
From Research to Design in European Practice, Bratislava, Slovak Republic, June 2-4, 2010 
     

 
MODELING LOAD-SETTLEMENT CURVES OF BEHAVIOR OF 

BORED PILES USING ARTIFICIAL NEURAL NETWORKS 
 

Iyad Alkroosh 1, Mohamed Shahin 2, Hamid Nikraz 3 
1, 2, 3 Curtin University of Technology, Perth, Western Australia 

1 PhD Candidate, phone: (+618) 92661782, e-mail: iyad.alkroosh@postgrad.curtin.edu.au 
2 Senior Lecturer, phone: (+618) 92661822, e-mail: M.Shahin@curtin.edu.au 

3 Professor, phone: (+618) 92661624, e-mail: H.Nikraz@curtin.edu.au 
 
               

ABSTRACT: Accurate prediction of pile behavior under axial loads is necessary for safe and 
cost effective design. This paper presents the development of a new model, based on 
artificial neural networks (ANNs), to predict the load-settlement relationship of behavior of 
bored piles subjected to axial compression loads.  ANNs have been recently applied to many 
geotechnical engineering problems and have shown to provide high degree of success.  In 
this paper, two ANN models are developed; one for bored piles installed in sand and mixed 
soils, and the other for cohesive soils. The data used for ANN model development are 
collected from the literature and comprise a series of in-situ bored pile load tests as well as 
cone penetration test (CPT) results. Predictions from the ANN models are compared with 
those obtained from the experimental tests, and statistical analysis is used to assess the 
performance of ANN models. The results indicate that ANN models are able to accurately 
predict the load-settlement relationships of behavior of bored piles with high accuracy.  
 

 
1. Introduction 

 
Strength and serviceability requirements are two factors that govern the design process 

of pile foundations and in order to satisfy these requirements, the load-settlement 
relationships of pile behavior need to be accurately identified. In this respects, the in-situ pile 
load testing is needed; however, the in-situ load testing is not always available due to its cost 
and time consumption. Alternatively, the pile load-settlement relationships can be predicted 
using analytical or numerical methods.  However, the behavior of pile load-settlement in 
different soil types is complex and not yet entirely understood.  Consequently, most available 
methods failed to produce consistent success for predicting the load-settlement behavior of 
pile foundations.  In this regard, ANNs can be used to provide more accurate solution. The 
modeling advantage of ANNs over traditional methods is the ability of ANNs to capture the 
nonlinear and complex relationship of pile behavior without the need for a priori formula of 
what could be this relationship. In recent times, artificial neural networks have been 
successfully applied to many geotechnical engineering problems (e.g. Penumadu and Zhao, 
1999; Banimahd et al., 2005; Shahin and Indraratna, 2006).  

 
This paper aims to: (i) utilize the ANN modeling technique to simulate the load- 

settlement relationship of behavior of bored piles installed in cohesionless, mixed and 
cohesive soils; (ii) compare the performance of the developed ANN model with experimental 
results; and (iii) measure the accuracy of the ANN model using statistical analyses.  
 
 

2. Overview of artificial neural networks 
 

Artificial neural networks (ANNs) are problem solving technique that tries to mimic the 
function of the human brain and nervous system.  The type of the neural network used in this 
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study is the multilayer perceptrons (MLPs) trained with the back-propagation algorithm 
(Rumelhart et al., 1986). Full description of this type of neural networks is beyond the scope 
of this paper and can be found in many publications (e.g. Fausett, 1994).  An MLP is usually 
composed of three layers; an input layer, intermediate hidden layer and output layer. Each 
layer consists of a number of processing elements, known as nodes or neurons. The 
processing elements of each layer are fully or partially connected to the nodes of the other 
layers via weighted connections. The network is trained to gain its knowledge about specific 
problem by presenting a set of input patterns and the corresponding target patterns. The 
input patterns are fed to the network to produce predicted output patterns. The output 
patterns are compared with the target patterns and the summation of the squared error is 
calculated. The error is then back propagated through the network and a gradient-descent 
rule is used to modify the connection weights and to minimize the summed squared error.  
The above process is continued until a stopping criterion is met. 

  
As the pile load-settlement curves involve interdependency between the current and 

previous states of load-settlement points, the sequential (recurrent) neural network is used.  
The sequential neural network was first proposed by Jordan (1986) and consists of two sets 
of input units; plan units and current state units. The role of the current state units is to 
remember past activity and during training, patterns of input data are presented to the plan 
units while the current state units are set to zero. At the first training epoch, the output is 
produced and copied back to the current state units for the next training epoch. This process 
continues until the end of the training phase. The performance of the trained network is then 
tested using an independent validation set.                      
 
 

3. Development of ANN Models 
 

 In this work, ANN models are developed using the commercial available software 
package Neuroshell 2, release 4.0 (Ward, 2000).  Two ANN models are developed in this 
work; one for bored piles installed in sand and mixed soils, and the other for piles located in 
cohesive soils.  All piles are subjected to slow maintained axial compression loads.  The data 
used for ANN model development are collected from the literature and comprise 
experimental results of 66 load-settlement tests as well as cone penetration test (CPT) 
results.  The database consists of 58 cases reported by Alsamman (1995), 6 cases reported 
by Eslami (1996) and 2 cases reported by Milovic (1989). The number of cases for piles in 
sand and mixed soils is 50, and for piles in cohesive soils is 16.  The piles have different 
sizes and circular shapes with diameters ranging from 320 to 1800 mm, and lengths from 6 
to 27 m.  Since the piles considered in the current study have a wide range of diameters, 
they are classified into two categories; small-diameter piles (for pile diameter < 600 mm) and 
large-diameter piles (for pile diameter > 600 mm). This classification is in accordance with Ng 
et al. (2004) and is based on the fact that large-diameter piles may behave differently in 
comparison with small-diameter piles.  
 

In order to accurately predict the pile load-settlement relationship, the significant factors 
that influence the load-settlement behavior need to be identified and presented to the neural 
network as input variables. These include the pile geometry and soil properties.  The pile 
geometry is represented by the pile diameter, D, and pile embedment length, L. The soil 
properties are represented by the weighted average cone point resistance over pile tip failure 
zone, qc-tip, and weighted average cone point resistance over shaft length, , qc-shaft.  These 
input variables represent the plan units of the neural network, as shown in Figure 1.  In 
simulations of the pile load-settlement curves, the current state of load and settlement 
governs the next state of load and settlement.  Thus, a typical neural network for pile load-
settlement modeling includes current state nodes, which as mentioned previously, are 
processing elements that remember past activity (i.e. memory nodes).  At the beginning of 
the training process, the inputs for the current state of load and/or settlement are set to zero 



and training proceeds to predict the next expected state of load and/or settlement for an input 
load or settlement increment.  The predicted load and/or settlement are then copied back to 
the current state nodes for the next pattern of input data.  The inputs to the ANN models in 
the current state units are the current state of load, Pi, current normalized settlement, εi 
(where εi = settlement/pile diameter) and normalized settlement increment, ∆εi, as shown in 
Figure 1.  The single output is the next state of load, Pi+1.   
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                Fig. 1. Schematic representation of the structure of ANN models 
 

In this study, the following varying normalized settlement increments are chosen: 0.01, 
0.02, 0.03, …, 0.1, 0.11.  As recommended by Penumadu and Zhao (1999), using varying 
strain increment values results in good modeling capability without the need for a large size 
of training data.  Because the data needed for the ANN models at the above settlement 
increments were not recorded in the original experiments of the pile load-settlement tests, 
the curves of the available tests were digitized to obtain the required data. A set of 50 
training patterns was used to represent a single load-settlement curve.   

     
It should be noted that for small-diameter piles, the failure zone over which qc-tip is 

averaged was taken in accordance with Eslami (1996), in which when the pile tip is located in 
a homogenous soil, the failure zone extends 4D below and above the pile tip, whereas when 
the pile tip is located in a strong soil layer above which a weak layer exists, the failure zone 
extend from 4D below and 8D above the pile tip.  On the other hand, when the pile tip is 
located in a weak layer beneath a dense stratum, the failure zone extends from 4D below to 
2D above the pile tip.  For large-diameter piles; however, the failure zone is taken in 
accordance with Alsamman (1995) to be 1D below the pile tip.  It should be also noted that 
several pile load tests include mechanical rather than electric CPT data and thus, it was 
necessary to transform the mechanical CPT readings into equivalent electric CPT values. 
This was carried out using the correlation proposed by Kulhawy and Maine (1990), as 
follows: 
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where; pa is the atmospheric pressure, and pa and qc are in kPa.  
 



The next step in development of the ANN model is the data division.  In this work, the 
data are randomly divided into two statistically consistent sets, as recommended by Masters 
(1993) and detailed by Shahin et al. (2004).  This includes a training set for model calibration 
and an independent validation set for model verification. In total, 41 case records (80%) of 
the available 50 cases of piles installed in sand and mixed soil were used for training and 9 
cases (20%) for validation. On the other hand, 13 case records (80%) of the available 16 
cases of piles located in cohesive soil were used for training and 3 cases (20%) for 
validation. The statistics of the data used for the training and validation sets for piles in sand 
and mixed soil are given in Table 1, which includes the mean, standard deviation, minimum, 
maximum and range. For brevity, the statistics of the data used for piles in cohesive soils are 
not shown.  It should be noted that, like all empirical models, ANN performs best in 
interpretation rather than extrapolation, thus, the extreme values of the data used were 
included in the training set.   
 

Table 1. ANN input and output statistics for piles in sand and mixed soil 
 

Statistical parameters 
Model variables 
and data sets Mean 

Standard 
deviation Minimum Maximum Range 

Pile diameter, D (mm) 
Training set 591 327 320 1800 1480 

Validation set 625 412 320 1500 1180 
Pile embedment length, L (m) 

Training set 11 5 6 27 21 
Validation set 9 4 6 17 11 
Weighted average cone point resistance along pile tip failure zone, tipcq −  (MPa) 

Training set 18 11 2 48 46 
Validation set 17 9 6 31 25 

Weighted average cone point resistance along shaft length, shaftcq −  (MPa) 
Training set 9 4 1 20 19 

Validation set 9 6 3 19 16 
 

 The following step in development of the ANN model is determining the optimal 
model geometry. A network with one hidden layer is used in this study, as Hormik et al 
(1989) recommended that one hidden layer can approximate any continuous function 
provided that sufficient connection weights are used. The trial-and-error approach is used to 
determine the optimum values of network parameters.  In the first stage, the number of 
hidden nodes was determined by assuming the following neural network parameters: initial 
connection weights of 0.3, learning rate of 0.1, momentum term of 0.1, tanh transfer function 
in the hidden layer and sigmoidal transfer function in the output layer.  Several neural 
networks were then trained assuming the following number of hidden nodes; 2, 3, 4, …, 
(2I+1); where I is the number of inputs, as recommended by Caudill (1988). The optimum 
model parameters is achieved by training the network with different combinations of learning 
rates (i.e. 0.05, 0.1, 0.15,…, and 0.6) and momentum terms (i.e. 0.05, 0.1, 0.15, …, and 0.6).  
The mean squared error, MSE, between the actual and predicted values of the pile loads in 
the validation set was used as stopping criterion to terminate training. Whenever the MSE of 
the validation set has reached the lowest value with no improvement in performance of the 
training set, training is stopped and the output is examined.    
 
 
 
 
 



4. Results and model validation 
 

Two good models were selected for predicting the load-settlement relationship of bored 
piles; Model 1 for piles installed in sand and mixed soils; and Model 2 for piles located in 
cohesive soils. These models were selected because they have minimum number of hidden 
nodes accompanied with high and consistent performance in the training and validation sets. 
The model that was found to perform best for bored piles installed in sand and mixed soils is 
composed of six hidden layer nodes, learning rate of 0.08 and momentum term of 0.3.  The 
model that was found to perform best for bored piles located in cohesive soil includes eight 
hidden layer nodes, learning rate of 0.3 and momentum term of 0.1.    

 
The performance of the optimum ANN models, i.e. Models 1 and 2, in the training sets 

and the predictive ability of the models in the validation sets are depicted in Figures 2 and 3, 
respectively.  It should be noted that the dotted lines in Figures 2 and 3 represent the 
experimental data while the solid lines are for the ANN model predictions.  For brevity, only 
some representative curves are selected and presented in Figures 2 and 3, which show good 
performance of the developed ANN models.  

 

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8

(Settlement / diameter) %

Lo
ad

 (k
N

)

Training set

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

(Settlement / diameter)%

Lo
ad

 (k
N

)
Training set

0

200

400

600

800

0 5 10 15 20

(Settlement / diameter) %

Lo
ad

 (k
N

)

Validation set

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25

(Settlement / diameter) %

Lo
ad

 (K
N

)

Validation set

 
Fig. 2. Some simulation results of the developed ANN Model 1 in training and validation sets 
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Fig. 3. Some simulation results of the developed ANN Model 2 in training and validation sets 
 

It can be seen from Figures 2 and 3 that the complex nonlinear relationship of pile load- 
settlement is well simulated by the ANN models including the strain hardening behavior. The 
performance of the developed models is also measured analytically using the coefficient of 
correlation, r, in the training and validation sets and the results are given in Table 2.  It can 
be seen that both ANN models perform well with high r of 0.98 and 0.97 in the training and 
validation sets, respectively, for Model 1, and r = 0.99 and 0.98 in the training and validation 
sets, respectively, for Model 2.  The above results demonstrate that the ANN models are 
able to accurately predict the nonlinear behavior of pile load-settlement in different soil types, 
hence, can be used with confidence for routine design practice. 

 
 Table 2. Performance of the ANN models in the training and validation sets  

 
Piles group Data set Correlation coefficient, r 

Training 0.98 Piles in sand & mixed soil 
Validation  0.97 
Training 0.99 Piles in cohesive soil 

Validation 0.98 
 

 
5. Conclusions 

 
This paper proposed an artificial neural network approach as a potential alternative to 

estimate the load-settlement relationship of bored piles subjected to axial compression loads. 
Two models were developed; one for piles installed in sand and mixed soils and the other for 
piles located in cohesive soil.  The results indicate that the ANN models are capable of 
accurately predicting the complex nonlinear behavior of pile load-settlement with high degree 
of accuracy. The statistical analysis of the coefficients of correlation indicate high values 
close to unity in the training and testing sets used for ANN model development.     
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