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Abstract— In this paper, the problem of transceiver design in a
non-regenerative MIMO relay system is addressed, where linear
signal processing is applied at the source, relay and destination to
minimize the mean-squared error (MSE) of the signal waveform
estimation at the destination. In the proposed design scheme,
optimal structure of the source and relay precoding matrices are
obtained with the assumption that the relay knows the mean and
channel covariance information (CCI) of the relay-destination
link and the full channel state information (CSI) of the source-
relay link. Based on this assumption, an iterative joint source
and relay precoder design is proposed to achieve the minimum
MSE of the signal estimation at the destination. In order to
reduce computational complexity of the proposed iterative design,
a suboptimal relay-only precoder design is proposed. A numerical
example shows that the performance of the proposed iterative
joint source and relay precoder design is very close to that of
the algorithm using full CSI.

I. INTRODUCTION

Recently cooperative communication has attracted consid-

erable attention, due to its potential to provide reliable, cost

effective and wide-area coverage of wireless networks. In

cooperative communication systems, relay node can be de-

ployed in between the source and destination to reduce the

transmission power from the source to neighbouring nodes

and mitigate the shadowing effects.

In general there are two kinds of relay strategies, includ-

ing regenerative scheme and non-regenerative scheme [1]-[2].

In terms of implementation complexity, the non-regenerative

scheme has a lower computational complexity, since for this

scheme, the relay node amplifies the received signal from the

source node and retransmits the signal to the destination node.

On the other hand, multiple antennas can provide spacial

diversity and multiplexing gains to wireless communication

systems. This benefits can be incorporated into the cooperative

communication systems by deploying multiple antennas at the

transceiver. Due to this fact, non-regenerative multiple input

multiple output (MIMO) relay systems have received much

research interest [1]-[11].

Recently, relay precoding scheme [1] and [2] for non-

regenerative MIMO relaying has been investigated to max-

imize the capacity between the source and destination with

further signal processing. In this scheme, the relay multiplies

the received signal by a precoding matrix and retransmits
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Fig. 1. Non-regenerative MIMO relay system

the precoded signal to the destination node. In [3]-[6], the

precoding matrix was designed to minimize the MSE of the

signal waveform estimation at the destination node. The opti-

mal precoding matrix design was investigated well in [3]-[6]

for non-regenerative MIMO relay system with the assumption

that the relay knows the full channel state information (CSI)

of the source-relay and relay-destination links.

In a practical system with a limited feedback rate, the

assumption that the relay knows the full CSI for the relay-

destination link is not feasible, especially in the situation when

the destination node is moving rapidly. The channel mean and

covariance matrices are more stable than the instantaneous

channel matrix because the scattering environment changes

more slowly compared to the destination node location.

In [7] and [8], optimal precoder is designed for maximizing

the ergodic capacity of the non-regenerative MIMO relay sys-

tems with the assumption that the channel covariance informa-

tion (CCI) of the relay-destination link is available at the relay

node. Recently, minimum mean-squared error (MMSE) based

transceivers are investigated in [9]-[11] with the assumption

that the relay knows the covariance channel information of the

relay-destination link. However, the optimal precoding matrix

with the mean feedback of the relay-destination link was not

investigated in [9]-[11].

In this paper, an iterative joint source and relay precoder

design is proposed to minimize the MSE of the symbol

estimation in a non-regenerative MIMO relay system, when

the mean and covariance information for the relay-destination

link is available at the relay. Considering that the computa-

tional complexity of the developed iterative scheme may be



high for practical implementation of the relay system, we

propose a suboptimal relay-only precoder design scheme. In

the proposed two algorithms, it is assumed that the relay

knows the full CSI of the source-relay link and mean and

channel covariance information (CCI) of the relay-destination

link. Simulation results verify the performance of the proposed

iterative and suboptimal mean and covariance based schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the non-regenerative MIMO relay system as shown

in Fig.1, where the source, relay and destination have NS, NR

and ND antennas, respectively. It is assumed that there is no

direct link between the source and destination due to long

distance between these two nodes. The data transmission takes

place over two hops. The received signal at the relay during

the first hop is given by

y1 = H1Fx+ n1 (1)

where H1 ∈ CNR×NS is the channel matrix of the source-

relay link, F ∈ CNS×NS is the source precoding matrix,

x ∈ CNS×1 is the transmitted signal vector with covariance

matrix E{xxH} = σ2
xINS

, n1 ∈ CNR×1 is the circularly

symmetric complex Gaussian noise vector with zero mean and

covariance matrix E{n1n
H
1 } = σ2

1INR
. Here E{.} denotes the

statistical expectation and (.)H stands for the matrix Hermitian

transpose.

The received signal at the destination in the second hop is

given by

y2 = H2GH1Fx+H2Gn1 + n2 (2)

where H2 ∈ CND×NR is the channel matrix of the relay-

destination link, G ∈ CNR×NR is the relay precoding

matrix, n2 ∈ CND×1 is the circularly symmetric complex

Gaussian noise vector with zero mean and covariance matrix

E{n2n
H
2 } = σ2

2IND
. Let us introduce

H = H2GH1F (3)

and

n = H2Gn1 + n2 (4)

where H ∈ C
ND×NS is the equivalent MIMO channel matrix,

and n ∈ CND×1 represents the equivalent noise vector. Now

(2) can be written as

y2 = Hx+ n. (5)

Consider a scenario that the channel of the relay-destination

link is correlated at the transmit antennas and is uncorrelated at

the receive antennas. This model is suitable for an environment

where the relay is not surrounded by local scatterers [12] and

the destination node is hindered by local scatterers [8]. With

this assumption, the channel matrix H2 can be modeled as

H2 = H̄µ +HωΣ
1/2 (6)

where H̄µ ∈ CND×NR is the mean of H2, Hω is an ND×NR

Gaussian matrix having i.i.d. circularly symmetric complex

entries with zero mean and unit variance, and Σ is an NR×NR

covariance matrix of H2 at the relay side.

At destination node, linear receiver W is applied to reduce

implementation complexity. Hence, the estimated signal at the

destination node can be expressed as

x̃ = WHx+Wn. (7)

We assume that the average power at the source and relay

are upper bounded by Ps and Pr. Since the transmitted signal

from the relay is Gy1 = GH1Fx+Gn1, the power constraint

on the source and relay can be expressed as

p(F) = σ2
xtr
{
FHF

}
≤ Ps

p(F,G) = tr
{
G(σ2

xH1FF
HHH

1 + σ2
1INR

)GH
}
≤ Pr (8)

where tr{.} is the trace of a matrix. Our goal is to design F, G

and W so as to obtain the estimated signal which minimizes

the following MSE function subject to the power constraints

(8).

J(F,G,W) = tr
{
E
{
(x̃− x)(x̃ − x)H

}}
. (9)

Mathematically, this problem can be formulated as

(F,G,W)=argmin
(F,G,W)

J(F,G,W),

s.t. p(F)≤Ps,

p(F,G)≤Pr. (10)

After substituting (7) into (9), the MSE function (9) is sim-

plified to

J(F,G,W)=tr
{
σ2
x

(
WH− INS

)(
WH− INS

)H

+WRnW
H
}

(11)

where Rn is the equivalent noise covariance matrix, given by

Rn=σ2
1H2GGHHH

2 + σ2
2IND

. (12)

Note that directly solving the constrained MSE function (10)

is difficult due to the fact that both the objective function

J(F,G,W) and the power constraint p(F,G) are non-linear

and non-convex function of F, G and W.

In the following section a suboptimal approach will be

used to tackle the constrained non-linear optimization problem.

First, the problem will be solved for the optimal linear receiver

W for any given precoding matrices F and G which satisfies

the power constraints (8). Then, an iterative source and relay

precoder design is proposed for obtaining the source and

relay precoding matrices F and G by solving a closely

related constrained optimization problem. In order to reduce

computational complexity of the proposed iterative scheme, a

suboptimal relay-only precoder design is proposed.



III. OPTIMAL TRANSCEIVER DESIGN

For any given precoding matrices F and G which satisfy

the power constraint at the source and relay nodes (8), the

optimal linear receiver W that minimizes the MSE function

J(F,G,W) is the same as the MMSE (Wiener) receiver [13],

which is given by

W = σ2
xH

H(σ2
xHHH +Rn)

−1. (13)

After substituting (13) into (11), the MSE function is obtained

as

J(F,G) = σ2
xtr
{
INS

−σ2
xH

H(σ2
xHHH +Rn)

−1H
}
. (14)

Using the following matrix inversion lemma [13]

(A+BCD)−1=A−1 −A−1B

×(DA−1B+C−1)−1DA−1, (15)

the MSE function (14) can be written as

J(F,G) = σ2
xtr
{[

INS
+ σ2

xH
HR−1

n H
]
−1}

. (16)

Substituting (3) and (12) into (16), the MSE function can be

expressed as

J(F,G)=σ2
xtr
{[

INS
+ σ2

xF
HHH

1 GHHH
2

×
(
σ2
1H2GGHHH

2 + σ2
2IND

)
−1

×H2GH1F
]
−1}

. (17)

Using the matrix inversion lemma (15), the MSE function

(17) can be written as

J (F,G) = σ2
xtr
{[

INS
+

σ2
x

σ2
1

FHHH
1

[
INR

−
(
INR

+
σ2
1

σ2
2

GHHH
2 H2G

)
−1]

H1F
]
−1}

. (18)

Now the problem is reduced to find the optimal precoder

matrices F and G that minimize J(F,G) subject to the

power constraints (8). Let us introduce the singular value

decomposition (SVD) of H1

H1 = U1Λ
1/2
1 VH

1 (19)

where Λ1 = diag{Λ1,1 · · ·Λ1,NR
} is a diagonal matrix with

Λ1,1 ≥ · · · ≥ Λ1,NR
, U1 and V1 are the singular matrices of

H1. To diagonalize (18), F can be selected as [14]

F = V1Λ
1/2
F UF (20)

where ΛF = diag{ΛF,1 · · ·ΛF,NR
} is a diagonal matrix with

ΛF,1 ≥ · · · ≥ ΛF,NR
and UF is a unitary matrix. The

eigenvalue decomposition of Σ can be expressed as

Σ = VΣΛΣV
H
Σ (21)

where ΛΣ = diag{ΛΣ,1 · · ·ΛΣ,NS
} with ΛΣ,1 ≥ · · · ≥

ΛΣ,NS
. The columns of VΣ are the eigenvectors of Σ for

the corresponding eigenvalues. Substituting (21) into (6), the

channel matrix H2 can be written as

H2 , H̄µ + H̃ωΛ
1/2
Σ VH

Σ (22)

where H̃ω , HωVΣ. Here, H̃ω has the same distribution

as Hω, because the unitary matrix VΣ does not change the

statistical distribution of Hω. Due to the similar statistical

distribution, the H̃ω is an ND ×NR Gaussian matrix having

i.i.d. circularly symmetric complex entries. Let’s assume that

the optimal precoding matrix G which minimizes (18) can be

expressed as

G = VΣΛ
1/2
G UH

1 (23)

where ΛG = diag{ΛG,1 · · ·ΛG,NR
}. Substituting (19)-(23) in

(18), the MSE function can be simplified to

J(F,G)=σ2
xtr
{[

INS
+

σ2
x

σ2
1

Λ
1/2
F Λ

1/2
1

×
[
INR

−D1

]
Λ

1/2
1 Λ

1/2
F

]
−1}

(24)

where

D1 =
(
INR

+
σ2
1

σ2
2

Λ
1/2
G VH

Σ

[
H̄H

µ H̄µ + H̄H
µ H̃ωΛ

1/2
Σ VH

Σ

+VΣΛ
1/2
Σ H̃H

ω H̄µ +VΣΛ
1/2
Σ H̃H

ω H̃ωΛ
1/2
Σ VH

Σ

]
VΣΛ

1/2
G

)
−1

.

It can be seen from (24) that J(F,G) depends on H̃ω,

which is random and unknown. In the following, we optimize

E
H̃ω

{J(F,G)}, where E
H̃ω

{.} indicates that the expecta-

tion is taken with respect to the random matrix H̃ω. Now

E
H̃ω

{J(F,G)} can be expressed as

E
H̃ω

{J(F,G)}=σ2
xσ

2
1EH̃ω

[
tr
{[

σ2
1INS

+ σ2
xΛ

1/2
F Λ

1/2
1

×
[
INR

−D1

]
Λ

1/2
1 Λ

1/2
F

]
−1}]

. (25)

Now the work is left to determine the diagonal elements ΛF

and ΛG of precoder matrices F and G. Direct minimization

of (25) for the optimal power allocation is difficult. In the

following, the lower bound of the MSE is used together

with the power constraint (8) to derive the suboptimal power

allocation for the precoder matrices F and G. Since J(F,G)
is convex in H̃H

ω H̃ω, which is proved in [9], E
H̃ω

{J(F,G)}
has the following lower bound using Jensen’s inequality [16]

JL(F,G)=σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xΛ

1/2
F Λ

1/2
1

×
[
INR

−D2

]
Λ

1/2
1 Λ

1/2
F

]
−1}

(26)

where

D2=
(
INR

+
σ2
1

σ2
2

Λ
1/2
G VH

Σ

(
H̄H

µ H̄µ

+E
H̃ω

{
H̄H

µ H̃ω

}
Λ

1/2
Σ VH

Σ +VΣΛ
1/2
Σ E

H̃ω

{
H̃H

ω H̄µ

}

+VΣΛ
1/2
Σ E

H̃ω

{
H̃H

ω H̃ω

}
Λ

1/2
Σ VH

Σ

)
VΣΛ

1/2
G

)
−1

.

Using the properties of Gaussian random matrices with

i.i.d circularly symmetric complex entries, E
H̃ω

{
H̃H

ω H̃ω

}
=



NDINR, E
H̃ω

{
H̄H

µ H̃ω

}
= E

H̃ω

{
H̃H

ω H̄µ

}
= 0 and taking

the expectation on (26) with respect to E
H̃ω

, the MSE function

can be simplified to

JL(F,G)=σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xΛ

1/2
F Λ

1/2
1

×
[
INR

−D3

]
Λ

1/2
1 Λ

1/2
F

]
−1}

(27)

where

D3 =
(
INR

+
σ2
1

σ2
2

Λ
1/2
G (VH

Σ H̄H
µ H̄µVΣ +NDΛΣ)Λ

1/2
G

)
−1

.

To proceed further, using the matrix inversion lemma (15),

the MSE function (27) can be written as

JL(F,G)=σ2
xtr
{[

INS
−

1

σ2
1

Λ
1/2
F Λ

1/2
1 Λ

1/2
G

×
( 1

σ2
1

Λ
1/2
G Λ

1/2
1 ΛFΛ

1/2
1 Λ

1/2
G +C

)
−1

×Λ
1/2
G Λ

1/2
1 Λ

1/2
F

]}
(28)

where

C =
1

σ2
x

[
ΛG +

σ2
2

σ2
1

(
VH

Σ H̄H
µ H̄µVΣ +NDΛΣ

)
−1]

.

We consider an upper-bound of (28) as follows. Then the

MSE function (28) can be rewritten as

JL(F,G)=σ2
x

[
tr
(
A−1

)
− tr

(
A−1EH

×
(
EA−1EH +C

)
−1

EA−1
)]

(29)

where

A=INS
,

E=
1

σ1
Λ

1/2
G Λ

1/2
1 Λ

1/2
F .

By using the following inequality from [14]

tr
(
A−1EH

(
EA−1EH +C

)
−1

EA−1
)

≥ tr
(
A−1EH

(
EA−1EH + diag

(
C
))−1

EA−1
)

(30)

where diag(C) is obtained from C by setting its off-diagonal

elements to zero and an upper-bound of JL(F,G) is given

by

JU (F,G)=σ2
xtr
{[

INS
−
(
ΛFΛ1ΛG + σ2

1ΛC

)
−1

×ΛFΛ1ΛG

]}
(31)

where

ΛC=
1

σ2
x

diag
[
ΛG +

σ2
2

σ2
1

×
(
VH

Σ H̄H
µ H̄µVΣ +NDΛΣ

)
−1]

. (32)

Inserting (20) into (8), the power constraint for the source

node can be expressed as

p(F) = σ2
xtr
{
ΛF

}
≤ Ps. (33)

Substituting (19) and (23) into (8), the power constraint for

the relay node can be expressed as

p(F,G) = tr
{(

σ2
xΛ1ΛF + σ2

1INR

)
ΛG

}
≤ Pr. (34)

A. Joint Source and Relay Precoder Design

In this section, a joint source and relay procder design is

proposed to obtain the diagonal elements of ΛF , ΛG. From

(31), (33) and (34), the diagonal elements of ΛF , ΛG can

be obtained by solving the following constrained optimization

problem with scalar variables

minJU (F,G) =

NS∑

i=1

σ2
xσ

2
1ΛC,i

Λ1,iΛF,iΛG,i + σ2
1ΛC,i

(35)

s .t. p(F) = σ2
x

NS∑

i=1

ΛF,i ≤ Ps, (36)

p(F,G)=

NS∑

i=1

(
σ2
xΛ1,iΛF,i + σ2

1

)
ΛG,i ≤ Pr. (37)

Using the Karush-Kuhn-Tucker (KKT) conditions [15], the

optimal diagonal elements of ΛF,i and ΛG,i are obtained as

ΛF,i =
1

Λ1,iΛG,i

(√
σ2
1ΛC,iΛ1,iΛG,i

µs + µrΛ1,iΛG,i
− σ2

1ΛC,i

)+

(38)

ΛG,i =
1

Λ1,iΛF,i

(√
σ2
xσ

2
1ΛC,iΛ1,iΛF,i

µr(σ2
xΛ1,iΛF,i + σ2

1)
− σ2

1ΛC,i

)+

(39)

where (x)+ = max(x, 0), µs and µr should be chosen to meet

the power constraints (36) and (37).

It can be seen from (38) and (39) that ΛF,i, ΛG,i are function

of each other, so directly solving the diagonal elements of

the matrices are difficult. To avoid this difficulty, an iterative

algorithm is proposed to compute the diagonal elements of

ΛF and ΛG.

In this algorithm, initialize ΛF = INs
and ΛG = INs

.

Then calculate ΛC with (32), and calculate the water filling

variables µr and µs to satisfy the power constraints (8) at the

source and destination nodes. Update ΛF and ΛG according to

(38) and (39) respectively. ΛF and ΛG are iteratively updated

until ‖Λ′

F − ΛF ‖
2 ≤ 0.0001 and ‖Λ′

G − ΛG‖
2 ≤ 0.0001.

Here, Λ′

F and Λ′

G are the two recent calculated values of ΛF

and ΛG and ‖.‖2 denotes the squared Frobenius norm.

B. Relay-only Precoder Design

In this section, we propose a suboptimal algorithm to obtain

the diagonal elements of ΛG while fixing ΛF . Let us assume

that ΛF = INS
, the the constrained optimization problem

(35)-(37) can be rewritten in scalar form as

minJ U (G) =

NS∑

i=1

σ2
xσ

2
1ΛC,i

Λ1,iΛG,i + σ2
1ΛC,i

(40)

s .t. p(F) = σ2
xNS ≤ Ps, (41)

p(G)=

NS∑

i=1

(
σ2
xΛ1,i + σ2

1

)
ΛG,i ≤ Pr. (42)
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Fig. 2. BER versus SNR1 while fixing SNR2 = 20dB.

Using the KKT conditions [15], the optimal diagonal ele-

ments of ΛG,i are obtained as

ΛG,i =
1

Λ1,i

(√
σ2
xσ

2
1ΛC,iΛ1,i

µr(σ2
1Λ1,i + σ2

1)
− σ2

1ΛC,i

)+

(43)

where µr should be chosen to meet the power constraint (42).

IV. SIMULATION RESULTS

In this section, we study the performance of the proposed

schemes by a numerical example. We simulate the non-

regenerative MIMO relay system with NS = NR = ND = 4.

The unitary matrix UF of the source precoder matrix (20) is

generated by the NS-point discrete Fourier-transform matrix.

The channel matrices H1 and Hω are generated as complex

Gaussian variables with zero mean and unit variance and the

symbols are generated from QPSK constellation.

The mean, H̄µ, of H2 is randomly generated. The elements

of covariance matrix Σ of H2 is generated by Σi,j =
j0(△π|i − j|) [12], where j0(.) is the zeroth order Bessel

function of the first kind, △ the angle of fading spread. We

consider the angle spread as △ = 30o. The SNRs for the

source-relay and relay-destination links are defined as follows

SNR1 =
σ2

x

σ2

1

, SNR2 = Pr

NRσ2

1

.

We compare the performance of the proposed schemes

with the joint MMSE scheme (JMMSE) [3], joint MMSE

covariance scheme (JMMSE-Cov) [10], and the iterative joint

source, relay and destination scheme (JMMSE-JSRD-ITE) [6].

The JMMSE-JSRD-ITE scheme provides the lower-bound of

the proposed schemes.

Fig.2 shows the performance of the proposed MMSE

schemes in terms of BER versus SNR1 while fixing SNR2 =

20dB. The proposed two relay schemes, suboptimal relay-only

(SUB-RO) scheme and iterative joint source and relay (JSR-

ITE) scheme, show better BER performance over all range of

SNR1 than the JMMSE-Cov scheme. For all range of SNR1,

the BER performance of the SUB-RO scheme is closer to

that of the JMMSE scheme. The proposed JSR-ITE scheme

outperforms the JMMSE-Cov, SUB-RO and JMMSE schemes

over the tested range of SNR1.

V. CONCLUSION

In this paper, we have proposed an iterative joint source

and relay precoder design scheme to minimize the MSE of

the symbol estimation at the destination with the assumption

that the mean and covariance feedback of the relay-destination

link is available at the relay. We assumed that the relay knows

the full CSI of the source-relay link. Due to the computational

complexity of the proposed iterative scheme, a suboptimal

relay-only precoder scheme is proposed. Simulation results

show that the proposed iterative and suboptimal schemes

minimize the upper-bound of the MSE and it is demonstrated

that the proposed schemes have better performance in terms

of BER as compared to the conventional covariance feedback

based MSE schemes.
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