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Abstract9

We develop a new computational model of the linear fluid-structure interaction of10

a cantilevered flexible plate with an ideal flow. The system equation is solved via11

numerical simulations that capture transients and allow the spatial variation of the12

flow-structure interaction on the plate to be studied in detail. Alternatively, but13

neglecting wake effects, we are able to extract directly the system eigenvalues to14

make global predications of the system behaviour in the infinite-time limit. We use15

these complementary approaches to conduct a detailed study of the fluid-structure16

system. When the channel walls are effectively absent, predictions of the critical17

velocity show good agreement with those of other published work. We elucidate the18

single-mode flutter mechanism that dominates the response of short plates and show19

that the principal region of irreversible energy transfer from fluid to structure oc-20

curs over the middle portion of the plate. A different mechanism, modal-coalescence21

flutter, is shown to cause the destabilisation of long plates with its energy transfer22
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occurring closer to the trailing edge of the plate. This mechanism is shown to al-23

low a continuous change to higher-order modes of instability as the plate length is24

increased. We then show how the system response is modified by the inclusion of25

channel walls placed symmetrically above and below the flexible plate, the effect of26

unsteady vorticity shed at the trailing edge of the plate, and the effect of a rigid sur-27

face placed upstream of the flexible plate. Finally, we apply the modelling techniques28

in a brief study of upper-airway dynamics wherein soft-palate flutter is considered to29

be the source of snoring noises. In doing so, we show how a time-varying mean flow30

influences the type of instability observed as flow speed is increased and demonstrate31

how localised stiffening can be used to control instability of the flexible plate.32

Key words: Fluid-structure interaction, Cantilevered-free flexible plate, Channel33

flow, Flutter, Unsteady wake, Snoring34

1 Introduction35

The fluttering of a flag is perhaps the most ubiquitously observed interaction36

between a solid and fluid and yet this deceptively simple physical system still37

defies a complete understanding of its dynamics. A formal representation of38

the canonical fluid-structure system, of which the flag-flutter configuration is39

one example, is that of a mean flow interacting with a cantilevered flexible40

surface embedded in the flow and aligned with its direction. This system dif-41

fers from the flag-flutter example in that the structural forces are dominated42

by a flexure term whereas for the flag problem this rôle is played by the ten-43

? A preliminary version of this paper was presented in the 7th FSI, AE & FIV+N

Symposium, within the 2006 ASME PVP Conference in Vancouver, BC, Canada.
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sion induced by large-amplitude motions. The phenomena studied herein may44

be envisaged as vibrations of a fluid-loaded plate for which small-amplitude45

motions and linear instability are the precursors of sustained flow-induced46

finite-amplitude oscillations. While this system might seem distant from any47

useful application, the elucidation of the rich dynamics at work in the model48

problem is fundamental to our understanding of many real-world problems49

in fluid-structure interaction. In this paper we develop a new and versatile50

model of the system and then conduct an investigation of its stability to lin-51

ear perturbations from an undisturbed mean state. We also apply our findings52

to a particular biomechanical system, that comprising the motion of the soft53

palate in the human upper airway. Our particular focus is on the characteri-54

zation of energy exchanges between flow and solid within the system. We are55

then able to show how these sum to the overall, or global, amplification or56

decay of flexible-plate oscillations that is observed as a system response. We57

remain aware that the present linear study cannot address the well-known58

sub-critical instability present in such systems. However, the numerical ap-59

proach that we describe herein can readily be extended to model non-linear60

motions of the flexible plate.61

62

The pioneering work of Kornecki et al. (1976) on the problem at hand has, over63

the past decade or so, stimulated the major thrust in research effort that it64

deserved. Broadly the modelling of such studies divides into one of two types;65

the flexible plate either resides in an infinite domain of fluid - for examples, see66

Huang (1995), Yamaguchi et al. (2000a), Watanabe et al. (2002b), Argentina67

and Mahadevan (2005), Tang and Päıdoussis (2006) and Eloy et al. (2007)68

- or it is embedded in plane-channel flow - for examples, see Aurégan and69

Depollier (1995), Guo and Päıdoussis (2000), Balint and Lucey (2005) and70
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Tetlow et al. (2006). Clearly, the unbounded-fluid case can be regarded as the71

limit of infinite channel height for a centrally located flexible plate. All of these72

models predict that beyond a threshold, or critical, applied flow speed the flex-73

ible plate loses its stability to small-amplitude disturbances through a flutter74

mechanism. The critical mode for short plates typically comprises a combina-75

tion of the fundamental and second in-vacuo eigenmodes of the cantilevered76

flexible plate. Increasing the plate length reduces the critical speed and raises77

the order of the in-vacuo eigenmodes that dominate the composition of the78

critical mode. For a short plate the flutter mechanism can be attributed to the79

strong effect of its finiteness that creates a phase shift between the motion of80

the plate and the forcing fluid pressure. This results in energy transfer between81

fluid and plate at all flow speeds. Instability sets in when the net transfer is82

from fluid to plate; this will be demonstrated in the present paper. In contrast,83

an infinitely-long flexible plate, subject to potential flow, experiences a pres-84

sure signal that is exactly orthogonal to the plate’s motion at all pre-instability85

flow speeds and therefore does not admit irreversible energy transfer; for ex-86

ample, see Carpenter and Garrad (1985), Crighton and Oswell (1991) and87

the discussion of Lucey and Carpenter (1993a) for the closely related prob-88

lem of single-sided flow over an infinitely-long flexible panel. The dynamic89

instability to which long flexible plates succumb is a Kelvin-Helmholtz type of90

flutter. At a sufficiently high level of fluid loading two modes coalesce to give91

a complex-conjugate pair of wave solutions, one of which is highly amplified92

and the other commensurately damped. At the onset of this type of flutter,93

it is the modal coalescence that creates the phase shift between the pressure94

signal and wall motion which allows the physical transfer of energy from the95

fluid to the plate. Long cantilevered flexible plates, which are semi-infinite in96

the limit of streamwise extent, therefore exhibit elements of both types of the97
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aforementioned flutter mechanisms.98

99

The fundamental relationship between local and global instability of fluid-100

structure systems has been systematically addressed by Doaré and de Langre101

(2006) building upon Doaré and de Langre (2002) in which the instability of102

a fluid-conveying pipe was studied. They show when and how local waves,103

those predicted by a dispersion equation valid for an infinitely long domain,104

can combine through a process of propagation and reflection in a finite system105

to yield a global instability. In the present paper, we extract eigenmodes to106

make predications of global behaviour. However, our numerical simulations107

effectively model local behaviour and wave reflections through the enforce-108

ment of the boundary conditions at each end of the flexible plate. We base109

the descriptors ‘short’ and ‘long’ for the finite system on the value of non-110

dimensional plate length, L̄ = ρfL/(ρh), where L is its dimensional length, ρf111

is the fluid density and (ρh) is the mass per unit area of the plate. However,112

within Doaré and de Langre’s framework of ‘from waves to modes’, the entire113

range of L̄ studied herein would be considered ‘short’ in that the disturbance114

wavelengths are of the same order as the length of the flexible plate. Thus, in115

this paper, the investigation of spatial dependence within a global response116

can be at sub-wavelength scales.117

118

The present study models ideal flow but can incorporate the effect of channel119

walls. The explicit omission of viscous effects may seem an extreme assump-120

tion. However, the use of unsteady laminar flow in Balint and Lucey (2005)121

revealed that the flutter instability of a short flexible plate was qualitatively122

very similar to that predicted using ideal flow. The flow solution used by Balint123

and Lucey (2005) is restricted to flows at low Reynolds number whereas an124
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ideal-flow model can be considered as a model for flows at very high, indeed125

infinite, Reynolds number. Like the majority of previous studies we assume126

a two-dimensional flow-structure system that has infinite span. The elegant127

analysis of Eloy et al. (2007) quantified the effect of finite span on plane waves128

with fronts perpendicular to the flow direction; what results is a correction fac-129

tor on the pressure field yielded by a two-dimensional analysis. Thus, we can130

infer that the dynamics predicted by two-dimensional models will have, at131

the very least, qualitative validity. The system studied herein is closest to the132

plane-channel configuration investigated in Guo and Päıdoussis (2000). We133

extend their work by modelling the effects of: (a) a central rigid surface at the134

leading edge of the flexible plate; (b) the singularity present at the leading135

edge of the flexible plate; (c) spatially varying stiffness in the flexible plate;136

(d) the wake shed by the motion of the flexible plate; and (e) an unsteady137

mean flow. We also compare our findings with those from the corresponding138

unbounded-flow study of Tang and Päıdoussis (2006, 2007) who have investi-139

gated the foregoing points (b) and (d).140

141

The most significant difference between the present study and those that have142

preceded it lies in our development and use of a computational model that143

permits us to conduct numerical simulations of the flow-structure system. This144

means that we make no presupposition about disturbance form; by contrast,145

modal studies require that the fluid-loaded deformation of the flexible plate146

can be constructed accurately from a finite number of pre-selected in-vacuo147

plate modes. Our approach also permits us to model transient behaviour that148

exists prior to a system eigen-state being reached or that results from the149

use of a time-varying mean flow. We are also able to identify spatially lo-150

calised dynamics within the system. These are lost in the aggregating process151
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of Galerkin, or modal, methods that only generate global predictions of be-152

haviour and stability.153

154

The geometry modelled is shown in Fig. 1. Ideal flow is assumed and the per-155

turbed flow field modelled using a linearised boundary-element method, that156

then yields the perturbation pressure acting on the plate through the linearised157

unsteady Bernoulli equation. The motion of the flexible-plate is modelled us-158

ing linearised one-dimensional beam theory. The unsteady shed vorticity is159

modelled using a linearised discrete-vortex method. In the boundary-element160

method, vortex singularities are used to model the central surface as they cap-161

ture the discontinuity in tangential velocity across this surface. Although Tang162

and Päıdoussis (2007) recently used a lumped-vortex method ours is the first163

time that a continuous vortex distribution has been used for a fully-coupled164

flow-structure interaction for arbitrarily-deforming lifting-surfaces. The as-165

sembled system is then used to conduct a variety of numerical simulations,166

the results of which map out the response space of the system. However,167

we also use the computational model to extract directly the eigenmodes of168

the fluid-structure system using the state-space methods developed by Lucey169

and Pitman (2006). An equivalent approach was adopted by Argentina and170

Mahadevan (2005) although they made simplifying assumptions in their flow171

model in order to develop a tractable system equation. Our computational172

model allows the full description of fluid loading to be included. Moreover,173

the accuracy of our system-stability results is ensured because we include all174

M fluid-structure eigenmodes, where M is the number of collocation points175

on the plate. Increasing M decreases the error at a monotonically reducing176

rate as the solution converges to being exact at the limit M = ∞.177

178
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The paper is laid out as follows. Initially the construction of the numeri-179

cal model is described and diagnostic variables are introduced. Results from180

our numerical simulations are then presented that analyse the flutter instabil-181

ities observed at low and high mass ratios. Predicted critical-velocity values182

obtained via our numerical simulations and from other published work are183

then compared. Further results are then presented that demonstrate the ef-184

fects on the flutter instability of shed vorticity, a central rigid-surface at the185

leading edge of the flexible plate, channel walls, an unsteady mean-flow and186

distributed stiffness in the flexible plate. The mechanism of all flutter instabil-187

ities observed is explained in terms of the transfer of fluid energy to the plate188

via the interaction of the fluid pressure and the plate velocity.189

2 Theoretical and Computational Modelling190

The mechanics of the disturbed, linear flow-structure system may be repre-191

sented by an equation of motion of the form192

[L]η = −δp (η̈, η̇, η) , (1)

193

subject to initial values and plate-edge conditions. [L] is a differential operator194

on the vertical plate displacement, η. δp is the pressure perturbation due to195

disturbances to the free-stream flow, U∞, and is composed of hydrodynamic196

stiffness, damping and inertia. Co-ordinate axes are as shown in Fig. 1 and197

Fig. 2 shows how the surfaces of the structure are discretised into a set of198

boundary-elements or panels where Mw, Mcs and M are the number of panels199

on the channel walls, rigid central-surface and the flexible plate respectively.200

At the centre of each panel is a control point where properties relating to the201
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fluid pressure calculated for each panel are assumed to be located. In contrast,202

the flexible plate is discretised into a set of N(= M−1) mass points where the203

mechanical properties of the plate will be assumed centred; these are defined204

by the panel end-points as shown in Fig. 2. Below, we describe the separate205

plate and flow models and how they are coupled into the final computational206

model.207

2.1 Plate Mechanics208

The specific spatially-discretised form of Eq. (1) for a thin flexible plate is209

ρhη̈n + dη̇n +B∇4ηn = −δpn, (2)

210

where n is the mass-point number along the flexible plate. ρ, h, d and B are211

respectively the density, thickness, damping coefficient and flexural rigidity of212

the plate. The flexural rigidity is related to the elastic modulus, E, and the213

Poisson ratio, ν, through214

B =
Eh3

12 (1− ν2)
. (3)

215

The flexure term ∇4ηn is the fourth-order spatial derivative of ηn and can be216

written in (central) finite-difference form as217

∇4ηn =
6

δx4
ηn −

4

δx4
(ηn−1 + ηn+1) +

1

δx4
(ηn−2 + ηn+2) . (4)

218

where δx is the panel length; for the uniform discretisation used in this paper,219

δx = L/M where L is the length of the flexible plate. Equation (2) can be220

rewritten in matrix form as221
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ρh [I] {η̈}+ d [I] {η̇}+B [D4] {η} = −{δp} , (5)

222

where [I] is the identity matrix and [D4] is a pentadiagonal matrix containing223

the terms generated by Eq. (4). Cantilevered-free edge conditions are enforced224

on the plate by imposing zero displacement and gradient at the cantilevered225

end (the leading edge) and zero bending moment and shear force at the free226

end (the trailing edge); these conditions are implicit in the construction of227

[D4] via their application at the dummy nodes labelled N = −2,−1, N + 1228

and N + 2 illustrated in Fig. 2. Our numerical model of a cantilevered-free229

plate has been validated by comparing angular frequencies of oscillation of the230

first six in-vacuo eigenmodes, as predicted by theory and our computational231

model; the results of this validation are similar to those presented in Balint232

and Lucey (2005).233

2.2 Fluid Mechanics234

To calculate the magnitude of the pressure acting on the structural surfaces235

that is generated by the deflection of the plate, a linearised boundary-element236

method (BEM) of flow solution is employed. To apply the BEM, a surface237

is discretised into a finite number of panels; at the centre of these panels is238

the panel control point. Singularities are distributed along these panels; by239

determining the strengths of these singularities the pressure at the individual240

control points can then be calculated. The discretisation and singularity dis-241

tributions utilised in our methodology are illustrated in Fig. 2. We use vortex242

singularities to model the central surface as they capture the discontinuity in243

tangential velocity across this lifting surface. In contrast, source/sink singu-244
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larities are used to model the channel walls as these are non-lifting surfaces.245

The linearisation of the BEM is also illustrated in this figure: the BEM panels246

remain fixed on the horizontal, whereas the mass points of the plate are free247

to travel in the vertical axis. Respectively, the velocity perturbations and per-248

turbation potentials at any control point i on the flexible plate only are given249

by250

uT ′

i =
Mw∑
m=1

ITσ
im σm +

Mcs+M∑
m=1

ITγ
im γm +

Mcs+M∑
m=1

ITλ
im λm, (6)

Φi =
Mw∑
m=1

Iφσ
imσm +

Mcs+M∑
m=1

Iφγ
imγm +

Mcs+M∑
m=1

Iφλ
imλm, (7)

251

where IT
im and Iφ

im are sets of time-independent influence coefficients that quan-252

tify the influence of panel m on panel i. γm and λm are respectively the zero-253

order and first-order vortex strengths distributed along the central surface254

and σm are the zero-order source/sink strengths distributed along the chan-255

nel walls. To solve for the singularity strengths, a von Neumann boundary-256

condition is applied so that257



Γm

· · ·

σm


=
[
IN
im

]−1 {
U∞θm + η̇m + uNb

m

}
, (8)

258

where Γm = γm + λm.
[
IN
im

]−1
contains, in addition to the normal influence-259

coefficients of the singularities, the boundary conditions of: a) vortex strength260

continuity at panel end points; and b) zero vorticity at the plate’s trailing261

edge (thus enforcing the standard Kutta condition for linear displacements of262

zero pressure difference at the trailing edge). The term θm is the panel’s angle263
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to the horizontal; as the model is linearised, this can be found through264

θm =
(ηn+1 − ηn)

δx
, (9)

265

where n = m − 1. The term η̇m is the panel’s vertical speed and uNb
m is the266

normal velocity induced by the vortex blobs that model the wake; the latter267

term is derived below. With the application of the Kutta condition, the effect268

of the steady vortical wake behind the plate is taken into account. At t = 0,269

the total vorticity in the system, ς, is equal to that bound in the plate and270

hence271

ς t=0 =
Mcs+M∑

i=1

γt=0
i δxi. (10)

272

In Eq. (10), it is noted that the zero-order, vortex singularity-strengths from273

the panel method, γi, (first referred to in Eq. (6)) are in units of vorticity274

per-unit-length; hence the terms γi are multiplied by their respective panel275

lengths δxi to obtain the addition of each panel to the bound vorticity. Owing276

to the movement of the flexible plate the bound vorticity changes with time;277

the physical effect of this change is to generate an unsteady wake of shed278

vorticity, its source is the trailing edge of the flexible surface. To model this279

wake we release a point vortex of strength γb (a vortex blob) at each time step.280

Therefore, at any future time t the total vorticity in the system will be equal281

to the total bound vorticity at that time and any shed vorticity in the wake282

generated up to that point; hence283

ς t =
Mcs+M∑

i=1

γt
iδxi︸ ︷︷ ︸

bound vorticity at t

+
Nb−1∑
i=1

γb
i ,︸ ︷︷ ︸

shed vorticity at t−1

(11)

284

where N b is the total number of blobs present in the wake. In Eq. (11), the blob285

12



strengths, γb
i , are already in units of vorticity because they are the strengths of286

point vortices. The strength of the blob to be released at time t, γb
Nb , is chosen287

so that the Kelvin condition (that there should be no change in the total288

vorticity in the system with time), is enforced at each time step. Therefore289

γb
Nb is equal to the difference between Eqs. (10) and (11); hence290

γb
Nb =

Mcs+M∑
i=1

γt=0
i δxi −

Mcs+M∑
i=1

γt
iδxi +

Nb−1∑
i=1

γb
i

 . (12)

291

It is assumed in this model that the strength of the blobs do not diminish with292

time. The effect of the shed blobs on the panels (and each other) is calculated293

using a discrete-vortex method similar to that detailed in Chorin (1973). In294

this method the blobs are governed by the two-dimensional Poisson equation295

such that296

∇2ψ = −ω(x, t) = −
Nb∑

n=1

fαn(rn)γb
n, (13)

297

where ψ is the stream function, ω(x, t) is the two-dimensional vorticity field,298

fαn(rn) is the blob core function and rn is the vector between a blob and the299

point p that is anywhere in the infinite space away from the blob. A Gaussian300

approach is used for the core function; this utilises a core size, αn, for each301

blob so that the blobs can be coincident without creating a singular result.302

The Gaussian core function utilised is303

fαn(rn) =
1

α2
nπ
e
− |ri−rn|2

α2
n , (14)

304

where ri is the distance between a point i on the flexible plate and the point p305

in space. Utilising Eq. (13) and Eq. (14), the discretised form for the velocity306

induced at a point i, ub
i , owing to the nth blob is307
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ub
i = −∂ψ

∂r
= uTb

i i+ uNb
i j, (15)

where308

uTb
i = −γb

n

yn

2π|ri − rn|2

(
1− e

− |ri−rn|2

α2
n

)
, (16)

uNb
i = γb

n

xn

2π|ri − rn|2

(
1− e

− |ri−rn|2

α2
n

)
, (17)

309

where xn and yn are the horizontal and vertical components of rn respectively;310

i and j denote the cartesian components of ub
i . A linearised version of the shed311

vorticity model is deployed in this paper with the blobs assumed only to travel312

horizontally. Therefore the tangential component of the blob velocity, uTb
i , is313

zero because yn is zero; this leads to large computational savings allowing de-314

tailed numerical simulations to be executed on a standard desktop computer.315

In the present application, the magnitude of core size is assumed the same for316

each blob and is chosen to be α = 0.4. Each blob, when created, has its centre317

placed at a distance of U∞δt from the trailing edge of the plate where δt is318

the size of the time step; this is also the assumed distance each blob travels319

between time steps.320

2.3 Fluid-structure Coupling321

In Lucey et al. (1998) it is shown that when a rotational wake is added to a322

general flow-structure interaction where the flow is irrotational, the fluid in the323

region close to the plate remains predominantly irrotational as the rotational324

fluid is mainly downstream of the trailing edge of the plate. It should be noted325

however, that the rotational wake does contribute to the determination of the326

velocity field adjacent to the moving plate in much the same way that vortex327
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singularities can be used in models of ideal flow with circulation. Therefore328

the pressure along the flexible plate can be calculated via the discretised form329

of the linearised unsteady Bernoulli equation; the pressure difference across330

the plate can be obtained, assuming that the pressure is equal and opposite331

in value on the upper and lower surfaces of the plate, by multiplying this332

equation by a factor of two so that we have333

δpi = −2ρfU∞u
T ′

i − ρf
∂Φi

∂t
, (18)

334

where ρf is the free-stream fluid density. There is no evidence in Eq. (18) that335

the second part of the pressure has been multiplied by a factor of two; this336

owes itself to the method employed of calculating Φi, given by Eq. (7), that337

automatically accounts for the pressure difference across the plate with no338

further alteration. Inserting Eqs. (6), (7), (8) and (15) into Eq. (18), gives339

{δpi} = −ρf

(
2U

′2
∞

[
IT
im

] [
IN
im

]−1
{θm}+ U̇ ′

∞

[
Iφ
im

] [
IN
im

]−1
{θm}︸ ︷︷ ︸

Hydrodynamic Stiffness

+ 2U ′
∞

[
IT
im

] [
IN
im

]−1 {
η̇av

m − uNb
m

}
︸ ︷︷ ︸

Hydrodynamic Damping I

+
[
Iφ
im

] [
IN
im

]−1 {
U ′
∞θ̇m

}
︸ ︷︷ ︸
Hydrodynamic Damping II

+
[
Iφ
im

] [
IN
im

]−1 {
η̈m − u̇Nb

m

}
︸ ︷︷ ︸

Hydrodynamic Inertia

)
, (19)

340

where U ′
∞ = U∞ + A sinωt (allowing the incorporation of an unsteady mean341

flow) and342

η̇av
m = 0.5(η̇n + η̇n+1). (20)

343

The coupled wall-flow system is assembled by introducing the pressure of344

Eq. (19) into the right-hand side of Eq. (5). Therefore, we have345
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ρh [I] {η̈m}+ d [I] {η̇m}+B [D4] {ηm} =

2ρfU
′2
∞

1

δx

[
B+

1

]
{ηm}+ ρf U̇

′
∞

1

δx

[
B+

2

]
{ηm}+ ρfU

′
∞

1

δx

[
B+

2

]
{η̇m}

+ρfU
′
∞

[
B−

1

]
{η̇m}+ρf [B2] {η̈m}−2ρfU

′
∞ [B1]

{
uNb

m

}
−ρf [B2]

{
u̇Nb

m

}
, (21)

346

where the [B] matrices are suitably rearranged forms of the influence matri-347

ces presented in Eq. (19) to allow, via the use of the relations in Eqs. (9)348

and (20), the expression of the fluid-structure system solely in terms of plate349

acceleration, velocity and displacement and blob acceleration and velocity.350

The hydrodynamic pressures computed using Eq. (19) are evaluations at the351

control points of the plate panels, whereas the pressures in Eq. (5) are calcu-352

lated at the mass points; this introduces a small numerical error that reduces353

as the discretisation of the plate is increased. Equation (21) can be re-arranged354

to give the system equation355

{η̈m} = [E] {η̇m}+ [F] {ηm} − [G]
{
uNb

m

}
− [H]

{
u̇Nb

m

}
, (22)

where356

[E] =

[
ρh [I]− ρf [B2]

]−1[
2ρfU

′
∞

[
B−

1

]
+ ρfU

′
∞

1

δx

[
B+

2

]
− d [I]

]
, (23)

[F] =

[
ρh [I]− ρf [B2]

]−1[
2ρfU

′2
∞

1

δx

[
B+

1

]
+ ρf U̇

′
∞

1

δx

[
B+

2

]
−B [D4]

]
, (24)

[G] =

[
ρh [I]− ρf [B2]

]−1[
2ρfU

′
∞ [B1]

]
, (25)

[H] =

[
ρh [I]− ρf [B2]

]−1[
ρf [B2]

]
. (26)

2.4 Solution Methods357

Two distinct, but complementary, approaches are used to solve the system358

equation. In the first, a time-stepping numerical integration is performed to359

16



yield numerical simulations of the system response to an initial form of im-360

posed excitation. Such simulations are able to capture transient effects and361

permit localised dynamics to be investigated through the analysis of a series362

of numerical experiments. However, this approach is not so well suited to the363

prediction of long-time system response and its global mapping. Thus, for the364

second approach we assume a single-frequency system response that might be365

expected in the infinite-time limit after all transient oscillations of the plate366

have decayed. We are then able to use a state-space method that permits the367

direct extraction of the fluid-structure eigenmodes from the system equation.368

369

The numerical simulations presented in this paper are produced using a semi-370

implicit method of solution of Eq. (22); this applies Gauss-Siedel sweeps over371

the internal mass points, utilising the following simplified predictor-corrector372

relations373

{
η̇t+δt

i

}
≈
{
η̇t

i

}
+ δt

{
η̈t

i + η̈t+δt
i

}
2

(27)

{
ηt+δt

i

}
≈
{
ηt

i

}
+ δt

{
η̇t

i + η̇t+δt
i

}
2

, (28)

374

to yield converged values of acceleration, velocity and displacement for every375

mass point at each time step in the evolution of the disturbed system.376

377

Global predictions of the infinite-time system behaviour are generated using378

a standard state-space method, implemented in a similar way to that detailed379

by Lucey and Pitman (2006). As applied in this paper, we do not incorpo-380

rate the effects of the downstream wake nor of an unsteady free-stream. The381

matrices in Eq. (22) are re-arranged as a companion-form matrix from which382

the eigenvalues and vectors of the coupled system can be extracted directly383
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and the values of critical velocity can be identified. Thus re-writing Eq. (22),384

having neglected the wake terms, we have385

{
d2ηm

dt2

}
− [E]

{
dηm

dt

}
− [F] {ηm} = 0. (29)

386

The following substitutions are made387

w1(t) = η(t) and w2(t) =
dη

dt
= ẇ1(t). (30a, b)

388

Inserting relations Eq. (30a) and Eq. (30b) into Eq. (29) yields389

{ẇ2} − [E] {w2} − [F] {w1} = 0. (31)

390

Rearranging Eq. (31) for ẇ2 we have391

{ẇ2} = [F] {w1}+ [E] {w2} . (32)

392

Equations (30) and (32) lead to a system state equation393


ẇ1

ẇ2


=


0 I

F E




w1

w2


, (33)

394

that is more simply expressed as395

ẇ = [H]w, (34)

396

where [H] is the companion matrix. Single-frequency response is then assumed397

and thus398
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{w} = {W} exp(ωt), (35)

399

where ω is a complex eigenvalue of [H] and {W} is the eigenvector corre-400

sponding to ω that is used to generate the displacement of the plate. Thus401

ω = ωR + iωI and W = WR(x) + iWI(x). (36a, b)

To calculate the plate displacement {η}, only the real part of the first N terms402

of {w} are required; this is found by substituting Eq. (36a) and Eq. (36b) into403

Eq. (35) giving404

η = <(w) = exp(ωRt)(WR(x) cos(ωIt)−WI(x) sin(ωIt)). (37)

2.5 Diagnostics405

To assist in the interpretation of the results presented in this paper, defini-406

tions of diagnostic variables are now made. The physical significance of these407

variables is detailed in the results section when they are used to investigate408

the fluid-structure phenomena encountered. It is shown in Balint and Lucey409

(2005) that multiplying Eq. (5) by η̇ and then integrating over the length of410

the flexible plate yields the following energy-evolution equation for the fluid-411

loaded plate412

d

dt

(
1

2
ρh
∫ L

0
η̇2dx︸ ︷︷ ︸

Ek

+
1

2
B
∫ L

0
η2

,xxdx︸ ︷︷ ︸
Es

)
=
∫ L

0
(−δp) η̇dx︸ ︷︷ ︸

Ẇ

− d
∫ L

0
η̇2dx,︸ ︷︷ ︸

Ḋ

(38)

413

where Es and Ek are the strain and kinetic energies of the flexible plate re-414

spectively and the total energy, Et, is equal to Es +Ek. Ẇ and Ḋ are respec-415

tively the rate of work done by the fluid in the flexible plate and the energy-416

dissipation rate by structural damping within the plate. The total work done417
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over a particular time period tp is W (tp) =
∫ tp
0 Ẇ (t)dt. Both Et(tp) and W (tp)418

are plotted in non-dimensional form419

Ēt(tp) =
Et(tp)

Es(0)
and W̄ (tp) =

W (tp)

Es(0)
. (39a, b)

420

Time, free stream velocity and plate damping are non-dimensionalised using421

the method described in Crighton and Oswell (1991) for an isolated, infinitely-422

long flexible-surface so that423

t̄ = t
ρ2

fB
1
2

(ρh)
5
2

, Ū = U∞
(ρh)

3
2

ρfB
1
2

and d̄ = d
(ρh)

3
2

ρ2
fB

1
2

. (40a, b, c)

424

In the present study the flexible surface is not infinitely long, nor is it isolated425

and thus two further non-dimensional parameters are required; these are the426

non-dimensional length (or mass ratio), L̄, and the non-dimensional channel427

height, H̄, defined by428

L̄ =
ρfL

ρh
and H̄ =

H

L
, (41a, b)

where H is the distance from the central surface to either channel wall (the429

half channel height, H/2, defined in Fig. 1). Thus in the absence of structural430

damping the three control parameters for the fluid-structure system are Ū , L̄431

and H̄. When plotting data we use the following non-dimensional forms432

η̄ =
η

η0

, x̄ =
x

L
, δ̄p =

δp

ρfU2
∞
, ¯̇η =

η̇

U∞
, ω̄ = ω

(ρh)
5
2

ρ2
fB

1
2

, (42a, b, c, d, e)

433

where η0 is the maximum value of η when the plate is initially deflected to434

provide excitation to the fluid-structure system. ω is the angular frequency435

of oscillation of the flexible surface and it is non-dimensionalised using the436

scheme adopted for time in Eq. (40a); however a second scheme of non-437
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dimensionalisation of ω, ¯̄ω, is used in the following discussion where ω is438

divided by the angular frequency of oscillation of the second in-vacuo eigen-439

mode, ω2440

¯̄ω =
ω

ω2

. (43)

441

This permits an easier physical grasp of the effect of the fluid loading on the442

oscillations of the flexible-plate.443

3 Results444

We first present results for the much-studied case of an isolated flexible plate.445

This requires moving the upper and lower walls apart until they no longer446

influence the system dynamics; a value of H̄ = 1 is shown to achieve this, see447

Howell et al. (2004). This leaves just two control parameters, Ū and L̄, that448

determine the system response. Our goal is to find the critical flow speed, Ūc,449

beyond which flutter first sets in and identify the mechanism that causes the450

unstable behaviour. We then explore variations to critical speed and instabil-451

ity mechanism from this ‘standard case’ that occur through the introduction452

of: a) an unsteady wake, b) a rigid inlet-surface, c) channels walls, d) tem-453

poral variation of the mean flow, and e) variable plate stiffness. The last two454

variations are presented with reference to human snoring.455

456

Although all results are presented within the non-dimensional framework of457

§2.5 above, illustrative physical properties used in §3.1 and §3.2 are L =458

1.355 m, ρ = 2710 kg/m3, h = 0.5 mm, E = 7 × 107 N/m2, d = 9.08 ×459

10−2 Ns/m3; therefore, to give L̄ = 1 a value of ρf = 1 kg/m3 is required.460
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Variations to L̄ were effected by varying ρf ; this permits a fixed discretisa-461

tion, M = 50, of the flexible-plate to be used that maintains constant numer-462

ical accuracy. The numerical simulations require an initial excitation to the463

fluid-structure system. This is provided by releasing the flexible plate from an464

imposed deflection at t = 0. The deflection form used is that of the second465

in-vacuo eigenmode of the cantilevered-free plate. Of course, any other initial466

form could have been used to the same effect after the passage of sufficient467

time. We have chosen this mode because, it will be shown, it bears a close468

resemblance to the critical mode for low L̄ and thereby reduces the time taken469

for the system to arrive at its quasi-steady state.470

3.1 Isolated flexible plate: 0.2 6 L̄ 6 1000, H̄ = 1471

We first consider the case of L̄ = 1. Figure 3(a) shows the system eigenvalues472

obtained using our state-space method. We have plotted just the two eigen-473

values with the lowest frequencies although all M = 50 eigenmodes of the474

system are present in the calculation. Thus, there is no a priori selection of475

modes that contribute most strongly to the system solution. The morphology476

of the state-space is similar to that obtained by Guo and Päıdoussis (2000) and477

Eloy et al. (2007). We note the second mode (marked 2) of the fluid-structure478

system is the first to become unstable, ω̄R > 0 for Ū > Ūc = 5.452, with a479

non-zero oscillation frequency, ω̄I , that indicates flutter. Thus, the magnitude480

of the restorative structural force of the plate exceeds that of pressure loading481

throughout the flow-speed range. In contrast, for the first mode (marked 1)482

there is a range of flow speeds for which the flexible plate adopts a mode shape483

(not presented in this paper) in which its restorative forces almost exactly484
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balance the pressure loading and non-oscillatory damped behaviour occurs.485

For flexible plates held at both ends, this type of force balance leads to the486

onset of divergence instability. In the present cantilevered-free configuration487

its negative ω̄R throughout the flow-speed range means that Mode 1 would488

not feature in the long-term response of the physical system. Figure 3(b)489

shows the corresponding system eigenvalues when some damping, d̄ = 5, is490

present. Contrasting this with the elastic-plate result of Fig. 3(a), it is seen491

that while second-mode flutter continues to be the critical instability, its onset492

flow speed has been significantly increased. The fact than energy dissipation493

through damping can be used to control the instability strongly suggests that494

the flutter mechanism owes itself to the rate of irreversible energy transfer495

from flow to structure. This will be confirmed in the investigation that follows496

immediately below.497

498

We now focus on the form and cause of the flutter instability seen in Fig. 3 for499

L̄ = 1. Figures 4(a)-(c) show results obtained at the critical speed for which500

Ū = 5.452. The oscillation of the plate is depicted in Fig. 4(a) as a sequence501

of snapshots of the flexible plate. An oscillatory, neutrally stable, steady-state502

evolves from the markedly different shape of the initial excitation. It can be503

shown, using a Fourier analysis, that this critical mode can be made up of504

33% and 63% of the first two in-vacuo eigenmodes based upon strain-energy505

content, the remainder coming from higher-order modes. The dominant contri-506

bution of the first two in-vacuo modes in combination accounts for the necking507

seen in the envelope of oscillation. The value of ¯̄ω for this critical mode is 0.69;508

the effect of the fluid is therefore to reduce the plate’s angular frequency of509

oscillation from that of the second in-vacuo mode by 31%. Figure 4(b) shows510

that after an initial drop in the plate’s total energy, Ēt, associated with its511
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evolution from the applied initial condition to system eigenstate, a steady512

state is achieved. This confirms the neutral stability of the plate’s oscillation513

at this critical speed.514

515

We now consider the energy transfers that underpin this time-series of the516

plate’s energy. Figures 4(c) and (d) respectively show the time-variation of517

the work done by the fluid-flow on the plate for two cases: exactly at the crit-518

ical speed (Ūc = 5.452) and at just above the critical speed (Ū = 6.0). In each519

case, the total work done on the entire length of the flexible plate is plotted520

and the work done in each of the four quarters x̄ : 0 → 0.25, x̄ : 0.25 → 0.5,521

x̄ : 0.5 → 0.75 and x̄ : 0.75 → 1, of the plate that when summed yield the522

total. This breakdown, into just four quarters, gives a broad indication of how523

energy transfer varies along the plate. At the critical speed it is seen that the524

work done is negative at early times; the energy transfer is from plate to fluid525

as the deformation evolves from that of the initial condition. Thereafter the526

change to the mean value of total work done is zero; this again confirms the527

neutral stability of the system at Ū = Ūc = 5.452. However, we also note that,528

in the steady state, energy transfer to the middle part of the plate (second529

and third quarters) continuously occurs while for the downstream (fourth)530

quarter there is energy transfer from the plate to the fluid that exactly coun-531

terbalances the former. It is the combination of these local effects that yields532

the global neutral stability of the mode. Just above the critical flow speed,533

Fig. 4(d) shows that the mean value of total work done by the fluid on the534

plate increases exponentially. The resulting energy transfer is the cause of the535

instability. However, we again note that it is the fluid-structure interaction536

in the middle half of the flexible plate that accounts for the overall unstable537

behaviour. The downstream quarter of the plate is actually doing work on538
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the fluid. The location of destabilising energy transfer leads us to describe the539

instability under inspection here (L̄ = 1 and H̄ = 1) as being mid-plate-driven.540

541

The energy transfers described immediately above arise from the term Ẇ542

in the energy equation, Eq. (38). For energy transfer to occur, the product of543

the terms in the integrand must yield a non-zero result when integrated over544

a period of oscillation. The time-variations of the terms (−δp) and η̇, in non-545

dimensional form, are plotted in Fig. 5 for three locations on the flexible plate546

during the numerical simulation of the critical mode that produced Figs. 4(a)547

to (c). At early times modal evolution is again seen. For times in the ensuing548

steady state, the broken lines that we have sketched in connect corresponding549

peaks in each of the pressure and plate velocity signals for the three locations.550

These lines serve to illustrate the spatial variation of the phase relationship551

between these terms. If the pressure and velocity signals were exactly orthog-552

onal, then there will be no work done over one cycle of oscillation; it is the553

phase variations to this situation that create the irreversible energy transfers554

captured in Fig. 4(c) and which underpin the flutter instability represented by555

Fig. 4(d). The foregoing phase-shifts, away from the orthogonality that would556

be expected for an infinitely long flexible surface in potential flow, are caused557

by plate finiteness that combines two effects: those of the leading-edge sin-558

gularity and the trailing-edge Kutta condition. The relationship between the559

pressure and velocity at a point on the plate is then uniquely defined by its560

spatial relationship to the source of these two effects. For one-sided fluid flow561

over a finite flexible surface, this feature is explained in Lucey and Carpenter562

(1993a). It will be seen in §3.2 that distancing the leading-edge singularity563

from the flexible plate through the introduction of an upstream rigid surface564

causes a significant modification to the plate’s response and thus destabilisa-565
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tion occurs through an instability mechanism characteristic of a long plate.566

This is essentially the same mechanism that was found by Balint and Lucey567

(2005) for the case of viscous flow destabilising a cantilevered flexible plate568

through flutter. Finally we remark that the inclusion of material damping569

leads to a non-zero value of the term Ḋ in Eq. (38). This subtracts from the570

rate of energy transfer from fluid flow to the flexible plate and therefore in-571

creases the value of the critical speed, as seen in Fig. 3(b).572

573

Results that demonstrate the effect of the mass ratio, L̄, are now presented.574

Figure 6 shows the variation of system eigenmodes with flow speed for the575

present case over four decades of L̄ (noting that Fig. 6(a) is a reproduction of576

Fig. 3(a)). Far lower dimensional and non-dimensional critical speeds and oscil-577

lation frequencies ensue as L̄ is increased; this can be seen in the axis labelling578

in the progression from Fig. 6(a) to Fig. 6(d). In dimensional terms large L̄579

can represent either a significantly increased fluid loading (for a fixed plate580

length) or an increased plate length (for a fixed fluid density). Each of these581

increases the ratio of fluid pressure forces to the opposing restorative forces in582

the flexible plate (as compared with the dynamics of a short plate near its crit-583

ical speed). Accordingly, the type of instability that yields the critical speed584

changes from the single-mode flutter in Fig. 6(a) to a modal-coalescence flutter585

associated with heavy fluid loading. Thus, in Fig. 6(b) it is clearly the coales-586

cence of the second and third modes that leads to the ωR-branch of the second587

mode turning to enter the positive quadrant. Correspondingly, the ωR-branch588

of the third mode dips downwards to give an increasingly damped solution.589

For elastic plates held at both ends, exact coalescence of the interacting modes590

occurs to give a complex-conjugate pair of solutions; for example, see Weaver591

and Unny (1970) and Lucey and Carpenter (1993b). Lucey and Pitman (2006)592
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showed that the introduction of structural damping prevents exact coalescence593

in the panel-flutter problem but the system continues to yield what remains594

essentially a single-frequency response comprising a highly amplifying and a595

highly attenuated pair of roots. Of course, only the amplifying root would596

have significance in a physical system. Exact coalescence can occur only in a597

wholly conservative system. The present system has been shown to support598

non-conservative energy transfers and these act in much the same way as does599

the introduction of damping in the panel-flutter problem. Nevertheless the600

instability mechanism remains fundamentally of the modal-coalescence type.601

With a further increase to L̄ = 100 in Fig. 6(c), it is again the coalescence of602

second and third modes that results in instability. At L̄ = 1000 in Fig. 6(d),603

the coalescence is seen to be more complex involving all of the second, third604

and fourth modes. The progression to higher-order in-vacuo eigenmodes par-605

ticipating in the composition of the critical mode as L̄ is increased is clearly606

demonstrated in the numerical and experimental results of Yamaguchi et al.607

(2000a,b) and Watanabe et al. (2002a,b).608

609

Figure 7 shows the results of a numerical simulation for L̄ = 1000 exactly610

at the critical speed (Ūc = 1.542 × 10−3) found in Fig. 6(d). The plate’s mo-611

tion can be compared with the corresponding results of the standard case in612

Fig. 4. The presence of the higher-order modes predicted by the state-space613

calculation is confirmed. This type of modal-coalescence flutter was illustrated614

as a travelling-wave form of flutter in Tang and Päıdoussis (2007). The pres-615

sure loading is now more like that of potential flow over an infinitely long616

flexible plate. The magnitude of the pressure due to plate curvature plays the617

essential rôle in destabilisation by bringing the two modes to coalescence and618

thereby create the phase shift between pressure and plate motion that drives619
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energy into the plate. Thus, instability of the plate now occurs when the flow620

speed is high enough to produce pressure forces of a sufficient magnitude to621

modify strongly modal behaviour. As a travelling-wave instability, the insta-622

bility should be most pronounced over the downstream regions of the plate623

because these locations are furthest from the leading-edge restraint that in-624

hibits wave travel. The variation with time of work done by the fluid pressure625

is shown in Fig. 7(b). The result for the entire flexible plate confirms the state626

of neutral stability; there is no net transfer of energy between fluid and struc-627

ture. However, it is also evident that there is energy transmission from fluid628

to structure over the downstream half and, to a much lesser extent, the first629

quarter of the flexible plate while the reverse occurs in the second quarter.630

Thus, the instability that sets in when Ūc is exceeded can be described as631

(largely) downstream-driven, in contrast to the instability characteristics of a632

short plate (L̄ = 1) described earlier.633

634

A series of numerical experiments to determine the critical flow speeds and635

associated critical modes within the range of mass ratios 0.2 ≤ L̄ ≤ 1000636

has been conducted to compare our results with those of other published637

work. Watanabe et al. (2002b) collected Ūc data from several theoretical and638

experimental studies to compare against their own findings. This data has639

been re-plotted along with our results and is displayed in Fig. 8. The purpose640

of presenting this figure is two-fold. It gives credence to the validity of our641

model and it summarises the overall trend of Ūc-dependence upon L̄ for the642

fluid-structure system. Accordingly, we show only general trends and have not643

included all of the experimental and theoretical data published to date. For a644

complete collection of results published to date, the excellent summary figure645

in Tang and Päıdoussis (2007) is recommended. Our values of Ūc in Fig. 8646
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show good correlation with the other theoretical models. When comparing647

theory and experiment, it is noted that all models capture the overall trend of648

the experimental data. As L̄ increases the fluid-structure system becomes un-649

stable at successively lower values of non-dimensional flow speed. All models650

correctly predict that instabilities above Ūc are of the flutter type as observed651

in experiments; we additionally note the point of transition from single-mode652

flutter to the modal-coalescence type at the bottom of the figure. However,653

all models fail to capture hysteresis effects found in experiments where several654

values of Ūc can be obtained for a single value of L̄. This is most probably655

due to the existence of a sub-critical instability in the system that cannot be656

captured by linear models. The large disparity between experimental measure-657

ments of Ūc and those theoretically predicted may be due to the omission of658

three-dimensional effects. The analysis of Eloy et al. (2007) modelled trans-659

verse plane waves on a plate of finite aspect ratio showing that two-dimensional660

analyses, at infinite aspect ratio, grossly overestimate the pressure loading and661

thus give unrealistically low critical flow speeds for instability onset. When the662

finite aspect ratio is taken into account, their Fig. 6 shows that theory and663

experiment are well-aligned for aspect ratios less than unity. For higher aspect664

ratios, agreement was less good but, as Eloy et al. noted, this may be due to665

the existence of three-dimensional deflections of the plate in a physical sys-666

tem. For the related problem of a three-dimensional flexible plate held along667

each of its edges in one-sided flow, these effects were also reported by Lucey668

and Carpenter (1993b). Additionally, nearly all of the theoretical models do669

not model viscous effects explicitly. For large amplitude motions, time-varying670

separation (upstream of the trailing edge) of the boundary-layer may occur671

that could create a further type of flutter mechanism.672

673
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Finally, we note from Fig. 8 that our predictions of the dominant eigenmodes674

in the form of the critical mode and those of Watanabe et al. (2002b) differ675

significantly at higher values of L̄. This is because Watanabe et al. (2002b)676

pre-supposed that the motion of the plate could be made up of the amalga-677

mation of the first four in-vacuo eigenmodes. In our model there is no such678

pre-supposition. As L̄ increases the critical mode becomes more complex and679

its correspondence to a single in-vacuo plate mode becomes increasingly un-680

tenable. Our computations capture the fluid-structure eigenmodes directly; at681

high L̄ these may be very different to those that can be constructed from a lim-682

ited set of in-vacuo plate modes. Additionally, Figs. 6(a) to (d) show that as L̄683

increases, clear changes (or ‘modal switching’) of the critical mode do not oc-684

cur. While the single-mode flutter of short plates may be dominated by recog-685

nisable in-vacuo eigenmodes (principally the second), the modal-coalescence686

flutter instability of long plates has been shown to comprise at least two fluid-687

loaded eigenmodes of flexible plate. For long plates the change of critical mode688

shape evolves in a continuous manner with L̄.689

3.2 Variation of Unsteady Model Parameters at L̄ = 1690

The fluid-structure dynamics of an effectively isolated (H̄ = 1) flexible plate691

have been elucidated in §3.1 above. We now investigate the effects of includ-692

ing additional features in the fluid-structure model for the case of L̄ = 1.693

Thus, we incorporate: a) an unsteady wake, b) channels walls, and c) a rigid694

inlet-surface upstream of the flexible plate. Discussion of the results in this695

section focuses on how these additional features modify the critical speed and696

dynamics of the ‘standard’ L̄ = 1, H̄ = 1 case.697
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The effect of including an unsteady wake is illustrated by the results of Fig. 9.698

The validation of the linearised, discrete-vortex method and its coupling with699

a fixed-geometry boundary-element method is presented in Howell (2006). The700

effect of the shed vorticity increases the critical speed, Ūc (for the standard701

case L̄ = 1, H̄ = 1) from 5.452 to 5.948, an increase of approximately 9%.702

The shed vorticity increases the magnitude of the fluid pressure near the trail-703

ing edge due to the terms u̇Nb and uNb in Eq. (19). The wider neck of the704

mode shape seen in Fig. 9(a), as compared with that of Fig. 4(a), indicates705

an increased component of lower-order modes; this is borne out by an oscilla-706

tion frequency, ¯̄ω, of 0.61 as compared with 0.69 for the standard case. These707

changes are consistent with the increased pressure loading near the trailing708

edge of the plate when the wake effects are included.709

710

At first sight, an increased magnitude of the fluid pressure near the trailing711

edge might seem incompatible with stabilisation as evidenced by the increase712

in critical speed. However, we recall that the single-mode flutter of this short713

plate arises not from the magnitude of the pressure force but from its phase714

relationship with the plate’s motion. Because the wake is a periodic contin-715

uation of the bound vorticity, it exercises an effect that is similar to that of716

increased plate length on the phase relation between the pressure acting on717

the plate and its velocity. Thus, the pressure and velocity signals are closer718

to being orthogonal when the wake is included and this reduces the potency719

of the phase-shift mechanism of the single-mode flutter of short plates. How-720

ever, its inclusion does not eliminate single-mode flutter (nor replace it with721

modal-coalescence flutter as would increasing plate length). The modification722

of the phase between pressure and plate velocity, effected by the wake, reduces723

the rate of energy transfers between fluid flow and structure and this leads724
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to an increase in the critical speed for short plates. This is demonstrated by725

Fig. 9(b) in which we have plotted the energy transfers for each of the four726

quarters of the plate with and without the wake included. The flow is at the727

critical speed Ū = 5.452 that is obtained without a wake and thus the mean728

value of the total W̄ for the wake results is marginally decreasing thereby729

indicating an attenuating response at this flow speed. As would be expected730

the greatest reductions in the energy-transfer mechanism are seen to occur in731

the third and fourth quarters of the flexible plate that are most strongly influ-732

enced by the wake vorticity. Table 1 lists the values of the critical speed with,733

Ū∗
c , and without, Ūc, the wake effects, along with the proportional difference734

(Ū∗
c − Ūc)/Ūc, for a range of L̄. This data corroborates the discussion above by735

demonstrating that wake effects are stabilising for short plates. Longer plates736

are less affected by the wake but experience a destabilising effect because they737

succumb to modal-coalescence flutter that results from the pressure and plate738

velocity signals being more closely orthogonal.739

740

The effect of a rigid central surface, equal in length to the flexible surface,741

placed upstream of the flexible surface and in the effective absence of channel742

walls (H̄ = 1) is now investigated. Figure 10 maps the variation of system743

eigenmodes with flow speed for the present case and can be contrasted with744

Fig. 3(a); similarly, Figs. 11(a) and (b) show the critical mode and energy745

transfer from fluid to structure respectively and can be compared with the746

corresponding results of the standard case in Figs. 4(a) and (c). We note that747

the third mode (marked 3) of the fluid-structure system is the first to become748

unstable, ω̄R > 0 for Ū > Ūc = 13.547. The critical speed is substantially749

higher than Ūc = 5.452 found in the absence of a rigid central surface. The in-750

clusion of the rigid central surface stabilises the second-mode flutter that was751
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previously critical. That single-mode flutter was shown to be caused by the752

phase relationship between fluid pressure and plate velocity that can be at-753

tributed in part to the effect of high flow curvature caused by the leading-edge754

singularity. The introduction of a rigid central-surface moves the singularity755

much further upstream of the flexible plate and that destabilisation mecha-756

nism is diminished. The principal instability mechanism is now seen in Fig. 10757

to be a modal-coalescence of Modes 2 and 3 and this is clearly reflected in758

the mode shape of Fig. 11(a). Thus, the flexible plate behaves in a way that759

is closer to that of a plate with high L̄ - see Figs. 6 and 7. This then sug-760

gests that the effect of an upstream rigid plate of fixed length decreases as L̄761

is increased, a result that was shown by Tang and Päıdoussis (2007). What762

is perhaps surprising in the present results is that the greatest destabilising763

energy transfer continues to occur in the middle half of the plate as shown in764

Fig. 11(b), even though the instability is now essentially a modal-coalescence765

flutter.766

767

The effect of channel walls is now investigated. These are placed at a dis-768

tance of one-tenth of the plate length from the plate and thus H̄ = 0.1. Plots769

of the critical mode and the energy-transfer from fluid to wall are presented770

in Fig. 12. The proximity of the walls when L̄ = 1 reduces Ūc by 5% rela-771

tive to the isolated case. This configuration in which channel-wall proximity772

affects the behaviour and stability of the flexible plate has been studied by773

Aurégan and Depollier (1995) and Guo and Päıdoussis (2000). The lowering774

of Ūc, relative to the isolated case, is caused by an increase in the pressure dif-775

ference across the plate that occurs through mass-conservation and Bernoulli776

effects in a channel of finite width. This supplements the pressure difference777

caused by plate curvature and motion, the only sources of pressure difference778
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when channel walls are absent. However, the channel walls do not significantly779

modify the location of the greatest amount of fluid work done on the plate;780

see Fig. 12(b). Like the standard case of §3.1, energy transfer from fluid to781

structure occurs in the second and third quarters of the plate while the reverse782

occurs in the downstream quarter. Accordingly we can continue to describe783

the destabilisation as being mid-plate-driven. The effect of the channel walls784

is also seen in the form of the critical mode plotted in Fig. 12(a) that has785

both a wider neck and higher amplitude (relative to the same form of initial786

excitation) as compared to its counterpart in Fig. 4(a).787

3.3 Potential Snores788

The computational model is now used to study a particular application of789

the foregoing fluid-structure interactions. In doing so, however, we are able to790

illustrate the general effects of time-varying mean flow and inhomogeneity in791

the properties of the flexible plate. The geometry shown in Fig. 1 is assumed792

to be an approximation of the human pharynx: the channel walls represent the793

throat, a rigid-inlet the hard palate and the flexible plate is the soft palate.794

We are therefore able to model the basic features of human snoring where such795

snores are directly related to flutter of the soft palate. Similar approaches to796

modelling human snoring have been made by Gavriely and Jensen (1993),797

Aurégan and Depollier (1995), Huang (1995), Balint and Lucey (2005) and798

Tetlow et al. (2006). Appropriate non-dimensional parameters based on hu-799

man dimensions are L̄ = 0.42 and H̄ = 0.1. It is assumed a snore is initiated800

when the oscillation of the plate becomes unstable, i.e. above Ūc.801

802
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We first study the effect of using a time-varying mean flow Ū(t̄) that approxi-803

mately models inhalation during sleep. The inhalation lasts for one second (or804

4.28 units of non-dimensional time), during which time Ū increases linearly805

from zero to a chosen maximum velocity. Therefore, a velocity gradient exists;806

this is the maximum velocity gradient for which the flexible surface is still807

stable at the end of the ‘inhalation’. The development of the critical mode is808

illustrated in Fig. 13(a) that shows a series of instantaneous deflections of the809

flexible plate between the times t̄ = 4.24 and 4.28. The run commenced at810

t̄ = 0 with the plate’s second in-vacuo mode applied as an initial deflection;811

this is also plotted in Fig. 13(a). The applied initial deflection decays but from812

it emerges a higher-order system mode of the type promoted by increased fluid813

loading in §3.1 and the inclusion of an upstream rigid surface in §3.2. This is814

evident first in the appearance of the envelope of deflections seen in Fig. 13(a)815

that is formed at times for which Ū(t̄) is close to those which yield neutral816

stability. However, because the flow speed continues to increase to its maxi-817

mum applied value at Ū(4.28), strong amplification is then seen in the series of818

final instantaneous deflections. The emergence of a higher-order mode as that819

which destabilises the system suggests a modal-coalescence flutter mechanism820

that we have shown earlier to be promoted by increasing fluid loading or plate821

length for a steady applied flow. In the present case the increased fluid loading822

arises from a much higher final flow speed, Ū = 41.8, at t̄ = 4.28 (3.7 m/s after823

1 second), than would have been required to destabilise the second mode had824

a steady flow speed of Ū = 26.5 (2.34 m/s) been applied. Figure 13(b) shows825

the associated time-variation of fluid work done W̄ over the period that culmi-826

nates in the end of inhalation for the critical velocity gradient. It is clear that827

the instability is driven by the fluid work done on the third, second and first828

quarters of the plate in order of the magnitude of contribution to the plate’s829
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destabilisation. Figure 14 shows the time-variation of flexible-surface velocity830

and fluid pressure over the same time period as plotted in Fig. 13(b). At the831

location x̄ = 0.7 in Fig. 14(c) that resides within the third quarter where832

the greatest destabilising work occurs, it is seen that (−δ̄p) and ¯̇η are almost833

in-phase. This provides further evidence for characterising the instability as834

being of the modal-coalescence type since exact phase alignment indicates a835

pure resonance of fluid loading and plate motion. Finally, we recognise that836

the critical velocity gradient found is specific to the initial excitation applied.837

As evident from Fig. 13(a), we applied the second in-vacuo mode that might838

have been expected to promote flutter of the second system mode. What we839

therefore emphasise is that the single-mode flutter mechanism that has been840

seen to be the critical instability for short plates in steady uniform flow may841

not establish itself in a time-varying mean flow. Thus, the critical instability842

is likely to be the more robust modal-coalescence instability that typically843

occurs at higher mean-flow dynamic pressures.844

845

We now briefly investigate the effect of spatially varying plate stiffness for846

the case of uniform mean flow. The critical speed for a homogeneous flexible847

plate in a system with L̄ = 0.42 and H̄ = 0.1 is first found. The evaluation848

of W̄ , see Fig. 15(a), indicates that the instability causing this snore is driven849

solely by energy transfer on the third quarter of the plate, the characteristic850

similar to that seen in Fig. 12(b) (L̄ = 1, H̄ = 0.1) but with no assistance from851

the second quarter of the plate. The plate energy, Ēt, for this case is shown in852

Fig. 15(b) and is seen to maintain a constant mean value appropriate to the853

neutrally-stable state of the plate. We then mimic a proposed ‘cure’ for the854

snore by applying a 10% greater stiffness in the third quarter of the flexible855

surface where the instability mechanism occurs. This soft-palate stiffening is a856
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strategy similar to that described by Ellis et al. (1993). The resulting trace of857

plate energy is shown in Fig. 15(c) and the strategy is indeed found to have a858

stabilising effect. If the same simulated stiffening is applied to the first quar-859

ter of the flexible plate instead of the third quarter, the result of Fig. 15(d)860

shows that the change is actually destabilising. These results demonstrate that861

flexible-plate stiffening can be used to control stability for the alleviation of862

palatal snoring but that the location of such stiffening is critical in order to863

achieve the desired effects.864

4 Conclusions865

We have developed and deployed a new computational model for the fluid-866

structure interaction between a cantilevered-free flexible plate and an ideal867

flow. The model permits numerical simulations to be conducted that capture868

transient behaviour and in which spatially localised fluid-structure interactions869

can be identified. The computational model can also be used to determine the870

global stability of the system for the infinite-time limit. Using these solution871

methods in combination we have elucidated instability mechanisms showing872

how spatially varying fluid-structure interactions along the plate combine to873

give the system response.874

875

The investigations presented in this paper provide an accurate linear-stability876

map for the standard case of cantilevered-free flexible plate in an unbounded877

uniform flow. We have then investigated the changes to this ‘standard’ fluid-878

structure interaction that are caused by the effects of: a) shed vorticity, b)879

channel walls, c) a rigid inlet-surface, d) temporally-varying inlet flow-velocity,880
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and e) variable plate stiffness. A summary of the effects of (a)-(c) is given in881

Table 2. Overall, we can conclude that short flexible plates are destabilised882

by single-mode flutter caused by an irreversible energy transfer from fluid to883

structure that principally occurs over the middle part of the flexible plate.884

In contrast, long flexible plates succumb to a modal-coalescence flutter that885

is principally driven by the magnitude of the fluid loading as opposed to886

the subtle phase relationships that underpin single-mode flutter. Thus, the887

modal-coalescence flutter has its parallel in the Kelvin-Helmholtz instability888

of flexible plates held at both ends at flow speeds higher than those that give889

divergence instability. The proximity of channel walls tends to intensify the890

single-mode flutter mechanism whereas the inclusion of a rigid inlet surface891

diminishes the mechanism so that a higher critical flow speed associated with892

modal-coalescence is reached before instability sets in. The effect of a wake is893

to decrease the potency of the single-mode flutter mechanism that dominates894

the destabilisation of short plates with light fluid loading and thereby increase895

critical speeds. However, wake effects promote the modal-coalescence flutter896

that is the critical instability for long plates or those with heavy fluid loading897

and are therefore destabilising; the magnitude of this effect reduces with in-898

creases to plate length.899

900

By elucidating the instability mechanisms to which the fluid-structure sys-901

tem is prone, we have identified two distinct types of plate flutter. While the902

energy flow between fluid and structure for both is caused by phase-shifts be-903

tween the pressure load and the motion of the plate, the mechanics behind904

the phase shifts are very different. This has implications for the engineering905

control (or exploitation) of the instabilities. Structural forces are dominant in906

the single-mode flutter of short plates and it is the phase-relationship (to plate907
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motion), as opposed to the magnitude, of the fluid pressure that is critical.908

Thus, this instability, as we have shown, can be controlled by the judicious909

stiffening of parts of the plate or the inclusion of damping, for example, by910

doping the plate material. In contrast, the appearance of the destabilising911

phase shift in modal-coalescence flutter is principally dependent of the mag-912

nitude of the pressure load that brings the coalescing modes together. Thus,913

damping has only a mildly modifying effect on the critical speed. Localised914

stiffening strategies, as a means to design out the instability, would also be915

difficult to implement. The added stiffness would need to be applied in such a916

way that it separated out the principal modes in the frequency space in order917

to postpone their coalescence with increasing flow speed.918

919

The effects of time-varying mean flow and of spatially varying flexible-plate920

properties have been illustrated in the context of upper-airway dynamics and921

the mechanisms that might lie behind palatal snoring. We have shown that922

stiffening does have the potential to increase the critical speed of palatal flut-923

ter provided that it is applied in the correct location. This highlights the924

difficulty of applying successful treatment to a patient suffering from palatal925

snoring. This difficulty is compounded by the potential existence of two dif-926

ferent types of instability that we have highlighted in this paper. Increasing927

complexity occurs when a more faithful representation of the upper airway is928

modelled. Aurégan and Depollier (1995) introduced two broad classifications929

namely, pure and apnœic snores, owing to the flexibility of the soft palate and930

channel properties respectively. Moreover, the site of snore generation is not931

necessarily confined to the region of the soft-palate but to various sites in the932

human pharynx, as shown by Miyazaki et al. (1998). It therefore follows that933

there will be different treatments for each type of snore and that treatment934
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must be tailored to the individual patient. Fundamental understanding of the935

fluid-structure interactions at work undoubtedly will underpin the appropriate936

developments of such treatments.937
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Table 1. Effect of an unsteady wake on the critical velocity:Variation of the1031

critical velocity, Ūc, with L̄; Ū∗
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Figure 1. Schematic of the fluid-structure system studied.1040

1041

Figure 2. Fluid-structure system: Diagrammatic representation of the com-1042

putational methods used and the system discretisation.1043

1044

Figure 3. Fluid-structure behaviour at L̄ = 1, H̄ = 1 (effectively isolated):1045

Variation of system eigenmodes with flow speed where (a) elastic plate, d̄ = 0,1046

and (b) including structural damping with d̄ = 5. The numbers on each figure1047

identify the mode number in order of ascending frequency at Ū = 0.1048

1049

Figure 4. Fluid-structure behaviour at L̄ = 1, H̄ = 1 (effectively isolated):1050

Numerical simulations of system behaviour with d̄ = 0 at the critical flow1051

speed Ūc = 5.452, (a) time-sequence of instantaneous plate deformation (the1052

thick line is the initially imposed deformation), (b) time-variation of plate1053

energy, Ēt, (c) time-variation of work done by fluid on plate, W̄ , and, for a1054

post-critical flow speed Ū = 6.0, (d) time-variation of work done by fluid on1055
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plate, W̄ . In both (c) and (d) the lines —– (thin), , and · · · respectively1056

indicate the work done over the first, second, third and fourth quarters of the1057

plate from its leading edge while —– (thick) is the sum of these contributions.1058

1059

Figure 5. Fluid-structure behaviour at L̄ = 1, H̄ = 1 (effectively isolated):1060

Variation of perturbation pressure, −δ̄p (denoted ◦), and plate velocity, ¯̇η (de-1061

noted ∗) with time at (a) x̄ = 0.3, (b) x̄ = 0.5, and x̄ = 0.7 for the numerical1062

simulation that yielded Fig.s 4(a), 4(b) and 4(c) at the critical flow speed.1063

The added lines ——– and −−− respectively connect peaks of −δ̄p and ¯̇η to1064

illustrate the spatial variation of the phase between these terms.1065

1066

Figure 6. Fluid-structure behaviour for various L̄ at H̄ = 1 (effectively iso-1067

lated): Variation of system eigenmodes with flow speed for d̄ = 0 for (a) L̄ = 11068

(as in Fig. 3(a)), (b) L̄ = 10, (c) L̄ = 100, and (d) L̄ = 1000. The numbers on1069

each figure identify the mode number in order of ascending frequency at Ū = 0.1070

1071

Figure 7. Fluid-structure behaviour at L̄ = 1000, H̄ = 1 (effectively iso-1072

lated): Numerical simulations of system behaviour with d̄ = 0 at the critical1073

flow speed Ū = Uc = 1.542 × 10−3, (a) time-sequence of instantaneous plate1074

deformation (the thick line is the initially imposed deformation), and (b) time-1075

variation of work done by fluid on plate, W̄ , in which —– (thin), , and1076

· · · respectively indicate the work done over the first, second, third and fourth1077

quarters of the plate from its leading edge while —– (thick) is the sum of these1078

contributions.1079

1080

Figure 8. Fluid-structure behaviour for a range of L̄ at H̄ = 1 (effectively1081

isolated): Plot of Uc at different L̄ (adapted from Watanabe et al. (2002b)).1082
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Data is from several published studies. Experimental Data: From Watanabe1083

et al. (2002b) ◦ flag type paper, • long-type paper, 4 elastic sheet; ♦ Huang1084

(1995); + Kornecki et al. (1976); Theoretical Models: 2 Kornecki et al. (1976);1085

− (thin) Huang (1995); − (thick) Guo and Päıdoussis (2000); −· Watanabe et1086

al. (2002b) with their parameter CD = 0; −−Present theory. The first set of1087

boundaries at the bottom of the graph show the predominant in vacuo eigen-1088

mode in the form of the critical mode calculated by the theoretical model of1089

Watanabe et al. (2002b); the second set of boundaries are from our numer-1090

ical simulations, also showing the predominant eigenmode when the flutter1091

instability predicted is of the single-mode type, but also showing which group1092

of modes form the critical mode when the flutter instability is of the modal-1093

coalescence type.1094

1095

Figure 9. The effect of an unsteady wake on the system response: Numeri-1096

cal simulations of system behaviour at L̄ = 1, H̄ = 1 (effectively isolated) and1097

d̄ = 0, (a) time-sequence of instantaneous plate deformation at the new criti-1098

cal flow speed Ūc = 5.948 (the thick line is the initially imposed deformation1099

and note that early deformations have been removed to provide a clearer view1100

of the critical mode), and (b) time-variation of work done by fluid on plate,1101

W̄ , with (discrete data) and without (continuous data) a wake at Ūc = 5.4521102

(the critical speed found without a wake) where the data sequences 4, +, ♦,1103

× and —– (thin), , , · · · each respectively indicate the work done over1104

the first, second, third and fourth quarters of the plate from its leading edge,1105

while � and —– (thick) are the respective sums of these contributions.1106

1107

Figure 10. The effect of an upstream, rigid central-surface on the system re-1108

sponse: Variation of system eigenmodes with flow speed for L̄ = 1, H̄ = 11109
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(effectively isolated) and d̄ = 0 when an upstream, rigid central-surface (equal1110

in length to the flexible plate) is introduced. The numbers on each figure iden-1111

tify the mode number in order of ascending frequency at Ū = 0.1112

1113

Figure 11. The effect of an upstream, rigid central-surface on the system1114

response: Numerical simulation of system behaviour for L̄ = 1, H̄ = 1 (ef-1115

fectively isolated) and d̄ = 0 at the new critical flow speed Ūc = 13.547, (a)1116

time-sequence of instantaneous plate deformation (the thick line is the initially1117

imposed deformation), and (b) time-variation of work done by fluid on plate,1118

W̄ , in which —– (thin), , and · · · respectively indicate the work done1119

over the first, second, third and fourth quarters of the plate from its leading1120

edge while —– (thick) is the sum of these contributions.1121

1122

Figure 12. The effect of channel walls on the system response: Numerical sim-1123

ulation of system behaviour for L̄ = 1, H̄ = 0.1 and d̄ = 0 at the new critical1124

flow speed Ūc = 5.177, (a) time-sequence of instantaneous plate deformation1125

(the thick line is the initially imposed deformation), and (b) time-variation of1126

work done by fluid on plate, W̄ , in which —– (thin), , and · · · respec-1127

tively indicate the work done over the first, second, third and fourth quarters1128

of the plate from its leading edge while —– (thick) is the sum of these contri-1129

butions.1130

1131

Figure 13. The effect of time-varying uniform flow on the system response:1132

Numerical simulation of system behaviour for L̄ = 0.42, H̄ = 0.1 (these di-1133

mensions mimicking that of the human upper airway) and d̄ = 0 with an1134

upstream rigid central surface (equal in length to the flexible plate) present,1135

(a) time-sequence of instantaneous plate deformation (the thick line is the ini-1136
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tially imposed deformation while and denote deformations at t̄ = 4.241137

and 4.28 respectively, and deformations prior to this time period have been1138

removed to provide a clearer view of the critical mode that develops), and (b)1139

time-variation of work done by fluid on plate, W̄ , in which —– (thin), ,1140

and · · · respectively indicate the work done over the first, second, third1141

and fourth quarters of the plate from its leading edge while —– (thick) is1142

the sum of these contributions. Ū(t̄) increases from 0 to 41.8 over the period1143

t̄ : 0 → 4.28.1144

1145

Figure 14. The effect of time-varying uniform flow on the system response:1146

Variation of perturbation pressure, −δ̄p (dashed line), and plate velocity, ¯̇η1147

(continuous line) with time at (a) x̄ = 0.3, (b) x̄ = 0.5, and x̄ = 0.7 for the1148

numerical simulation that yielded Fig. 13.1149

1150

Figure 15. The effect of spatially varying plate stiffness on the system re-1151

sponse: Numerical simulation of system behaviour for L̄ = 0.42, H̄ = 0.11152

(these dimensions mimicking that of the human upper airway) and d̄ = 01153

with an upstream rigid central surface (equal in length to the flexible plate)1154

present, (a) homogeneous flexible plate at its critical flow speed Ūc = 26.5:1155

time-variation of work done by fluid on plate, W̄ , in which —– (thin), ,1156

and · · · respectively indicate the work done over the first, second, third and1157

fourth quarters of the plate from its leading edge while —– (thick) is the sum1158

of these contributions, and variation of plate energy with time at Ū = 26.5 for1159

(b) homogeneous flexible plate, (c) flexible plate with a 10% increase in plate1160

stiffness over its third quarter, and (d) flexible plate with a 10% increase in1161

plate stiffness over its first quarter.1162
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L̄ Ūc Ū∗
c (Ū∗

c − Ūc)/Ūc

0.2 40.2000 54.3800 0.35

0.6 9.6400 11.4700 0.19

1.0 5.4520 5.9480 0.09

1.2 4.5846 4.7269 0.03

1.4 4.0123 3.9533 -0.01

1.6 3.6312 3.4385 -0.05

Tab. 1.

Simulation

Description
L̄ H̄

% change

in Uc from

‘standard’

case

¯̄ω

Region of plate

where most

destabilising

energy transfer

occurs

(Incipient)

Flutter

type

Standard 1 1 (=∞) − 0.69 Middle half Single-mode

Long plate/heavy

fluid loading
1000 1 (=∞) −99.97% 0.19

Mainly

downstream

half

Modal-

coalescence

Wake included 1 1 (=∞) 9.10% 0.61 Middle half Single-mode

Rigid, upstream

central-surface
1 1 (=∞) 148.48% 1.64 Middle half

Modal-

coalescence

Channel flow 1 0.1 −5.04% 0.63 Middle half Single-mode

Tab. 2.
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