Parabolic equations with the second order Cauchy conditions on the boundary*

Nikolai Dokuchaev

Department of Mathematics, Trent University, Ontario, Canada

Abstract

The paper studies some ill-posed boundary value problems on semi-plane for parabolic equations with homogenuous Cauchy condition at initial time and with the second order Cauchy condition on the boundary of the semi-plane. A class of inputs that allows some regularity is suggested and described explicitly in frequency domain. This class is everywhere dense in the space of square integrable functions.

Key words: ill-posed problems, parabolic equations, second order Cauchy condition, regularity, solution in frequency domain, Hardy spaces, smoothing kernel.

PACS numbers: 02.60.Lj, 02.30.Jr.

AMS 2000 classification: 35K20, 35Q99, 32A35, 47A52

Parabolic equations such as heat equations have fundamental significance for natural sciences, and various boundary value problems for them were widely studied including well-posed problems as well as the so-called ill-posed problems that are often significant for applications. The present paper introduces and investigates a special boundary value problem on semi-plane for parabolic equations with homogenuous Cauchy condition at initial time and with second order Cauchy condition on the boundary of the semi-plane. The problem is ill-posed. A set of solvability, or a class of inputs that allows some regularity in a form of prior energy type estimates is suggested and described

^{*}Journal of Physics A: Mathematical and Theoretical, 2007, 40, pp. 12409–12413.

explicitly in frequency domain. This class is everywhere dense in the class of L_2 -integrable functions. This result looks counterintuitive, since these boundary conditions are unusual; solvability of this boundary value problem for a wider class of inputs is inconsistent with basic theory.

1 The problem setting

Let us consider the following boundary value problem

$$a\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t) + b\frac{\partial u}{\partial x}(x,t) + cu(x,t) + f(x,t),$$

$$u(x,0) \equiv 0,$$

$$u(0,t) \equiv g_0(t), \quad \frac{\partial u}{\partial x}(0,t) \equiv g_1(t).$$
(1)

Here x > 0, t > 0, and a > 0, b, $c \in \mathbf{R}$ are constants, $g_k \in L_2(0, +\infty)$, k = 1, 2, and f is a measurable function such that $\int_0^y dx \int_0^\infty |f(x,t)|^2 dt < +\infty$ for all y > 0.

This problem is ill-posed (see Tikhonov and Arsenin (1977)).

Let $\mu \triangleq b^2/4 - c$. We assume that $\mu > 0$. Note that this assumtion does not reduce generality for the cases when we are interested in solution on a finite time interval, since we can rewrite the parabolic equation as the one with c replaced by c - M for any M > 0 and $g_k(t)$ replaced by $e^{-Mt}g_k(t)$; the solution u_M of the new equation related to the solution u of the old one as $u_M(x,t) = e^{-Mt}u(x,t)$.

Definitions and special functions

Let $\mathbf{R}^+ \triangleq [0, +\infty)$, $\mathbf{C}^+ \triangleq \{z \in \mathbf{C} : \operatorname{Re} z > 0\}$. For $v \in L_2(\mathbf{R})$, we denote by $\mathcal{F}v$ and $\mathcal{L}v$ the Fourier and the Laplace transforms respectively

$$V(i\omega) = (\mathcal{F}v)(i\omega) \stackrel{\Delta}{=} \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} e^{-i\omega t} v(t) dt, \quad \omega \in \mathbf{R},$$
 (2)

$$V(p) = (\mathcal{L}v)(p) \stackrel{\Delta}{=} \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-pt} v(t) dt, \quad p \in \mathbf{C}^+.$$
 (3)

Let H^r be the Hardy space of holomorphic on \mathbb{C}^+ functions h(p) with finite norm $||h||_{H^r} = \sup_{k>0} ||h(k+i\omega)||_{L_r(\mathbb{R})}, r \in [1, +\infty]$ (see, e.g., Duren (1970)).

For y > 0, let W(y) be the Banach space of the functions $u : (0, y) \times \mathbf{R}^+ \to \mathbf{R}$ with the finite norm

$$\|u\|_{\mathcal{W}(y)} \stackrel{\Delta}{=} \sup_{x \in (0,y)} \left(\|u(x,\cdot)\|_{L_2(\mathbf{R}^+)} + \left\| \frac{\partial u}{\partial x}(x,\cdot) \right\|_{L_2(\mathbf{R}^+)} + \left\| \frac{\partial^2 u}{\partial x^2}(x,\cdot) \right\|_{L_2(\mathbf{R}^+)} + \left\| \frac{\partial u}{\partial t}(x,\cdot) \right\|_{L_2(\mathbf{R}^+)} \right).$$

The class W(y) is such that all the equations presented in problem (1) are well defined for any $u \in W(y)$ and in the domain $(0, y) \times \mathbf{R}^+$. For instance, If $v \in W(y)$, then, for any $t_* > 0$, we have that $v|_{[0,y] \times [0,t_*]} \in C([0,t_*], L_2(0,y))$ as a function of $t \in [0,t_*]$. Hence the initial condition at time t = 0 is well defined as an equality in $L_2([0,y])$. Further, we have that $v|_{[0,y] \times \mathbf{R}^+} \in C([0,y], L_2(\mathbf{R}^+))$ and $\frac{\partial v}{\partial x}\Big|_{[0,y] \times \mathbf{R}^+} \in C([0,y], L_2(\mathbf{R}^+))$ as functions of $x \in [0,y]$. Hence the functions v(0,t), $\frac{dv}{dx}(x,t)|_{x=0}$ are well defined as elements of $L_2(\mathbf{R}^+)$, and the boundary value conditions at x = 0 are well defined as equalities in $L_2(\mathbf{R}^+)$.

Special smoothing kernel

Let us introduce the set of the following special function:

$$K(p) = K_{\alpha,\beta,q}(p) \stackrel{\Delta}{=} e^{-\alpha(p+\beta)^q}, \quad p \in \mathbf{C}^+.$$
 (4)

Here $\alpha > 0$, $\beta > 0$ are reals, and $q \in (\frac{1}{2}, 1)$ is a rational number. We mean the branch of $(p + \beta)^q$ such that its argument is $q \operatorname{Arg}(p + \beta)$, where $\operatorname{Arg} z \in (-\pi, \pi]$ denotes the principal value of the argument of $z \in \mathbf{C}$.

The functions $K_{\alpha,\beta,q}(p)$ are holomorphic in \mathbb{C}^+ , and

$$\ln |K(p)| = -\operatorname{Re} \left(\alpha(p+\beta)^q\right) = -\alpha|p+\beta|^q \cos[q\operatorname{Arg}(p+\beta)].$$

In addition, there exists $M=M(\beta,q)>0$ such that $\cos[q\operatorname{Arg}(p+\beta)]>M$ for all $p\in {\bf C}^+.$ It follows that

$$|K(p)| \le e^{-\alpha M|p+\beta|^q} < 1, \quad p \in \mathbf{C}^+. \tag{5}$$

Hence $K \in H^r$ for all $r \in [1, +\infty]$.

Proposition 1 Let $\beta > 0$ and a rational number $q \in (\frac{1}{2}, 1)$ be given. Let $v \in L_2(\mathbf{R}^+)$, $V = \mathcal{L}v \in H^2$. For $\alpha > 0$, set $V_{\alpha} \stackrel{\Delta}{=} K_{\alpha,\beta,q}V$, $v_{\alpha} \stackrel{\Delta}{=} \mathcal{F}^{-1}V_{\alpha}(i\omega)|_{\omega \in \mathbf{R}}$. Then $V_{\alpha} \in H^2$ and $v_{\alpha} \to v$ in $L_2(\mathbf{R}^+)$ as $\alpha \to 0$, $\alpha > 0$.

Proof. Clearly, $V_{\alpha}(i\omega) \to V(i\omega)$ as $\alpha \to 0$ for a.e. $\omega \in \mathbf{R}$. By (4), $V_{\alpha} \in H^2$. In addition, $|K_{\alpha,\beta,q}(i\omega)| \le 1$. Hence $|V_{\alpha}(i\omega) - V(i\omega)| \le 2|V(i\omega)|$. We have that $||V(i\omega)||_{L_2(\mathbf{R})} = ||v||_{L_2(\mathbf{R}^+)} < +\infty$. By Lebesgue Dominance Theorem, it follows that

$$||V_{\alpha}(i\omega) - V(i\omega)||_{L_2(\mathbf{R})} \to 0 \text{ as } \alpha \to 0.$$

Hence $v_{\alpha} \to v$ in $L_2(\mathbf{R}^+)$ as $\alpha \to 0$. Then the proof follows. \square

The inverse Fourier transform $k(t) = \mathcal{F}^{-1}K_{\alpha,\beta,q}(i\omega)|_{\omega \in \mathbf{R}}$ can be viewed as a smoothing kernel; k(t) = 0 for t < 0. It can be seen that k has derivatives of any order.

Denote by \mathcal{C} the set of functions $v: \mathbf{R}^+ \to \mathbf{R}$ such that there exist $\alpha > 0$, $\beta > 0$, and a rational number $q \in (\frac{1}{2}, 1)$, such that $\hat{V} \in H^2$, where $\hat{V}(p) = K_{\alpha,\beta,q}(p)^{-1}V(p)$, $V = \mathcal{L}v$.

The set \mathcal{C} includes outputs of the convolution integral operators with the kernels k(t). By Proposition 1, it follows that the set \mathcal{C} is everywhere dense in $L_2(\mathbf{R}^+)$.

2 The main result

Set $F(x,\cdot) \stackrel{\triangle}{=} \mathcal{L}f(x,\cdot)$, where x>0 is given, and $G_k \stackrel{\triangle}{=} \mathcal{L}g_k$, k=0,1.

Theorem 1 Let the functions f and g_k are such that there exists y > 0, $\alpha > 0$, $\beta > 0$, $\alpha > 0$, $\beta > 0$, $\alpha > 0$, α

$$\widehat{F}(x,p) \stackrel{\triangle}{=} \frac{F(x,p)}{K(p)}, \qquad \widehat{G}_k(p) \stackrel{\triangle}{=} \frac{G_k(p)}{K(p)},$$
 (6)

and where the function $K = K_{\alpha,\beta,q}$ is defined by (4) (in particular, this means that $g_k \in \mathcal{C}$ and $f(x,\cdot) \in \mathcal{C}$ for a.e. $x \in [0,y]$). Then there exists an unique solution u(x,t) of problem (1) in the domain $(0,y) \times \mathbf{R}^+$ in the class $\mathcal{W}(y)$. Moreover, there exists a constant $C(y) = C(a,b,c,\alpha,\beta,q,y)$ such that

$$||u||_{\mathcal{W}(y)} \le C(y) \Big(||\widehat{G}_1||_{H^2} + ||\widehat{G}_2||_{H^2} + \int_0^x ||\widehat{F}(s, \cdot)||_{H^2} ds \Big).$$

Remark 1 Theorem 1 requires that functions f and g_k are smooth in t; in particular, they belong to C^{∞} in t. However, it is not required that f(x,t) is smooth in x.

Proof of Theorem 1. Instead of (1), consider the following problems for $p \in \mathbb{C}^+$:

$$apU(x,p) = \frac{\partial^2 U}{\partial x^2}(x,p) + b\frac{\partial U}{\partial x}(x,p) + cU(x,p) + F(x,p), \quad x > 0,$$

$$U(0,p) \equiv G_0(p), \quad \frac{\partial U}{\partial x}(0,p) \equiv G_1(p). \tag{7}$$

Let $\lambda_k = \lambda_k(p)$ be the roots of the equation $\lambda^2 + b\lambda + (c - ap) = 0$. Clearly, $\lambda_{1,2} \triangleq -b/2 \pm \sqrt{ap + \mu}$. Recall that $\mu > 0$. It follows that the functions $(\lambda_1(p) - \lambda_2(p))^{-1}$ and $\lambda_k(p)(\lambda_1(p) - \lambda_2(p))^{-1}$, k = 1, 2, belong to H^{∞} .

For $x \in (0, y]$, the solution of (7) is

$$U(x,p) = \frac{1}{\lambda_1 - \lambda_2} \left((G_1(p) - \lambda_2 G_0(p)) e^{\lambda_1 x} - (G_1(p) - \lambda_1 G_0(p)) e^{\lambda_2 x} - \int_0^x e^{\lambda_1 (x-s)} F(s,p) ds + \int_0^x e^{\lambda_2 (x-s)} F(s,p) ds \right).$$
(8)

This can be derived, for instance, using Laplace transform method applied to linear ordinary differential equation (7), and having in mind that

$$\frac{1}{\lambda^2 + b\lambda + c - ap} = \frac{1}{(\lambda - \lambda_1)(\lambda - \lambda_2)} = \frac{1}{\lambda_1 - \lambda_2} \left(\frac{1}{\lambda - \lambda_1} - \frac{1}{\lambda - \lambda_2} \right),$$
$$\frac{\lambda}{\lambda^2 + b\lambda + c - ap} = \frac{\lambda}{(\lambda - \lambda_1)(\lambda - \lambda_2)} = \frac{1}{\lambda_1 - \lambda_2} \left(\frac{\lambda_1}{\lambda - \lambda_1} - \frac{\lambda_2}{\lambda - \lambda_2} \right).$$

Let $x \in (0, y)$, $s \in [0, x]$. The functions $e^{(x-s)\lambda_k(p)}$, k = 1, 2, are holomorphic in \mathbb{C}^+ . We have

$$\ln|e^{(x-s)\lambda_k(p)}| = \operatorname{Re}((x-s)\lambda_k(p)) = (x-s)\left(-\frac{b}{2} \pm |ap+\mu|^{1/2}\cos\frac{\operatorname{Arg}(ap+\mu)}{2}\right),$$

where $k = 1, 2, p \in \mathbb{C}^+$. It follows that

$$|K(p)e^{(x-s)\lambda_k(p)}| \le e^{(x-s)[-b/2+|ap+\mu|^{1/2}]-\alpha M|p+\beta|^q}$$

 $k=1,2, p \in \mathbf{C}^+$. Similarly,

$$|K(p)e^{\lambda_k x}| \le e^{x[-b/2 + |ap + \mu|^{1/2}] - \alpha M|p + \beta|^q}$$

Since q > 1/2, it follows that $K(p)e^{\lambda_k x} \in H^r$, $K(p)e^{(x-s)\lambda_k(p)} \in H^r$, $pK(p)e^{\lambda_k x} \in H^r$, and $pK(p)e^{(x-s)\lambda_k(p)} \in H^r$, for r = 2 and $r = +\infty$. Moreover, we have

$$\sup_{s \in [0,x]} \|p^m e^{\lambda_k(p)s} G_k(p)\|_{H^2} \le C_1(x) \|\widetilde{G}_k\|_{H^2},$$

$$\sup_{s \in [0,x]} \|p^m e^{\lambda_k(p)s} K(p)\|_{H^\infty} \le C_2(x),$$

where m = 0, 1. Hence

$$\sup_{x \in [0,y]} \left\| p^m \int_0^x e^{(x-s)\lambda_k} F(s,p) ds \right\|_{H^2} \le \sup_{x \in [0,y]} \int_0^x \left\| e^{(x-s)\lambda_k} p^m F(s,p) \right\|_{H^2} ds$$

$$\le \sup_{x \in [0,y]} \int_0^x \| p^m e^{\lambda_k (x-s)} K(s) \|_{H^\infty} \| \widetilde{F}(s,p) \|_{H^2} ds \le C_2(y) \int_0^y \| \widehat{F}(s,p) \|_{H^2} ds,$$

where m=0,1. Here $C_1(x)$, $C_2(x)$ are constants that depend on a,b,c,α,β,q,x . It follows that $p^m e^{\lambda_k x} G_m(p) \in H^2$ and $p^m \int_0^x e^{(x-s)\lambda_k} F(p,s) ds \in H^2$ for any x>0, m=0,1, k=1,2.

Recall that $\lambda_k = \lambda_k(p)$. Let

$$N \triangleq \left\| \frac{1}{\lambda_1 - \lambda_2} \right\|_{H^{\infty}} + \sum_{k=1,2} \left\| \frac{\lambda_k}{\lambda_1 - \lambda_2} \right\|_{H^{\infty}}.$$

It follows from the above estimates that

$$||p^m U(x,p)||_{H^2} \le N \left(C_1(y) \sum_{k=1,2} ||\widehat{G}_k||_{H^2} + C_2(y) \int_0^x ||\widehat{F}(s,p)||_{H^2} ds \right), \quad m = 0, 1. \quad (9)$$

It follows that the corresponding inverse Fourier transforms $u(x,\cdot) = \mathcal{F}^{-1}U(x,i\omega)|_{\omega\in\mathbf{R}}$, $\frac{\partial u}{\partial t}(x,\cdot) = \mathcal{F}^{-1}(pU(x,i\omega)|_{\omega\in\mathbf{R}})$ are well defined and are vanishing for t<0. In addition, we have that $\overline{U(x,i\omega)}=U(x,-i\omega)$ (for instance, $\overline{K(i\omega)}=K(-i\omega)$, $\overline{e^{(x-s)\lambda_k(i\omega)}}=e^{(x-s)\lambda_k(-i\omega)}$, etc). It follows that the inverse of Fourier transform $u(x,\cdot)=\mathcal{F}^{-1}U(x,\cdot)$ is real.

Further, we have that

$$\frac{\partial U}{\partial x}(x,p) = \frac{1}{\lambda_1 - \lambda_2} \left((G_1(p) - \lambda_2 G_0(p)) \lambda_1 e^{\lambda_1 x} - (G_1(p) - \lambda_1 G_0(p)) \lambda_2 e^{\lambda_2 x} - \lambda_1 \int_0^x e^{\lambda_1 (x-s)} F(s,p) ds + \lambda_2 \int_0^x e^{\lambda_2 (x-s)} F(s,p) ds \right).$$
(10)

Since $\lambda_1(p)\lambda_2(p) = c - ap$, we obtain again that

$$\left\| \frac{\partial U}{\partial x}(x,p) \right\|_{H^2} \le C_3(y) \left(\sum_{k=1,2} \left\| \widehat{G}_k \right\|_{H^2} + \int_0^x \|\widehat{F}(s,p)\|_{H^2} ds \right). \tag{11}$$

By (7), $\partial^2 U/\partial x^2$ can be expressed as a linear combination of $F, G_k, U, pU, \partial U/\partial x$. By (9)-(11),

$$\left\| \frac{\partial^2 U}{\partial x^2}(x,p) \right\|_{H^2} \le C_4(y) \left(\left\| \frac{\partial U}{\partial x}(x,p) \right\|_{H^2} + \sum_{m=0,1} \|p^m U(x,p)\|_{H^2} + \|F(x,p)\|_{H^2} \right).$$

We have that |K(p)| < 1 on C^+ and $||F(s,p)||_{H^2} \le ||\widehat{F}(s,p)||_{H^2}$. It follows that

$$\left\| \frac{\partial^2 U}{\partial x^2}(x,p) \right\|_{H^2} \le C_5(y) \left(\sum_{k=1,2} \left\| \widehat{G}_k \right\|_{H^2} + \int_0^x \| \widehat{F}(s,p) \|_{H^2} ds \right). \tag{12}$$

Here $C_k(y)$ are constants that depend on $a, b, c, \alpha, \beta, q, y$. By (9)-(12), estimate (6) holds.

Therefore, $u(x,\cdot) = \mathcal{F}^{-1}U(x,i\omega)|_{\omega \in \mathbf{R}}$ is the solution of (1) in $\mathcal{W}(y)$. The uniqueness is ensured by the linearity of the problem, by estimate (6), and by the fact that $\mathcal{L}u(x,\cdot)$, $\mathcal{L}(\partial^k u(x,\cdot)/\partial x^k)$, and $\mathcal{L}(\partial u(x,\cdot)/\partial t)$ are well defined on \mathbf{C}^+ for any $u \in \mathcal{W}(y)$. This completes the proof of Theorem 1. \square

Remark 2 It can be seen from the proof that it is crucial that $u(x,0) \equiv 0$. Non-zero initial conditions can not be included.

References

Duren, P. Theory of H^p -Spaces. 1970. Academic Press, New York.

Tikhonov, A. N. and Arsenin, V. Y. Solutions of Ill-posed Problems. 1977. W. H. Winston, Washington, D. C.