DIFFRACTION STUDY ON THE THERMAL STABILITY OF Ti₃SiC₂/TiC/TiSi₂ COMPOSITES IN VACUUM # W.K. Pang¹, I.M. Low¹, B.H. O'Connor¹, A.J. Studer², V.K. Peterson² and J.-P. Palmquist³ Centre for Materials Research, Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth WA, Australia. The Bragg Institute, ANSTO, PMB 1, Menai, NSW 2234, Australia. Kanthal AB, Heating Systems R&D, P.O. Box 502, SE-734 27 Hallstahammar, Sweden. #### **ABSTRACT** Titanium silicon carbide (Ti₃SiC₂) possesses a unique combination of properties of both metals and ceramics, for it is thermally shock resistant, thermally and electrically conductive, damage tolerant, lightweight, highly oxidation resistant, elastically stiff, and mechanically machinable. In this paper, the effect of high vacuum annealing on the phase stability and phase transitions of Ti₃SiC₂/TiC/TiSi₂ composites at up to 1550°C was studied using *in-situ* neutron diffraction. The role of TiC and TiSi₂ on the thermal stability of Ti₃SiC₂ during vacuum annealing is discussed. TiC reacts with TiSi₂ between 1400-1450°C to form Ti₃SiC₂. Above 1400°C, decomposition of Ti₃SiC₂ into TiC commenced and the rate increased with increased temperature and dwell time. Furthermore, the activation energy for the formation and decomposition of Ti₃SiC₂ was determined. **KEYWORDS:** Ti₃SiC₂, thermal stability, *in-situ* neutron diffraction. #### INTRODUCTION Many attempts have been made to produce new materials with a unique combination of the ductility, conductivity, and machinability of metals, and with the high strength, high modulus, high thermal stability, and superior high-temperature-oxidation resistance of ceramics. Ternary carbides, such as Ti₃SiC₂ and Ti₃AlC₂, are hexagonal layered compounds belonging to a family with the general formula: $M_{n+1}AX_n$, where n is 1, 2 or 3, M is an early transition metal, A is an A-group (mainly group III-A and IV-A) element, and X is either carbon or nitrogen [1-12]. Ti₃SiC₂ has high toughness, high Young's modulus, low hardness, and moderate flexural strength. Furthermore, it exhibits plasticity at high temperature, good electrical conductivity, high thermal shock resistance, and good machinability [3, 5, 7, 9, 11, 13]. The salient combination of properties makes ternary carbides ideal candidate materials for high-temperature applications. The thermal stability of Ti₃SiC₂ in vacuum has attracted little attention [10, 14-16]. Emmerlich et al. [14] investigated the thermal stability of Ti₃SiC₂ thin films and reported that the rapid decomposition of Ti₃SiC₂, associated with Si out-diffusion and de-twining of as-relaxed Ti₃C₂ slabs into oriented TiC_{0.67} layers, is observed when annealing at 1100-1200°C. Radhakrishnan et al. [16] reported similar results for the decomposition of Ti₃SiC₂ in vacuum and stated that Ti₃SiC₂ did not dissociate up to 1800°C but was found susceptible to carburization and oxidation. Oo et al. [15] studied the thermal stability of Ti₃SiC₂ in argon with low oxygen partial pressure and reported that Ti₃SiC₂ decomposed into TiC and Ti₅Si₃C_x. Sun et al. [10] reported the occurrence of transformation between α -and β - Ti₃SiC₂, and that α -Ti₃SiC₂ is more stable than β - Ti₃SiC₂. It is difficult to synthesize Ti_3SiC_2 with 100 % purity due to its high propensity to dissociate into TiC. As indicated in the Ti-Si-C phase diagram (Fig. 1), the equilibrium state of a single phase of Ti_3SiC_2 only occupies a small area which is intersected by the boundaries of TiC, SiC, and TiSi₂. In this study, two Maxthal Ti_3SiC_2 samples with different amounts of TiC and $TiSi_2$ were used. The role of TiC and $TiSi_2$ on the thermal stability and phase transition of Ti_3SiC_2 was investigated using in-situ high-temperature neutron diffraction. Furthermore, synchrotron radiation diffraction (SRD) was used to characterize the surface composition in as-received and vacuum-annealed samples. #### EXPERIMENTAL SAMPLE PREPARATION Maxthal Ti₃SiC₂ samples (15 mm in diameter and 50 mm in length) were fabricated using a proprietary method developed by Kanthal AB, Sweden. The density of these samples was ~4.47 g/cm³ with ~1 % porosity. Two Maxthal Ti₃SiC₂ samples (A and B) with different amounts of TiC and TiSi₂ were used. The contents of TiC and TiSi₂ present in Samples A and B were 34.8 and 7.0 mol %, and 50.8 and 9.9 mol %, respectively. #### In-situ neutron diffraction The collection of high-temperature *in-situ* neutron diffraction data was conducted using Wombat (the high-intensity neutron powder diffractometer) at the OPAL source in Australia. Data were collected using neutrons with incident wavelength of $\lambda = \sim 1.660$ Å from 15 to 135° 20 at a separation of 0.125°, with the use of the oscillating tertiary collimator. Rietica 1.7.7 was used for phase identification and Rietveld refinement. The optimized parameters during refinement were background coefficients, zero-shift error, peak shape parameters, cell parameters, and anisotropic thermal factors. The residual values of the refinement, statistical reliability factor of Bragg (R_B), R-weighted pattern (R_{wp}), R-expected (R_{exp}), and the goodness-of-fit (χ^2), were evaluated. In Rietica, χ^2 is defined as the square of the ratio of Rwp to Rexp. Solid cylindrical bars with dimensions 15 mm (Diameter) x 20 mm (Height) cut from as-received samples were used in this study. The temperature of the sample environment was controlled by a closed cylindrical niobium vacuum furnace (10 -10 torr). The sample was held by vanadium wire and heated to 1550°C according to the heating protocol shown in Fig. 2. Diffraction patterns were collected every minute. Fig. 1: Ti-Si-C ternary phase diagram at isothermal section at 1250 °C [17]. Fig. 2: Heating protocol for in-situ high-temperature neutron diffraction experiment. #### Synchrotron radiation diffraction (GISRD) The diffraction patterns were collected using BIGDIFF (the synchrotron powder diffractometer) at the Australian Synchrotron Research Program Facility (ANBF), beam-line BL-20B, at the Photon Factory, KEK, Tsukuba, Japan. The diffractograms were recorded from 3° to 145° 20 with a step size of 0.01°. The computer program "DIFFRAplus EVA" was used to identify the crystalline phases present. A diamond blade was used to cut thin slices (\sim 1 mm thick) from the as-received and as-annealed samples. The slices were cleaned ultra-sonically prior to SRD experiment. The compositional information was measured using flat-plate SRD and image plates were used to record the diffraction patterns at 3.0° with a fixed wavelength of 0.7Å. #### RESULTS AND DISCUSSION #### Phase Transition during Vacuum Annealing Results in Figures 3a and 3b show the phase transition of Sample A and Sample B annealed in vacuum at temperature up to 1550°C. For Sample A, $TiSi_2$ reacted with TiC during vacuum annealing to form Ti_3SiC_2 at temperatures above 1300°C as follows: $$TiSi_{2(s)} + 2TiC_{(s)} \rightarrow Ti_{3}SiC_{2(s)} + Si_{(g)}$$ (1) This reaction resulted in the increased amounts of Ti_3SiC_2 . By 1500°C, $TiSi_2$ was fully consumed to form Ti_3SiC_2 , and at the same time, a pronounced decrease in Ti_3SiC_2 content from 65.4 ± 1.22 to 58.3 ± 1.22 mol % was observed. The reduction of Ti_3SiC_2 with a complementary increase in TiC suggests that the decomposition of Ti_3SiC_2 into TiC occurs (*via* the sublimation of Ti and Si gaseous) as follows: $$Ti_3SiC_{2(s)} \rightarrow 2TiC_{(s)} + Ti_{(g)} + Si_{(g)}$$ (2) On the other hand, Sample B, consisting of more TiC than Sample A, showed better stability in vacuum. Here, Ti_3SiC_2 also formed from the reaction of $TiSi_2$ and TiC at $1400\text{-}1500^{\circ}C$. Once $TiSi_2$ was depleted, there was only a small decrease in Ti_3SiC_2 content from 1500 to 1500°C. However, within experimental and/or calculation errors, the Ti_3SiC_2 decomposition was not clearly observed, which implies better thermal stability for Sample B in vacuum at up to $1550^{\circ}C$. A comparison of phase abundances between Samples A and B before and after vacuum annealing is summarized in Table 1. It shows that the consummation of $TiSi_2$ did not contribute to the increase of Ti_3SiC_2 in Sample A, but did increase the amount of Ti_3SiC_2 in Sample B. In other words, Sample A underwent more decomposition, even though the relative molar fraction of Ti_3SiC_2 content remained 58.3 ± 1.19 mol%. Figures 4 and 5 show the isothermal phase transition at 1400, 1450, 1500, and 1550 °C for Sample A and Sample B, respectively. The results show that phase abundance varies as a linear function of dwell time (< 200 minutes). The slope of ${\rm Ti}_3{\rm SiC}_2$ regression lines can be treated as the rate for either decomposition (negative) or reformation (positive). It is noted that the decomposition rate increases with temperature. Table 1: Phase abundances before and after vacuum treatment for samples A and B. | Phase abundance (rel. mol%) | | | | | | |----------------------------------|---------------|---------------|-----------|-----------|--| | | Sample A | | Sample B | | | | | Before | After | Before | After | | | Ti ₃ SiC ₂ | 58.2±1.48 | 58.3±1.19 | 39.3±1.46 | 48.2±1.22 | | | TiC | 34.8 ± 1.40 | 41.8 ± 1.41 | 50.8±1.34 | 51.8±1.36 | | | TiSi ₂ | 7.0 ± 1.28 | 0 | 9.9±1.30 | 0 | | Fig. 3: Phase abundance as a function of temperature during vacuum annealing for (a) Sample A and (b) Sample B. Errors bars indicate two estimated standard deviations $\pm 2\sigma$. Fig. 4: Phase abundance as a function of dwell time at (a) 1400, (b) 1450, (c) 1500, and (d) 1550 $^{\circ}$ C for sample A. Errors bars indicate two estimated standard deviations $\pm 2\sigma$. Fig. 5: Phase abundance as a function of dwell time at (a) 1400, (b) 1450, (c) 1500, and (d) 1550°C for sample B. Note that sections of data in (a) were not obtained due to equipment malfunction. Errors bars indicate two estimated standard deviations $\pm 2\sigma$. Fig. 6: Comparison of surface composition in (a) Sample A and (b) Sample B before and after vacuum annealing. (Legends: $X: Ti_3SiC_2$) For Sample A, the plots show slopes with positive values at 1400 and 1450°C and negative at 1500 and 1550°C, consistent with reformation and decomposition of Ti_3SiC_2 occurring at these temperatures, respectively. Assuming that the decomposition of Ti_3SiC_2 commenced at $\leq\!1400^\circ C$, the increased Ti_3SiC_2 content for Sample B implies that the reformation and decomposition of Ti_3SiC_2 appeared rapidly and that the reaction rate for the decomposition was smaller. For Sample B, only the formation of Ti_3SiC_2 was clearly observed. At 1500 and 1550°C, TiC and Ti_3SiC_2 were in an equilibrium state, no decomposition or reformation was observed. The ratio of TiC: $Ti_3SiC_2 = \sim 1:1$ may infer that the concentration of TiC affects the rate of Ti_3SiC_2 decomposition and a compound with 50 mol% Ti_3SiC_2 and 50 mol% TiC may be stable in vacuum up to 1550°C. ## Comparison of surface composition in as-received and as-annealed Samples A and B Fig. 6 shows the comparison of near-surface composition (diffraction pattern) in Samples A and B before and after vacuum annealing up to 1550°C. Certain unknown peaks were observed in the annealed samples. These unknown peaks cannot be identified by the "DIFFRA" EVA" program, which may be not reported in the current ICSD or PDF database system. This suggests that the thermal dissociation process is more complex than anticipated. More future works will be required to dig out the truth of the thermal dissociation of Ti₃SiC₂ composites. #### **CONCLUSIONS** A comparative study on the thermal stability of Ti₃SiC₂ with various contents of TiC and TiSi₂ was conducted using *in-situ* neutron diffraction. When annealed in vacuum at an elevated temperature, TiC and TiSi₂ reacted to form Ti₃SiC₂, but at the same time Ti₃SiC₂ decomposed into TiC *via* the sublimation of Ti and Si. We find here that the reformation of Ti₃SiC₂ is more rapid than its decomposition and that Ti₃SiC₂ with a higher content of TiC and TiSi₂ is less susceptible to thermal decomposition in vacuum at up to 1550°C. SRD results show that the thermal dissociation process of Ti₃SiC₂ is much more complicated than expected. More work is required to understand the mechanism of phase dissociation in Ti₃SiC₂. #### ACKNOWLEDGEMENTS This work formed a part of a much broader project on the thermal stability of ternary carbides which is funded by an ARC Discovery-Project grant (DP0664586) and an ARC Linkage-International grant (LX0774743) for one of the authors (IML). The collection of diffraction data was conducted at the OPAL research reactor in ANSTO with financial support from AINSE (08/329). The collection of SRD data was undertaken on the Australian National Beamline Facility at the Photon Factory in Japan, operated by the Australian Synchrotron, Victoria, Australia. We acknowledge the Linkage Infrastructure, Equipment and Facilities Program of the Australian Research Council for financial support (proposal number LE0989759) and the High Energy Accelerator Research Organisation (KEK) in Tsukuba, Japan, for operations support. #### REFERENCES - [1] M. W. Barsoum, *Prog. Solid State Chem.* **28**, 201 (2000). - [2] M. W. Barsoum and T. El-Raghy, Am. Sci. 89, 334 (2001). - [3] T. El-Raghy, M. W. Barsoum, A. Zavaliangos and S. R. Kalidindi, *J. Am. Ceram. Soc.* **82**, 2855 (1999). - [4] J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J. M. Schneider, H. Högberg and L. Hultman, *Acta Mater*. **55**, 1479 (2007). - [5] N. F. Gao, Y. Miyamoto and D. Zhang, *Mater. Lett.* **55**, 61(2002). - [6] E. H. Kisi, J. A. A. Crossley, S. Myhra and M. W. Barsoum, J. Phys. Chem. Solids 59, 1437 (1998). - [7] I. M. Low, J. Eur. Ceram. Soc. 18, 709 (1998). - [8] I. M. Low, E. Wren, K. E. Prince and A. Atanacio, *Mater. Sci. Eng. A* **466**, 140 (2007). - [9] M. Radovic, M. W. Barsoum, T. El-Raghy, J. Seidensticker and S. Wiederhorn, *Acta Mater.* **48**, 453 (2000). - [10] Z. Sun, J. Zhou, D. Music, R. Ahuja and J. M. Schneider, *Scripta Mater*. 54 (2006) 105. - [11] B. J. Kooi, R. J. Poppen, N. J. M. Carvalho, J. T. M. De Hosson and M. W. Barsoum, *Acta Mater.* **51**, 2859 (2003). - [12] C. Racault, F. Langlais and R. Naslain, *J. Mater. Sci.* **29**, 3384 (1994). - [13] T. El-Raghy, P. Blau and M. W. Barsoum, *Wear* **238**, 125 (2000). - [14] J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J. M. Schneider, H. Hoberg and L. Hultman, *Acta Mater*. 55, 1479 (2007). - [15] Z. Oo, I. M. Low and B. H. O'Connor, *Phys. B Cond. Matt.* 385-386, 499 (2006). - [16] R. Radhakrishnan, J. J. Williams and M. Akinc, *J. Alloys Compd.* **285**, 85 (1999). - [17] M.I. Avazov and T.A. Stenashkina, *Neorgani. Mater. Izv. Akad.Nauk SSSR* 11, 1223 (1965).