loading
Ratio

[44] There has been some debate in the literature
recently concerning the Te recovery ability of the
Bouguer coherence method in regions where ero-
sion has greatly reduced the topographic amplitude
[McKenzie and Fairhead, 1997; McKenzie, 2003].

In an attempt to show that this method is still
effective in such regions, Swain and Kirby [2003]
and Swain and Kirby [2006] performed synthetic
modeling, using multitapers and wavelets respec-
tively, on gravity/topography pairs where the initial
loads had fractal dimensions of 2.5 (surface) and
3.0 (subsurface). This difference in fractal dimen-
sion has the effect of (1) inducing a wave number
(k) dependence in the loading ratio (Appendix A)
and (2) reducing the power in the ‘‘uncompensated
topography’’ to below that of the free-air gravity

Figure 8. (a) Model Te distribution (‘‘fractal 1’’). (b) Recovered Te from average of 100 models (mixed loading).
(c) Cross sections, from the northwest to southeast corners, from the Te grids in Figures 8a and 8b (black and red,
respectively), and from four other grids (see section 7.2 and figure legend). In the legend, the ‘‘f’’ indicates loading
ratio for surface/subsurface load fractal dimensions of 2.5/2.5 (i.e., uniform f ), while the ‘‘fk’’ indicates loading ratio
for a fractal dimension of 2.5/3 (i.e., wave number–dependent f ; see section 7.2).
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anomaly [Swain and Kirby, 2003]. Recall,McKenzie
and Fairhead [1997] postulated that when this latter
scenario occurs, whether through erosion or large
amplitude subsurface loads without topographic
expression, then the Bouguer coherence method
returns overestimates of the true Te.

[45] Hence, we generated 100 gravity/topography
pairs for the fractal Te model 1, using the land-only
loading model, and with initial surface and subsur-
face loads having fractal dimensions of 2.5 and 3,
respectively. We tested three cases of the (wave
number–dependent) loading ratio: f(kt) = 0.2 rep-
resenting predominantly surface loading, f(kt) = 1
representing equal surface and subsurface loading,
and f(kt) = 5 representing predominantly subsurface
loading. Note that these f values indicate the
loading ratio around the coherence transition wave
number (kt), whereas the different fractal dimen-
sions imply a wave number–dependent loading
ratio.

[46] The maps of the average recovered Te for each
case look very similar to that in Figure 8b, so
instead of presenting these, in Figure 8c we show
cross sections from the three results (see figure
caption and legend). Generally, all profiles have
very similar values, indicating that the recovery
ability of the fan wavelet coherence method is
largely independent of the loading environment,
and that, with this method, Te is still underesti-
mated, and not overestimated as McKenzie and
Fairhead [1997] claim.

[47] The f(kt) = 5 recovery contains more high-
frequency content in Te (which matches the high
frequencies in the model) because the transition
wavelength for f = 5 is at shorter wavelengths than
for smaller values of f at the same Te [Forsyth,
1985], meaning the transition wavelets are smaller-
scale with better spatial resolution (Figure 2). The
f(kt) = 0.2 profile gives the best recovery in an
absolute sense, but is much smoother than the
others for the same reason.

7.3. Nonperiodic Loads

[48] All the synthetic gravity/topography models
discussed so far were generated using periodic
boundary conditions in the flexure algorithm. This
means that there will be no discontinuities in the
signal or its gradient between opposite edges of
the data area, yielding no edge effects when Fourier
transformed. However, this periodicity does not
occur with real data. Therefore, to simulate real,
nonperiodic gravity/topography data, we extracted
two subsets from each of the 100 gravity/topography
grids generated from fractal 2. These subsets are
shown as the white and black boxes in Figure 9a.

[49] Figure 10a shows the extracted Te distribution
over subset 1, with dimensions 5100 � 5100 km.
Figure 10b shows the averaged (over 100 results)
recovered Te, when the gravity/topography data
extracted from the whole area were not mirrored,
while Figure 10c shows the result with mirroring.
There are considerable edge effects arising from
Fourier transformation of nonperiodic data without

Figure 9. (a) Model Te distribution (‘‘fractal 2’’). (b) Recovered Te from average of 100 models (land loading). The
white boxes show the extents of subset 1 (Figure 10), and the black boxes show the extents of subset 2 (Figure 11).
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mirroring, and only the low-Te anomalies toward
the center of the area are recovered well. Mirroring
of the data, however, has removed the edge effects
to the extent that the recovered average is now very
similar to the model Te. Note though, that the high-
Te features are still underestimated, as has hap-
pened with all our synthetic results.

[50] From this particular analysis, we conclude that
mirroring of real (i.e., nonperiodic) gravity/topog-
raphy data should invariably be performed prior to
Te estimation with the wavelet method, or at least
performed alongside an unmirrored version.

7.4. Small Area

[51] Figure 11a shows the extracted Te distribution
over subset 2, where the elastic thickness is gener-
ally low. This box has dimensions 1260� 1260 km.
Figure 11b shows the averaged recovered Te with
mirroring. There is a reasonable recovery of Te,
though its gradient is reduced in magnitude. For

comparison, Figure 11c shows a magnification of
the recovered Te grid in the black box in Figure 9b,
i.e., when the complete data set is used. While the Te
recovery from data limited to the smaller area
compares well at longer wavelengths with the
extracted values, there are differences, notably the
reduced Te gradient, and the lower values along
the eastern edge.

[52] We conclude that, even with mirroring, the
results when performed over a relatively small area
are significantly worse than those obtained by
using the extended data set.

8. A ‘‘Faulted’’ Fractal Te

[53] In Figure 7c the amplitude and gradient of the
small circular Te anomaly was greatly underesti-
mated, and two reasons were proposed to explain
this (besides the background coherence bias). First,
the diameter of the anomaly is much less that the

Figure 10. (a) Model Te distribution (subset 1, extracted from white box in Figure 9a). (b and c) Average recovered
Te from gravity/topography extracted over subset 1, without and with mirroring, respectively.

Figure 11. (a) Model Te distribution (subset 2, extracted from black box in Figure 9a). (b) Average recovered Te
from inversion of (mirrored) gravity/topography data extracted over subset 2. (c) Average recovered Te extracted
directly from the black box in Figure 9b.
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transition wavelet width. Second, the steepness of
the Te gradient could possibly invalidate the decou-
pling assumption in this region.

[54] In an attempt to separate these effects, we
tested a plate with a fractal distribution (fractal
dimension 2.0), but with a ‘‘fault’’ of magnitude
60 km and width 100 km splitting the area in half
(Figure 12a) so that issues of transition wavelet
width ought not to be as significant. The average
recovered Te (over 100 models, land-loading, mir-
rored gravity/topography) is shown in Figure 12b,

and while the recovery is good, the steep Te
gradient across the fault has been reduced.

[55] Figure 13 (top) shows Te profiles extracted
from these grids at 2000 km and 4000 km northing.
The reduced gradient of the recovery is obvious,
particularly for the 2000 km profile where Te is
generally higher and the transition wavelets are
broader. Over the fault, however, the observed
coherence ‘‘gradient’’ (i.e., the gradient of the
half-coherence locus in the eastings direction) is

Figure 12. A faulted fractal Te. (a) Model Te distribution, being a fractal Te with a 60 km ‘‘fault.’’ (b) Average
recovered Te (land loading).
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actually slightly sharper than the predicted coher-
ence gradient over the fault.

[56] At first glance it would seem that the predicted
coherence is not modeling the observed coherence
over the fault as well as we might expect. However,
plotting one-dimensional (1-D) coherence profiles
along 4000 km northing (Figure 14) shows that this
is not the case, and that the predicted coherence
provides a good fit to the observed coherence,
particularly at locations away from the fault. As
the fault is approached from the west, the ‘‘blip’’ in

the coherence rollover begins to move to higher
wave numbers, until it almost disappears at the
fault itself (2550 km easting). This blip is not
visible in the high-Te eastern regions, and is a
consequence of the high-Te signal leaking into
the low-Te western regions by virtue of the large
transition wavelet width.

[57] Hence, we conclude that the major cause of
reduced Te gradients is coupling between adjacent
wavelet spectra over a Te discontinuity. This is
evident in the observed coherence profiles in
Figure 14. In contrast, the assumption of uniform
Te in the inversion (section 3.4) does not seem to be
as significant, because the inversion does a fair job
of predicting the observed coherence, irrespective
of whether or not the observed coherence is truly
representative of the actual Te.

[58] (As a check on these results we also applied
the uniform f method, using the theoretical coher-

Figure 13. Cross sections through Te and averaged
coherences for the faulted fractal Te model. (left)
Profiles extracted at 2000 km northing and (right)
profiles extracted at 4000 km northing. (top) Profiles
extracted from the model Te (black, Figure 12a) and
average recovered Te (red, Figure 12b). (middle) The
100-averaged observed and (bottom) predicted coher-
ences. The white lines in the coherence plots mark the
location of the coherence transition wavelengths for the
model Te from equation (D5) for f = 1, the half-
coherence contour is plotted in black, EFW is equivalent
Fourier wavelength, and color scale is coherence.

Figure 14. Average observed (black) and predicted
(red) 1-D coherence profiles extracted from Figure 13
(right) (i.e., at 4000 km northing) at the easting (in km)
indicated in each panel. The Te ‘‘fault’’ lies at 2550 km
easting. EFW is equivalent Fourier wave number.
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ence formula (equation (D1)) with f = 1 at all wave
numbers. We obtained almost identical results for
both coherence (predicted versus theoretical) and
recovered Te. As f = 1 in the model, this agreement
is expected.)

[59] Interestingly, note the high–wave number
average observed coherence asymptote in Figure 14
is 	0.2 and not zero, and recall that the average
initial-load coherence for these models is 0.18
(section 4.1.2). This provides further evidence of
the propagation of initial into final coherence in the
synthetic method.

9. Estimation of the Loading Ratio

[60] The wavelet-Forsyth inversion method can, if
desired, give the loading ratio between initial
subsurface and surface loads ( f, Appendix C1),
which is a function of both spatial position and
wave number (k). However, plots of this recovered
f, such as in the fourth row of Figure 17, show a
wave number dependence even if the initial loads
have equal fractal dimension when we would
expect to find f (k) = 1, 8k (see Appendix A). This
observed increase of the recovered f with wave
number is not peculiar to wavelet methods, though
it is probably more marked because there is less

averaging of the spectra at high wave numbers than
with Fourier methods.

[61] Part of the discrepancy can be explained by
the downward continuation of the Bouguer anom-
aly to the Moho in the Forsyth method (see
equation (C6)), which overly amplifies the high–
wave number components of the subsurface load
spectrum, and forces an increase of recovered f
with wave number. In support of this argument,
performing the coherence inversion using a wave-
let adaptation of the Banks et al. [2001] deconvo-
lution method gives a relatively constant f (at least
for shallow internal loads), because the (implied)
downward continuation is to a shallower depth (see
equation (C13)).

[62] The k dependence at low and intermediate
wave numbers is not so easily explained. Never-
theless, we do observe a good recovery of f at the
coherence transition wave number, f(kt). Figure 15
shows the averaged recovered f(kt) values for uni-
form plates with Te varying from 10 to 150 km.
For Te < 25 km (approximately) f(kt) is over-
estimated, while for Te > 25 km it is underesti-
mated, though the values approach an asymptote
of 0.94 which represents a difference of only 6%
from the expected value. We conclude, therefore,
that f(kt) is a fair indicator of the actual loading
ratio at the coherence transition wavelength,
though slight biases do exist, depending upon Te.

[63] Importantly, the wave number dependence of
the recovered f hardly affects recovered Te esti-
mates, because with the coherence method it is the
values of f around the coherence transition wave
number that are important in Te estimation. As
Forsyth [1985, p. 12,629] notes, ‘‘the estimate of
elastic thickness from coherence is not very sensi-
tive to uncertainty in f.’’

10. Results With the Bouguer
Admittance

[64] Many authors have chosen to estimate Te
through an admittance analysis. Prior to the arrival
of the Bouguer coherence method [Forsyth, 1985],
this was usually performed by fitting a 1-D theo-
retically determined admittance curve to the 1-D
observed Bouguer admittance, assuming only sur-
face loading [e.g., McKenzie and Bowin, 1976;
Banks et al., 1977], thoughMcKenzie and Fairhead
[1997] also used this method with multitaper esti-
mation of the observed free-air admittance. More
recently, Pérez-Gussinyé et al. [2004] and Pérez-

Figure 15. The recovered initial subsurface-to-surface
loading ratio at the coherence transition wavelength
[ f (kt)], averaged over 100 models and averaged over all
grid nodes, for 15 uniform Te plates (mixed loading).
Error bars are one standard deviation of the 100-
average, and the straight line plots f = 1, which is the
value that the synthetic loads were given.
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Gussinyé and Watts [2005] computed the elastic
thickness of Europe using both Bouguer coherence
and free-air admittance with the multitaper method,
though instead of fitting the observed data to
theoretical expressions, they determined a predicted
admittance, as in Forsyth’s method, with both
surface and subsurface loads.

[65] Here we test the fan wavelet method on
(mixed loading) gravity/topography data from the
high-Te elliptical model (Figure 5a), though now fit
the Bouguer wavelet admittance. Figure 16a shows
the recovered Te from the average of 100 admit-
tance Te estimates for this model, and should be
compared with Figure 5f which is the result from
the Bouguer coherence method. Comparison of the
images reveals that, on average, the admittance
method recovers the Te magnitude, and possibly
gradient, better than the coherence method. The
overall misfit between the elliptical Te model and
recovered average admittance Te is �0.4 ± 7.7 km
(compare 3.0 ± 10.2 km for the coherence method).

[66] However, when individual Te solutions are
considered, rather than an average, the admittance
inversion generally gives worse results than when
Te is estimated using the coherence. The admit-
tance Te results contain more noise than the coher-
ence results, which is most often manifested as
abrupt discontinuities in Te. Figure 16b shows the
recovered elliptical Te for model 058 when the
admittance is inverted, while Figure 16c shows
the equivalent result for the coherence. It can be
seen that the coherence results are generally much
smoother than the admittance results which fre-
quently contain spurious Te anomalies. We also
observed that the admittance Te contains extensive
regions where the recovered value is much greater
than the input model.

[67] Why should the admittance inversion (1) pro-
vide less biased average Te estimates and (2) be so
much more noisy than the coherence inversion?
Concerning question 1, we believe this is most
likely due to the transition wavelength for the
admittance being shorter than that for the coher-
ence (for f = 1), so the downward bias in the
admittance Te due to a limited data area size is less
pronounced. From Banks et al. [2001, Figures 4
and 5] the transition wavelength for Te = 90 km is
approximately 630 km for the admittance, and
890 km for the coherence.

[68] Addressing question 2, it is helpful to consider
Forsyth’s [1985] coherence method. Here, pre-
dicted surface and subsurface loads are computed
from the observed gravity/topography data assum-
ing a starting value for Te, and a predicted coher-
ence is then computed from these predicted loads.
The Te value is then adjusted iteratively until the
predicted coherence best fits the observed coher-
ence. As Forsyth [1985, p. 12,629] notes, solving
the loading equations automatically fits the admit-
tance. Swain and Kirby [2006] give an example
from part of a model where Te is uniform, which
shows an excellent fit between observed and pre-
dicted admittance, despite only the coherence be-
ing explicitly fitted. However, the loading
equations assume uniform Te, so if Te varies
spatially then only an approximate fit may be
expected. In parts of Figure 16c where Te varies
the admittance fit is not so good, but we have noted
a tendency for it to be best near the coherence
transition wave number (kt).

[69] When Te is estimated from the admittance,
however, the whole admittance over all wave
numbers is explicitly fitted to the predicted admit-
tance, and as noted by Forsyth [1985], the admit-

Figure 16. Te recovery for the high-Te ellipse (Figure 5a). (a) Average of 100 models from the inversion of the
wavelet admittance (mixed loading). (b and c) Te recovered from model 058 using the admittance and coherence,
respectively.
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tance is highly sensitive even to slight variations in
f, whereas the coherence is not. Therefore, small
adjustments of f(kt) during the coherence inversion
do not appreciably alter the estimated Te. During
admittance inversion, on the other hand, it is not
just f(kt) that is important but f at all wave numbers,
and the admittance’s sensitivity to f means that
many different combinations of Te and f(k) can give
predicted admittances that match the observed
admittance equally well.

[70] Figure 17 shows slices through the observed
and predicted coherence/admittance for the models
in Figure 16, together with the loading ratio

obtained from the two inversions. (Following the
discussion in section 9, we note that the k depen-
dence of f may be artificial, but that f(kt) is most
likely accurate.) In the synthetic models, recall,
the random correlations between initial loads alters
their effective loading ratio even though they are
assigned a specific value within the finite differ-
ence routine. For the coherence inversion
(Figure 17, left), all slices are relatively smooth.
The same cannot be said for the admittance inver-
sions (Figure 17, right), which exhibit many dis-
continuities. While the observed admittance is
reasonably smooth, the inversion has evidently
switched between different combinations of Te and
f (k) that, while fitting the local observed admittance
well, result in highly variable Te and f profiles.
Whether these poor admittance results apply to real
data too remains to be seen, but we suspect that it is so.

11. Conclusions

[71] From our studies on the fan wavelet method
and its application to synthetic data, we conclude
the following.

[72] 1. We have shown that the land-only load-
deconvolution equations may be applied to data
over both land and sea, provided the bathymetry is
converted to an equivalent topography. For typical
values of the Earth’s oceanic Te (15 km), the Te
error committed should be 	3 km, with no error
over land.

[73] 2. The synthetic modeling approach will in-
herently yield Te underestimates due to the nonzero
coherence at all wavelengths between initial ran-
dom fractal loads which pushes the transition
wavelength to smaller values. This phenomenon

Figure 17. Comparison of the admittance and coher-
ence (observed and predicted) and the loading ratio
(from coherence and admittance inversions) for model
058 (mixed loading) of the high-Te ellipse (Figure 5a).
All profiles are extracted at 2000 km easting. The first
row shows profiles extracted from the coherence-
recovered Te in Figure 16c, the admittance-recovered
Te in Figure 16b (both red), and from the model Te in
Figure 5a (black). The second row shows the observed
coherence and admittance, the third row shows their
predicted values, and the fourth row shows the loading
ratio recovered from the coherence and admittance
inversions. Half-coherence contour is plotted in black in
the left-hand plots, the white lines mark the location of
the coherence transition wavelengths for the model Te
from equation (D5) for f = 1, and EFW is equivalent
Fourier wavelength.
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will affect all spectral Te estimation methods, not
just the wavelet approach. It will also affect Te
estimation from real data should there exist corre-
lation between initial loads [e.g., Bechtel et al.,
1987], though we do not wish to speculate here on
the likelihood of such occurrences.

[74] 3. The widths of the transition wavelets im-
pose a fundamental limitation on the resolution of
the method. It leads to (1) underestimates of the
true Te when the study area is too small to accom-
modate the transition wavelets, (2) underestimates
of relative Te differences when the Te anomaly is
narrow compared to its flexural wavelength, and
(3) underestimates of steep Te gradients. Only item
1 is under user control: it requires a judicious
choice of study area size (as large as possible)
versus grid size (as small as possible), in order to
place the transition wavelength in middling values
of wavelet scale, where the spatial/spectral resolu-
tion is optimal.

[75] 4. Although the resolution of the transition
wavelets is probably the most important limitation
of the method, there are two other factors that may
adversely affect results in the presence of steep Te
gradients. These are (1) the decoupling assumption
and (2) the assumption of uniform Te in the loading
equations. We have shown that the decoupling
assumption is the most important of these, and that
its validity is related to transition wavelet width.

[76] 5. Te recovery with the wavelet coherence
method is only weakly dependent on the fractal
dimensions of the synthetic surface and subsurface
loads, and their loading ratio.

[77] 6. Inversion of the wavelet admittance leads to
large discontinuities in the recovered Te and f, at
least for synthetic data. This is most likely because
the admittance is more sensitive to f than is the
coherence, and hence we believe it also applies to
real data.

[78] 7. Mirroring the gravity/topography data does
not affect the Te recovery ability of the wavelet
method as much as it does with Fourier methods.
Indeed, this preprocessing technique should be
used if a high-Te structure abuts the data area edge,
and/or where the study area is not much larger than
the expected transition wavelengths.

Appendix A: Plate Flexure Equation

[79] Consider a thin elastic plate of density rc,
which overlies an inviscid fluid of density rm,

and is overlain by a fluid of density rf, which
may be water (rf = rw) or air (rf = 0). Following
Forsyth [1985], the plate is subjected to initial
loads of geometrical amplitude hi at the surface,
and wi at the Moho. In the synthetic modeling
procedure, these loads are represented by two
random fractal surfaces of equal variance. The
Moho load [(rm � rc) g wi] is scaled as f times
the surface load [(rc � rf) g hi], where f is the
subsurface-to-surface loading ratio which here we
assume to be constant, and g is the acceleration due
to gravity (Table 1). For constant f = f0, this
essentially gives a random loading ratio with
expectation E[f(k)] = f0 at all wave numbers (k) if
the fractal dimensions of the two surfaces are
equal. If they are not equal, then f will vary with
wave number as f0k

bT�bB, where bT and bB are the
spectral exponents of the surface and subsurface
loads, respectively, which are related to fractal
dimension (FD) by b = 8 � 2FD.

[80] The initial surface load causes a deflection of
amplitude wT at the Moho, resulting in a new
surface topography of hT. The initial load at the
Moho causes a deflection of amplitude hB at the
surface, resulting in a new Moho topography of
wB. Here we use the sign convention used by
Forsyth [1985], though not by Stark et al.
[2003], that all deflections away from the center
of the Earth are positive, whether they occur at the
surface or at the Moho. Therefore, the final surface
topography after flexure is:

h ¼ hT þ hB ðA1Þ

and the final Moho topography after flexure is:

w ¼ wT þ wB ðA2Þ

[81] Also, the final deflection amplitude of the
plate, v, is the sum of the deflection at the Moho
due to the surface load, and the deflection at the
surface due to the Moho load:

v ¼ wT þ hB ¼ h� hi ¼ w� wi ðA3Þ

[82] Timoshenko and Woinowsky-Krieger [1959]
give the partial differential equation for flexure of
an orthotropic plate, i.e., one with orthogonal
rigidities Dx(x) and Dy(x), as:

� @2Mx

@x2
� 2

@2Mxy

@x @y
þ @2My

@y2

� �
þ rm � rf
� �

g v

¼ � rc � rf
� �

g hi � rm � rcð Þ g wi ðA4Þ

[83] Equation (A4) is valid for the deflection of a
plate of any rheology [Burov and Diament, 1995].
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For a thin elastic plate, however, the two bending
moments are:

Mx ¼ � Dx

@2v

@x2
þ nDxy

@2v

@y2

� �
ðA5Þ

My ¼ � Dy

@2v

@y2
þ nDxy

@2v

@x2

� �
ðA6Þ

and the twisting moment is:

Mxy ¼ 1� nð ÞDxy

@2v

@x @y
ðA7Þ

with

Dxy ¼
ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
ðA8Þ

and where n is Poisson’s ratio (Table 1). For an
isotropic plate, Dx = Dy = Dxy = D.

[84] For spatially variable rigidities, the final
deflections, v, must be solved for by a numerical
method. Here we give the finite difference equa-
tions for the solution of equation (A4) as coeffi-
cients of the indicated vi,j terms, where the i and j
subscripts correspond to the x and y directions,
respectively, and D is the grid spacing in both
coordinates:

vi;j : 4 Dx
i;j þ D

y
i;j þ 2nDxy

i;j

� �
þ Dx

iþ1;j þ Dx
i�1;j þ D

y
i;jþ1 þ D

y
i;j�1

� �
þ 2 1� nð Þ D

xy
iþ1;j þ D

xy
i�1;j þ D

xy
i;jþ1 þ D

xy
i;j�1

� �
þ rm � rf
� �

gD4

viþ1;j : �2 Dx
i;j þ nDxy

i;j

� �
� 2 Dx

iþ1;j þ D
xy
iþ1;j

� �
� 1� nð Þ D

xy
i;jþ1 þ D

xy
i;j�1

� �
vi�1;j : �2 Dx

i;j þ nDxy
i;j

� �
� 2 Dx

i�1;j þ D
xy
i�1;j

� �
� 1� nð Þ D

xy
i;jþ1 þ D

xy
i;j�1

� �
vi;jþ1 : �2 D

y
i;j þ nDxy

i;j

� �
� 2 D

y
i;jþ1 þ D

xy
i;jþ1

� �
� 1� nð Þ D

xy
iþ1;j þ D

xy
i�1;j

� �
vi;j�1 : �2 D

y
i;j þ nDxy

i;j

� �
� 2 D

y
i;j�1 þ D

xy
i;j�1

� �
� 1� nð Þ D

xy
iþ1;j þ D

xy
i�1;j

� �
viþ1;jþ1 : D

xy
iþ1;j þ D

xy
i;jþ1 þ A

viþ1;j�1 : D
xy
iþ1;j þ D

xy
i;j�1 � A

vi�1;jþ1 : D
xy
i�1;j þ D

xy
i;jþ1 � A

vi�1;j�1 : D
xy
i�1;j þ D

xy
i;j�1 þ A

viþ2;j : D
x
iþ1;j

vi�2;j : D
x
i�1;j

vi;jþ2 : D
y
i;jþ1

vi;j�2 : D
y
i;j�1 ðA9Þ

where

A ¼ 1� n
8

D
xy
iþ1;jþ1 � D

xy
i�1;jþ1 � D

xy
iþ1;j�1 þ D

xy
i�1;j�1

� �
ðA10Þ

All the coefficients must be divided by D4.

[85] The final topography and Moho deflection of
the synthetic model are then found from equation
(A3). The corresponding Bouguer anomaly is
obtained from w via the iterative formula of Parker
[1972].

Appendix B: Fan Wavelet Transform
Method

[86] A detailed discussion of the ‘‘fan’’ wavelet
method of coherence estimation (both isotropic and
anisotropic) is provided by Kirby and Swain
[2004], Kirby [2005] and Kirby and Swain
[2006]. Furthermore, since other texts discuss the
2-D continuous wavelet transform (CWT) in great
depth [e.g., Farge, 1992; Addison, 2002; Antoine et
al., 2004], only those features of the CWT more
relevant to the present contribution will be pre-
sented here.

B1. Morlet Wavelet

[87] The space domain formula for the 2-D Morlet
wavelet at a certain scale, s, is (ignoring azimuthal
dependence):

ys xð Þ ¼ 1

s
eik0 �x=se�jx=sj2=2 ðB1Þ

[e.g., Kirby, 2005], where the ‘‘central wave
number’’ of the Morlet wavelet is:

jk0j ¼ p

ffiffiffiffiffiffiffi
2

ln 2

r
ðB2Þ

[e.g., Addison, 2002]. In order to enable a direct
comparison between Fourier spectra and the
wavelet coefficients at a particular scale, each
scale is interpreted as an equivalent Fourier wave
number (k), which for the Morlet wavelet is given
by:

k ¼ jk0j
s

ðB3Þ

or, in terms of an equivalent Fourier wavelength:

le ¼ 2ps
jk0j

ðB4Þ
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since k = 2p/le. It can be shown that the width of
the Gaussian envelope of this wavelet, at a fraction
p of the maximum value (0 < p < 1), is:

Dy le; pð Þ ¼ lejk0j
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln p

p
ðB5Þ

using equation (B4).

[88] Finally, to support the observation by Kirby
[2005] that the Morlet wavelet gives a wavelet
power spectrum that very closely reproduces the
radially averaged Fourier power spectrum, we
calculate the Morlet wavelet transform of a 2-D
complex exponential of a single wave number,
jk1j. For g(x) = eik1�x, its Morlet wavelet transform
is:

~g s; xð Þ ¼ eik1�xe�jsk1�k0j2=2 ðB6Þ

which is just the input signal, though amplitude-
normalized by a factor dependent on the difference
between the input wave number and the central
wave number of the Morlet wavelet. Hence, Morlet
wavelets can be used to generate coherences and
admittances that may be directly compared with the
Fourier-derived predictions of theory, without the
need for further numerical integrations that must be
performed with other wavelets [Kirby and Swain,
2004].

B2. Wavelet Coherence and Admittance

[89] Computing the wavelet coefficients by means
of the space domain convolution of equation (2) is
time consuming, so it is generally carried out by
multiplication in the wave number domain via the
Fourier transform (F), e.g., ~b(k, x, q) = F�1 {b̂ŷsq}
for the Bouguer anomaly, where a ^ indicates a
Fourier transform. Note that with the relationship
between scale and equivalent Fourier wave num-
ber, equation (B3), we now write k instead of s in
the wavelet coefficients. We use the mixed radix
fast Fourier transform (FFT) algorithm of Singleton
[1968], which requires only that the array dimen-
sions be products of prime numbers (�67), rather
than a power of two [see also Kirby, 2002].

[90] Whereas the traditional periodogram method
of coherence estimation [e.g., Forsyth, 1985; Zuber
et al., 1989] performs averaging of the Fourier
autospectra and cross-spectra between gravity and
topography over isotropic annuli in the wave
number domain, the fan wavelet method averages
the wavelet autospectra and cross-spectra in the

wavelet domain over separate azimuths, q, where
0� < q < 180�:

Epq k; xð Þ ¼ 1

Nq

X
q

~p ~q*f g ðB7Þ

for any ~p(k, x, q), ~q(k, x, q). The observed wavelet
coherence can now be computed through:

g2
W
k; xð Þ ¼ Ebh k; xð Þ E*bh k; xð Þ

Ebb k; xð Þ Ehh k; xð Þ ðB8Þ

This quantity contains, at each grid node, an
estimate of the observed coherence between the
Bouguer anomaly and equivalent topography.

[91] If desired, the wavelet admittance is obtained
from:

QW k; xð Þ ¼ < Ebh k; xð Þ½ �
Ehh k; xð Þ ðB9Þ

This is computed using the real part of the ~b~h*
cross-spectrum, which is more in keeping with
the conventional definition of the classical Fourier
(1-D) admittance in which the isotropic annular
averaging effectively removes its imaginary part.

Appendix C: Inversion Methods

[92] To invert the observed wavelet coherence (or
admittance), at each grid node, in order to obtain
estimates of effective elastic thickness, Te, and
subsurface-to-surface loading ratio, f, we use
wavelet transform adaptations of the thin elastic
plate models of Forsyth [1985] and Banks et al.
[2001]. Owing to the relationship between Morlet
wavelet spectra and Fourier spectra, equation (B6),
the wavelet versions of their equations are identical
to the Fourier equations, but with Fourier trans-
forms replaced by Morlet wavelet transforms, and
wave number replaced by equivalent Fourier wave
number, equation (B3). Here we give the full
mixed-loading equations for completeness, with
rf being the density of the overlying fluid (air or
water). When used with equivalent topography, the
inversion methods require rf = 0 (though see
Appendix C3).

[93] As discussed in section 3.4, the inversion
makes two assumptions; those of spatial decou-
pling of local wavelet spectra, and of uniform Te
(see also sections 6 and 8). Te at a grid node is then
found by minimizing the predicted against the
observed wavelet coherence (or admittance), using
Brent’s method of 1-D minimization [Press et al.,
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1992], with the observed – predicted differences
weighted by the inverse of equivalent Fourier wave
number [Kirby and Swain, 2006].

C1. Forsyth Method

[94] Wavelet transforms of the initial Moho and
surface load topographies (~wi and ~hi), are found
from the observed Moho and surface topographies
(~w and ~h) via the so-called ‘‘load-deconvolution
equations’’:

~h
~w

� �
¼ 1

x þ r

x �1

�r rf

� �
~hi

~wi

� �
ðC1Þ

[cf. Forsyth, 1985] where the subsurface loading
occurs at the Moho, and where the density ratio, r,
is:

r �
rc � rf
rm � rc

ðC2Þ

The parameters x and f are:

x kð Þ ¼ 1þ Dk4

rm � rcð Þ g ðC3Þ

f kð Þ ¼ 1þ Dk4

rc � rf
� �

g
ðC4Þ

where k is the equivalent Fourier wave number.
The flexural rigidity, D, is related to the elastic
thickness by:

D ¼ E T3
e

12 1� n2ð Þ ðC5Þ

The symbols and values of the constants are given
in Table 1.

[95] The wavelet transform of the Moho topogra-
phy (~w) is derived by downward continuation of
the wavelet transform of the observed Bouguer
anomaly:

~w k; x; qð Þ ¼ ekzm xð Þ

2pG rm � rcð Þ
~b ðC6Þ

which is the first term of the Parker [1972] series,
and where G is the Newtonian gravitational
constant (Table 1). Note that the depth to the
Moho, zm, and even the densities are allowed to
vary over geographic location, because the inver-
sions are performed at each grid cell independently,
subject to the decoupling assumption.

[96] The surface (T) and subsurface (B) components
of the Moho and surface topography after loading
are obtained from equations (C1) and (A1), (A2),
and (A3). Then, the predicted wavelet coherence is:

g2
W ;p

k; xð Þ ¼
ET

wh
þ EB

wh

	 

ET

wh
þ EB

wh

	 

*

ET
ww
þ EB

ww

	 

ET

hh
þ EB

hh

	 
 ðC7Þ

where azimuthal averaging of the various auto-
spectra and cross-spectra is represented by:

Es
pq
k; xð Þ ¼ 1

Nq

X
q

~ps ~q*sf g ðC8Þ

where ~p, ~q are either ~w or ~h; and s is either T for
surface load components, or B for subsurface load
components.

[97] A predicted wavelet admittance may also be
computed:

QW ;p k; xð Þ ¼ �2pG rc � rf
� �

e�kzm E0
hh

ET
hh
þ EB

hh

ðC9Þ

where:

E0
hh
k; xð Þ ¼ 1

Nq

X
q

j~hT j2

x
þ fj~hBj2

( )
ðC10Þ

[98] If desired, a wavelet loading ratio can be
derived from the initial loads:

fW k; xð Þ ¼ 1

r

ffiffiffiffiffiffiffi
Ei

ww

Ei
hh

s
ðC11Þ

using s = i in equation (C8). To display maps of
the loading ratio, we average fW (k, x) at three of its
values around the transition wave number, where
the predicted wavelet coherence has a value of 1

2
.

C2. Banks Method

[99] In the Banks et al. [2001] formulation of the
thin plate model, the internal loading occurs at a
thin layer at depth zl (<zm) within the crust.
Importantly, the actual magnitude of the thin
layer’s density does not need to be known. As
for the Forsyth approach with a variable zm(x), the
wavelet-adapted equations for the Banks method
can account for a variable zl(x) if this information
is known. Generally speaking, the inclusion of a
thin layer between the surface and Moho serves to
reduce Te estimates, though not significantly, with
Lowry and Smith [1994], Wang and Mareschal
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[1999] and Flück et al. [2003] finding their results
to be fairly insensitive to the magnitude of the
density contrasts or depth of the interface, albeit
using different approaches to that of Banks et al.
[2001].

[100] Wavelet transforms of the initial surface and
internal loads (~‘T and ~‘B), are found from the
observed Bouguer anomaly and equivalent topog-

raphy wavelet transforms (~b and ~h) via the load-
deconvolution equations:

~b
~h

� �
¼ aT aB

bT bB

� �
~‘T
~‘B

� �
ðC12Þ

where the parameters are:

aT kð Þ ¼ �2pG rm � rcð Þe�kzm

Dk4 þ rm � rf
� �

g

aB kð Þ ¼ aT þ
2pGe�kzl

g

bT kð Þ ¼ bB þ
1

rc � rf
� �

g

bB kð Þ ¼ �1

Dk4 þ rm � rf
� �

g
ðC13Þ

(see Table 1 for symbols and values of the
constants). The components of the Bouguer
anomaly and equivalent topography due to surface
and subsurface loads are: ~bT = aT

~‘T, ~bB = aB
~‘B,

~hT = bT ~‘T, and ~hB = bB~‘B, enabling the estimation of
the predicted wavelet coherence:

g2
W ;p

k; xð Þ ¼
ET

bh
þ EB

bh

	 

ET

bh
þ EB

bh

	 

*

ET
bb
þ EB

bb

	 

ET

hh
þ EB

hh

	 
 ðC14Þ

where the E s
pq are given by equation (C8).

[101] The predicted wavelet admittance may also
be computed, through:

QW ;p k; xð Þ ¼ E0
hh

ET
hh
þ EB

hh

ðC15Þ

where

E0
hh
k; xð Þ ¼ 1

Nq

X
q

aT

bT

j~hT j2 þ aB

bB

j~hBj2
� �

ðC16Þ

[102] The wavelet loading ratio is then:

fW k; xð Þ ¼
ffiffiffiffiffiffi
EB

‘‘

ET
‘‘

s
ðC17Þ

where the Es
‘‘ are given by equation (C8) for p =

q = ‘.

C3. Equivalent Topography Approximation

[103] As discussed in section 2.2, in oceanic
regions we convert actual topography (h) to an
equivalent topography [h0 = (rc � rw)h/rc], and
propose that this enables the use of the land-
loading thin elastic plate equations. Now, in equa-
tion (C1) as we compute it, the h is actually h0, and

Figure C1. The coherence transition wavelength from
three methods, for rf = 0. (a) Its variation as a function
of Te for f = 1 and (b) its variation as a function of f for
Te = 40 km. Red curves show the solutions from the
quartic equation, green curves are from Simons and van
der Hilst [2003], and blue curves are from numerical
interpolation of the theoretical coherence formula. The
black curve shows the flexural wavelength given by
Macario et al. [1995], which is f-independent.
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it can be shown that rh0 = rh when rf = 0. That is,
to a first approximation, using rf = 0 and h0 is
equivalent to using rf = rw and h at sea. However,
this substitution does not alter the expression for f
for example (equation (C4)), when it ought to,
meaning that at sea, we are using a ‘‘land f’’ when
we should be using a ‘‘sea f.’’

[104] The effect of this on Te can be determined
through our new solution to the quartic equation
describing half-coherence, which provides an ana-
lytic expression relating Te, f and the coherence
transition wave number kt (Appendix D). It can be
shown that, when rf = 0 in equation (D3), Te is
systematically larger than when rf = rw, for all
values of transition wavelength (lt); though the
reverse is true when f < 0.3. This means that our
use of rf = 0 in the deconvolution equations is
biasing Te, but in oceanic areas only. However, Te
generally does not exceed 40 km over the Earth’s
oceans [Watts, 2001]. So, using our quartic solu-
tions we find pairs of allowable values of f and lt
that give Te = 40 kmwith rf = rw: these pairs follow a
locus similar to the red curve in Figure C1b.
Then, for each pair we calculate Te with rf = 0,
and subtract 40 km from this value. In this manner,
we find that oceanic Te will be underestimated by a
maximum of 4 km when f < 0.3, and overestimated
by a maximum of 7 km when f > 0.3. For a more
realistic value of mean oceanic Te, say 15 km, these
limits are �1 and +3 km.

[105] The effect on f is the reverse: using rf = 0 in
the deconvolution equations biases f to smaller
values in oceanic areas, by up to 1 unit when f 	 5.

Appendix D: Coherence Transition
Wavelength

[106] The predicted coherence formula of Forsyth
[1985] can be expressed in analytic form as:

g2 kð Þ ¼ x þ ff 2r2ð Þ2

x2 þ f 2r2
	 


1þ f2f 2r2
	 
 ðD1Þ

where f is the initial subsurface-to-surface loading
ratio, r is the density ratio given by:

r � Dr1
Dr2

ðD2Þ

(see equation (C2)) with

Dr1 ¼ rc � rf Dr2 ¼ rm � rc ðD3Þ

and where

x kð Þ ¼ 1þ Dk4

gDr2
f kð Þ ¼ 1þ Dk4

gDr1
ðD4Þ

(see equations (C3) and (C4)) where k is 1-D wave
number, D is flexural rigidity, and the other
constants are listed in Table 1. We set the density
of the overlying fluid, rf, to zero, though see the
discussion in Appendix C3.

[107] The transition from supported to compensated
loads is defined to occur at a ‘‘transition wave
number,’’ kt, such that g

2(kt) =
1
2
. Under this criterion,

equation (D1) becomes a quartic equation in kt
4:

c4 þ ac3 þ bc2 þ ccþ d ¼ 0 ðD5Þ

where

c ¼ Dk4t
g

ðD6Þ

and where the coefficients can be shown to be:

a ¼ 2 Dr1 þDr2ð Þ

b ¼ � 1� f 2r2

f 2r2

� �
Dr21 �Dr22f

2r2
	 


c ¼ �2
1þ f 2r2

f 2r2

� �
Dr1Dr2 Dr1 þDr2f

2r2
	 


d ¼ � 1þ f 2r2

f 2r2

� �
Dr21Dr22 ðD7Þ

We solved equation (D5) using Ferrari’s method
[e.g., Korn and Korn, 1961], given by Claessens
[2000] as:

p ¼ � b2

3
þ ac

4
� d

q ¼ � 2b3

27
þ b ac� 4dð Þ

12
þ 2bd � c2 � a2d

8

R ¼ p3

27
þ q2

4

t ¼3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
þ

ffiffiffi
R

pr
þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
�

ffiffiffi
R

pr

S ¼ 1

2

a

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4
þ 2t � b

r !

T ¼ t �
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � d

p

c ¼ �S þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � T

p
ðD8Þ

Note we present the solution for only one of the
four roots of equation (D5), since the other three
are complex. The transition wave number may then
be found from equation (D6), and the transition
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wavelength from lt = 2p/kt. Figure C1a shows the
variation of the transition wavelength as a function
of Te (red curve), for constant f.

[108] To check the accuracy of our solution of
the quartic equation, we also used Simons and
van der Hilst [2003, equations (5) and (6)] (green
curve in Figure C1a), and also carried out a direct
interpolation of numerical values of the theoretical
coherence formula (equation (D1)) to find the
wavenumber/wavelength corresponding to g2(k) =
1
2
(blue curve). Finally, the black curve in Figure C1a

shows the flexural wavelength given by Macario
et al. [1995, equation (2)], which is independent of
loading ratio.

[109] As can be seen, the numerical and quartic
solutions are fairly similar, which supports our
quartic solution. However, both differ markedly
from the solution of Simons and van der Hilst
[2003], which we suspect is in error.

[110] Figure C1b shows the variation of the transi-
tion wavelength with loading ratio, for a constant
Te. From numerical testing, we found that the
location of the turning point for the quartic solu-
tion is at f 
 0.32 for all Te values, and that the
flexural wavelength and the transition wavelength
are equal when f 
 0.15 and 0.83, again for all
Te values.
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