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Abstract. Motivated by the fact that the method
of least-squares is one of the leading principles in
parameter estimation, we introduce and develop the
method of least-squares variance component estima-
tion (LS-VCE). The results are presented both for the
model of observation equations and for the model
of condition equations. LS-VCE has many attractive
features. It provides a unified least-squares frame-
work for estimating the unknown parameters of both
the functional and stochastic model. Also, our exist-
ing body of knowledge of least-squares theory is
directly applicable to LS-VCE. LS-VCE has a sim-
ilar insightful geometric interpretation as standard
least-squares. Properties of the normal equations,
estimability, orthogonal projectors, precision of esti-
mators, nonlinearity, and prior information on VCE
can be easily established. Also measures of inconsis-
tency, such as the quadratic form of residuals and the
w-test statistic can directly be given. This will lead us
to apply hypotheses testing to the stochastic model.

Keywords. Least-squares variance component esti-
mation, BIQUE, MINQUE, REML

1 Introduction

Estimation and validation with heterogeneous data
requires insight into the random characteristics of
the observables. Proper knowledge of the stochastic
model of the observables is therefore a prerequisite
for parameter estimation and hypothesis testing. In
many cases, however, the stochastic model may still
contain unknown components. They need to be deter-
mined to be able to properly weigh the contribution
of the heterogeneous data to the final result. Different
methods exist in the geodetic and statistical literature
for estimating such unknown (co)variance compo-
nents. However, the principles on which these meth-
ods are based are often unlinked with the principles
on which the estimation of the parameters of the
functional model is based.

This paper formulates a unified framework for
both the estimation and validation problem of the
stochastic model. We concentrate on the problem
of estimating parts of the stochastic model. The
method is based on the least-squares principle which
was originally proposed by Teunissen (1988). We
will therefore have the possibility of applying one
estimation principle, namely our well-known and
well understood method of least-squares, to both
the problem of estimating the functional model and
the stochastic model. We give the results without
proof. For proofs we can closely follow Teunissen
and Amiri-Simkooei (2007).

We present the weighted least-squares (co)variance
component estimation (LS-VCE) formula for which
an arbitrary symmetric and positive-definite weight
matrix can be used. Weighted LS-VCE gives unbiased
estimators. Based on the normal distribution of orig-
inal observations, we present the covariance matrix
of the observables in the stochastic model. We can
obtain the minimum variance estimators by taking the
weight matrix as the inverse of the covariance matrix.
This corresponds to the best linear unbiased estima-
tor (BLUE) of unknown parameters x in the func-
tional model. These estimators are therefore unbiased
and of minimum variance. In this paper the property
of minimum variance is restricted to normally dis-
tributed data. Teunissen and Amiri-Simkooei (2007)
derived such estimators for a larger class of elliptical
distributions.

We will make use of the vector (vec) and vector-
half (vh) operators, the Kronecker product (®), and
the commutation (K) and duplication (D) matrices.
For a complete reference on the properties and the
theorems among these operators and matrices we
refer to Magnus (1988).

2 Least-Squares Estimators

Consider the linear model of observation equations

p
Ef{y} = Ax; D{y}=0Qy = Qo+ o0k, (1)

k=1
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with y the m x 1 vector of observables (the underline
indicates randomness), x the n x 1 vector of unknown
parameters, A the m x n design matrix, Q, the m xm
covariance matrix of the observables (Qg its known
part; the m x m cofactor matrices Qy are also known
but their contributions through o} are unknown). The
unknowns oy, are for instance variance or covariance
components. The matrices Qx, k =1, ..., p should
be linearly independent. The second part of (1) can
be written as D{y} = E{(y — Ax)(y — Ax)T}. To get
rid of the unknown parameters x in E{(y — Ax)(y —
Ax)T}, one can rewrite (1) in terms of the model of
condition equations. One can therefore show that (1)
can equivalently be reformulated as

P
E{t}=0; E{r¢"} =BT QoB=) oxB"QiB, (2)
k=1

with the b x 1 vector of misclosures ¢ = BTy,
the m x b matrix B satisfying BTA = 0. b =
m — n is the redundancy of the functional model.
The matrices BTQlB, e BTQpB should be lin-
early independent, which is a necessary and suffi-
cient condition in order for the VCE model to have a
unique solution.

The first part of (2), i.e., the functional part, con-
sists of all redundant observations as there exists no
unknown in this model. The adjustment of this part is
trivial because 7 = 0. We may therefore concentrate
on the second part, i.e., the stochastic model. Note
also that the condition E{¢t} = 0, which implies that
there is no misspecification in the functional model,
has been used in the second part by default because
Q; = E{t 1T} — E{t}E{r}".

Stochastic Model

The matrix equation in the second part of (2) can
now be recast into a set of h>-number of observa-
tion equations by stacking the b-number of b x 1
column vectors of E{r 1T} into a b2 x 1 observation
vector. Therefore, just like we interpret the functional
model E{y} = Ax as a set of m-number of obser-
vation equations with the observation vector y, we
are going to interpret the stochastic model E{r t7 —
BT QyB} = Z,le ox BT Qi B as a set of b>-number
of observation equations with the observation matrix
ttT —BT Qo B. Since the matrix of observables ¢ 7 is
symmetric, its upper triangular elements do not pro-
vide new information. There are only b(b; D distinct
(functionally independent) elements. We can there-
fore apply the vh-operator to the second part of (2).
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This results in the following linear model of obser-
vation equations (note that both the vh and the E
operators are linear):

E{yvh} = Ayho, Wyph or Qwn, 3)

with Von = vh(r 1T — BTQOB) the observables in

the stochastic model, and Ay, a b(b; D

matrix of the form

X p (design)

Ay = [vh(BTQ1B) vh(BTQ,,B)], “)

ap]". The
matrix Qv is the covariance matrix
of the observables vh(ttT) and the b(bjl) X b(bzﬂ)
matrix Wy, is accordingly the weight matrix. This
is therefore a standard form of the linear model of
observation equations with a b(b; D _vector of observ-
ables, a (b2+ D % p design matrix and a p-vector of

unknown (co)variance components.

and o is a p-vector as 0 = [0’1 oy -
b(b+1) b(b+1)
2 X

Weighted LS Estimators

Having established these results, we can now apply
the method of least-squares to estimate o. In other
words, if the weight matrix Wy, is known, we
can obtain the weighted least-squares estimators of
the (co)variance components. The weighted least-
squares estimators of the (co)variance components
then read

& = (AGWanAw AL Wiy =N (9)

where N = AVThwthvh, the p x p normal matrix,
and [ = AVTthhyvh, a p-vector, are of the forms

ni = vh(BT Qi B)T Wynvh(BT Q/B),  (6)

and
Iy = V(BT QkB) Wany O]

respectively, with k,/ = 1,---, p. Any symmetric
and positive-definite matrix Wyy, can play the role of
the weight matrix.

Weight Matrix

From a numerical point of view, an arbitrary weight
matrix Wyy, in (6) and (7) may not be advisable as
it is of size b(bjl) X b(b2+1). For this reason, we
now restrict ourselves to those weight matrices which

computationally are more efficient. One admissible
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and, in fact, simple weight matrix Wy, has the fol-
lowing form

Wy = DT (W, @ W))D, (8)

where W; is an arbitrary positive-definite symmetric
matrix of size b and D is the b* x b(b2+ b duplication
matrix. Using the properties of the Kronecker prod-
uct one can show that Wyy, is in fact positive-definite
and therefore can play the role of the weight matrix.
Substituting (8) into (6) and (7) gives

ni = w(B" QxBW,B" 01 BW)), Q)
and
L=t"W.BTQiBW;t—tr(BTQi:BW,BTQoBW,). (10)

respectively. The weighted least-squares (co)variance
component estimation was formulated by rewriting the
(co)variance component model into a linear model of
observation equations. The above formulation of VCE
is based on the weighted least-squares method for
which an arbitrary weight matrix Wy, (e.g. in form of
(8)) can be used. An important feature of the weighted
least-squares estimators is the unbiasedness property.

Covariance Matrix of vh(t¢T)

In order to evaluate the covariance matrix of
(co)variance components, i.e. Qs, we need to know
the b(sz) x PG+ covariance matrix of vh(ttT),
namely Qyp. In addition, one can in particular choose
the weight matrix Wy, as the inverse of Qyy to obtain
the minimum variance estimators. Let us first present
the covariance matrix of vec(s t7) which is based on
the following theorem:

Theorem 1. Let the stochastic vector t be normally
distributed with mean zero and covariance matrix Qy,

i.e. t ~ N(O, Q;), then the covariance matrix of the
observables vh(t t7) is given as

Ow=2D"(0,® QDT (11)

where D is the duplication matrix and DV is its
pseudo-inverse as DT = (DTD)_IDT.

Proof. Closely follow Teunissen and Amiri-Simkooei
(2007).

Using the properties of the duplication matrix and the
Kronecker product, the inverse of Qyy, is obtained as

1
0, = ZDT(Q,—l ® 0, HD. (12)
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For normally distributed data, Q;hl is thus an element
of the class of admissible weight matrices defined in
(8) with W, = «/12 o, !, This is in fact an interesting
result because we can now choose the weight matrix
Wynh = Qv_h1 to obtain the minimum variance estima-

tors of the (co)variance components.

Minimum Variance Estimators

As with the best linear unbiased estimator (BLUE) in
the functional model, the (co)variance components can
be estimated according to BLUE with the observables
vh(z tT). One can obtain such estimators by taking the
weight matrix Wyp, as the inverse of the covariance
matrix of the observables, Q;hl. Then this linear form
of the observables vh(z ¢7) can be rewritten as the best
(minimum variance) quadratic unbiased estimator of
the misclosures ¢. To obtain the minimum variance
estimators, one needs to substitute W, = «/12 o, in )
and (10). Such estimators are therefore given as 6 =
N~ with

1
g = ,w(BTBO BT QiBOTH.  (13)

and 1
=" 0 BT QuBO !, (14)

in which we assumed Qg = 0. Since the covari-
ance matrix Q.p in (11) is derived for normally dis-
tributed data, the ‘best’ (minimum variance) property
is restricted to the normal distribution.

3 Formulation in Terms of A-Model
Weighted LS Estimators

The least-squares method to (co)variance component
estimation can directly be used, if the matrix B is
available (model of condition equations). In practice,
however, one will usually have the design matrix A
available (model of observation equations) instead of
B. We now extend the least-squares method for esti-
mation of (co)variance components to the model of
observation equations. We consider again the case that
the covariance matrix can be split into a known part
Qo and an unknown (co)variance component model,
namely Qy = Qo+ Y r_; 0% Ok.

To apply the weighted least-squares variance com-
ponent estimation to the model of observation equa-
tions we shall therefore have to rewrite (9) and (10)
in terms of the design matrix A. Using the relation
between elements of the B and A models and also tak-
ing into account the trace properties, the matrix N in
(9) and the vector [ in (10) can be reformulated as

nu = t(QxWPLQIWPY), (15)
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and
AT A 1 1
Ly =" WOrWe —tr(Qk WPy QoWPy), (16)

respectively, where W is an arbitrary m x m positive-
definite matrix, ¢ is the least-squares residuals given as
e = Pj-y, with the orthogonal projector Pj- =1-
A(ATWA)~'ATW. The weighted least-squares esti-
mator is therefore given as 6 = N~!/ with N and /

given by (15) and (16), respectively.

Minimum Variance Estimators

To obtain the minimum variance estimators, we should
choose the weight matrix as the inverse of the covari-

ance matrix. In an analogous way to W; = «/12 . !

one can use the matrix W = | Q;l. If we now sub-
stitute W into (15) and (16), we will then obtain

1 _ _
=, (00 Py Q10 Py, a7
and

1.7 _ .1 _ _
l= ZeTleQkale— 5 M0k QP 000} Py), (18)

where P = 1 — A(AT 0;14)~' AT @}
Implementation

Equations (17) and (18) with 6 = N ~1] show that
we need O, = Qo + Z,’:zl oy O in order to com-
pute the estimates &,. But the (co)variance compo-
nents oy are unknown apriori. The final solution should
be sought through an iterative procedure. For this pur-
pose we start with an initial guess for the oy. Based on
these values, we compute with 6 = N ~1] estimates
for the oy, which in a next iteration are considered
the improved values for 0. The procedure is repeated
until the estimated components do not change by fur-
ther iteration. Figure 1 gives a straightforward iterative
algorithm for implementing LS-VCE in terms of the
model of observation equations.

There are two ways of estimating (co)variance com-
ponents. The first way is to consider the cofactor matri-
ces as a whole and try to estimate unknown unit fac-
tors (scale factors). That is, in each iteration we mod-
ify the cofactor matrices by multiplying them with
the estimated factors. After a few iterations we expect
the factors to converge to ones. In the second way,
we consider the cofactor matrices to be fixed. In each
iteration, the (co)variance components rather than the
cofactor matrices are modified. After some iterations,
the modified (co)variance components converge so that
their values do not change by further iterations. For
example, consider the covariance matrix as Q, =
0101 + 02 Q3. At the point of convergence, the above
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Implementation of LS-VCE (A-model)

Input:
1. design matrix A of observation equations;
2. observation vector y;
3. cofactor matrices Qy, k =0, ..., p;
4. initial (co)variances o = o0 = [a?, e a,(,)]T;
5. small value for €;
begin
check for presence of gross errors in observations;
set iteration counter i = 0;
begin
evaluate matrix Qy = Qo + Zlf:l o Ok
calculate N and [ from (17) and (18);
solve for a new ¢ from equations N6 = [
i <i+1;
update vector ol « &
while |o? — ol ”Q’l > € repeat;
end G

obtain & and its covariance matrix Q5 = N1,
end

Fig. 1. Symbolic algorithm for implementation of least-
squares variance component estimation in terms of linear
model of observation equations (A model); o' is the vector of
(co)variance components estimated in iteration i.

strategies look as follows: In the first way, we obtain
the factors f and f5, therefore 9, = f1><01 01+ fzx
o7 Q> where fl = fz = 1 and in the second way we
estimate the components o1 and o7, therefore Q, =
61x Q1+ 62xQs.

4 Properties of Proposed Method

Since we have obtained the least-squares (co)variance
estimators based on a model of observation equations,
see (3), the following features can easily be estab-
lished:

4.1 Unification of Methods

To obtain the weighted least-squares solutions, no
assumption on the distribution of vh(r tT) is required.
Also, we know without any additional derivation that
the estimators are unbiased. This property is inde-
pendent of the distribution of the observable vector
vh(s tT7). This makes the LS-VCE method more flex-
ible as we can now use a class of weight matrices as
Woh = DT (W, ® W;) D where W, is an arbitrary pos-
itive definite matrix and D the duplication matrix.

In a special case where one takes the weight matrix
as the inverse of the covariance matrix, i.e. Wy, =
Qv_hl, one can simply obtain the minimum variance
estimators. Therefore, LS-VCE is capable of unifying
many of the existing VCE methods such as minimum
norm quadratic unbiased estimator (MINQUE) (see
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Rao, 1971, Rao and Kleffe, 1988, Sjoberg, 1983), best
invariant quadratic unbiased estimator (BIQUE) (see
Caspary, 1987, Koch, 1978, 1999, Schaffrin, 1983),
and restricted maximum likelihood (REML) estimator
(see Koch, 1986).

4.2 Similarity with Standard LS

LS-VCE has a similar insightful geometric interpreta-
tion as the standard least-squares. Properties of the nor-
mal matrix, estimability of (co)variance components,
and the orthogonal projectors can easily be established.
Also, in an analogous way to the functional model in
which one deals with redundancy b = m —n, one
can define the redundancy (or here the degrees of free-
dom df) in the stochastic model. From (4) it follows
that df = b(b;' D _ p, when the design matrix Ay
of the stochastic model is assumed to be of full rank,
and with p, as before, being the number of unknown
(co)variances components. This implies that the maxi-
mum number of estimable (co)variance components is

= b+ , which leads to df = 0 (see also Xu et al.,

2
2007).

4.3 Covariance Matrix of Estimators

Since the weighted least-squares estimators are in
a linear form of the observables y . applying the
error propagation law to ¢ = N _IA\{thhyvh
automatically gives us the covariance matrix of the
estimated (co)variance components, namely Qs =
N~'MN~-! where the p x p matrix M is given
as my; = 2tr(BTQkBW,QIW,BTQZBWIQ,W,) =
2r(Qk WP QWP QW P-Q,WPZ). This equa-
tion can therefore provide us with the precision of the
estimators. This is in fact an important feature of the
least-squares variance component estimation. In case of
minimum variance estimators (W = «/12 Qy_l), one can

simply show that M = N, and therefore Qs = N .

4.4 Measures of Inconsistency

Since the approach is based on the least-squares princi-
ple, parts of the standard quality-control theory can be
applied to the model in (3). One can in particular apply
the idea of hypotheses testing to the stochastic model.
For example, one can deal with the w-test statistic and
the quadratic form of the residuals in the stochastic
model. As an important measure of any least-squares
solution, one can compute the quadratic form of the
residuals. This also holds true for the LS-VCE. The
quadratic form of the residuals is then given as

RSN UE B B
egthhlevh = 2(€Tlee)2 —I"N71, (19)

in which we assumed Qy = 0. One can also obtain the
w-test statistic to identify the proper noise components

2717

of the stochastic model. Further discussion on this
topic is beyond the scope of the present contribu-
tion. For more information we refer to Amiri-Simkooei
(2007).

4.5 Nonlinear Stochastic Model

LS-VCE has the capability of applying to a nonlin-
ear (co)variance component model, namely Q, =
Q(o0). To overcome the nonlinearity, one can expand
the stochastic model into a Taylor series, for which one
needs the initial values of the unknown vector o, namely
0", When expanded into Taylor series, the covariance
matrix can be written as Oy = Q(o) = Qo +
Z,’:zl ok Qk. We cannow apply the LS-VCE to estimate
o. The estimated & can then be considered as a new
update for o° and the same procedure can be repeated.
We can iterate until the estimated (co)variance compo-
nents do not change by further iterations. The applied
iteration is the Gauss-Newton iteration which has a lin-
ear rate of convergence (see Teunissen, 1990).

4.6 Prior Information

In some cases, we may have prior information about
the (co)variance components. Such information can be
provided by equipment manufacturers or from a pre-
vious process. Let us assume that this information can
be expressed as E{o)} = o; D{oy} = Qq,, which
means that the (co)variance components o, are earlier
estimators available with the covariance matrix Q.
One important feature of the LS-VCE is the possibil-
ity of incorporating such prior information with the
observables vh(s t7). Without additional derivations,
one can obtain the least-squares (co)variance estima-
torsas o = (N + Q;()l)_l(l + Q;()loo). Note that the
covariance matrix of these estimators is simply given
as 05 = (N + Q) 7",

4.7 Robust Estimation

Since we estimated the (co)variance components on
the basis of a linear model of observation equations,
we can think of robust estimation methods rather than
the least-squares. One can in particular think of an
Li-norm minimization problem. The usual method
for implementation of the Li-norm adjustment leads
to solving a linear programming problem (see e.g.
Amiri-Simkooei, 2003). This may be an important
alternative if one wants to be guarded against misspec-
ifications in the functional part of the model.

S Simple Examples

Example 1 (Minimum variance estimator). As a sim-
ple application of LS-VCE, assume that there is
only one variance component in the stochastic model,
namely Q, = o2 Q. If our original observables y are
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normally distributed, it follows with (17) and (18) from
& = N~ that

o7 0 005
a1 ~1plpp-lply’ (20)
ztr(QQy PrQ0Qy Py)
Using 0, = 20, Pj-P/i- = P/i-, and tr(Pj-) =
rank(Pi—) = m —n = b, the preceding equation, its
mean, and its variance simplify to
5T H—13 4
6= 9 ¢ Y=o DY = T
m—n m—n
(2D
respectively. These are the well-known results for the
estimator of the variance of unit weight. This estima-
tor can thus be obtained from the least-squares residu-
als without iteration. This estimator is unbiased and of
minimum variance. The variance of the estimator was
simply obtained by D{6%} = N~! = ,i‘i |
Example 2 (Weighted LS estimator). To see animpor-
tant application of the weighted LS-VCE, we derive
the empirical autocovariance function in a time series
(e.g. to estimate the time correlation of a time series).
For simplicity we assume that (1) we measure a func-
tionally known quantity (e.g. a zero baseline measured
by GPS receivers), and (2) the cofactor matrices are
side-diagonal with equal values which implies that
the covariance between observations i and j is only
a function of time-lag t = |j —i|,1.e. 0;; = 07.
The covariance matrix can thus be written as a linear
combination of m cofactor matrices as

m—1

Qy =01+ 0:0x, (22)

=1

where O, = Y /" c,'cl-T_H + izl T=1,0m —
1, with ¢; the canonical unit vector, are some cofactor
matrices and o2 is the unknown variance of the noise
process.

We can now apply the weighted least-squares
approach to estimate the (co)variance components.
One particular choice of the weight matrix W is the
unit matrix, W = [. Since the design matrix A
is empty, it follows that Pj- = [I. To estimate the
(co)variance components & one needs to obtain N and
[ from (15) and (16), respectively. One can show that
the (co)variance components o, are estimated as

m—T1 A A

A L Dici €€tz

o, = = s
nez m-—rt

=0,1,...m—1,

(23)
where é; is the ith least-squares residual, 6, = &7 is
the variance, and 6, 7 = 1, ..., m — 1 are the covari-
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ances. One can also derive the covariance matrix of
these estimators using Qs = N"'MN~1. 1

6 Concluding Remarks

There are various VCE formulas based on optimality
properties as unbiasedness, minimum variance, min-
imum norm, and maximum likelihood. In this paper
we introduced the method of least-squares for esti-
mating the stochastic model for which any symmetric
and positive-definite weight matrix can be used. The
method is easily understood and very flexible. It can
be used for estimation of both variance and covari-
ance components in the A-model and the B-model,
both for linear and nonlinear stochastic models. Since
the method is based on the least-squares principle, we
know without any additional derivation that the esti-
mators are unbiased. One advantage of this technique
over other methods of VCE is that the weighted least-
squares solution can be obtained without any supposi-
tion regarding the distribution of the data. This holds
true also for the property of unbiasedness of the esti-
mators. We then simply presented the minimum vari-
ance estimators by taking the weight matrix as the
inverse of the covariance matrix of observables.

Since we formulated the LS-VCE based on a linear
model of observation equations, the proposed method
has special and unique features. LS-VCE allows one to
apply the existing body of knowledge of least-squares
theory to the problem of (co)variance component esti-
mation. With this method, one can (1) obtain mea-
sures of discrepancies in the stochastic model, (2)
determine the covariance matrix of the (co)variance
components, (3) obtain the minimum variance esti-
mator of (co)variance components by choosing the
weight matrix as the inverse of the covariance matrix,
(4) take the a-priori information on the (co)variance
component into account, (5) solve for a nonlinear
(co)variance component model, (6) apply the idea
of robust estimation to (co)variance components, (7)
evaluate the estimability of the (co)variance compo-
nents, and (8) avoid the problem of obtaining negative
variance components.
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