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Abstract

This paper reviews the deviation of vertical and its
use in the reduction of terrestrial survey data such
as directions, azimuths, zenith angles and slope
distances. The deviations of the vertical over
Australia will change by an average of 6.8” due to
the implementation of the Geocentric Datum of
Australia. Therefore, for most applications, the
deviation of the vertical may no longer be
neglected in survey computations and
adjustments. With the release of the AUSGeo0id98,
absolute deviations of the vertical at the geoid and
with respect to the GRS80 ellipsoid are now
available for these purposes. The improvements
made when using deviations of the vertical are
demonstrated for several worked examples. The
exception is that the deviation of the vertical
should not be applied when computing height
differences from zenith angles and slope distances
for use on the Australian Height Datum (AHD).

1. INTRODUCTION

Almost all terrestrial survey measurements, with the
exception of spatial distances, are made with respect to the
Earth’s gravity vector. This is because a spirit bubble or
electronic level sensor is usually used to level survey
instruments and targets. Accordingly, the measurements
are nominally oriented with respect to the level
(equipotential) surfaces and plumblines of the Earth’s
gravity field, which undulate and are not parallel in a
purely geometrical sense. This renders them impractical
for survey computations and the representation of
geographical positions. Therefore, account must be made
for the orientation of a surveying instrument in the Earth’s
gravity field, so that the measurements are of practical use.
This is achieved in practice through the reduction of
survey measurements to a particular reference ellipsoid.

Historically, geodesists have introduced an ellipsoid that
is a close fit to the geoid (the level surface that closely
coincides with mean sea level) over the region to be
surveyed and mapped. As the level surfaces and
plumblines are orthogonal by definition, this is equivalent
to closely aligning the ellipsoidal normals with the
plumblines over the area of interest. This was the case for
the Australian National Spheroid (ANS), which was
oriented to give a best fit to the plumblines over Australia
(Bomford, 1967). The result was that survey
measurements made with respect to the gravity vector in
Australia could be assumed to have been oriented with
respect to the ANS, thereby simplifying most survey
reductions and computations on the Australian Geodetic
Datum (AGD). For most applications, the separation
between the geoid and ANS and the angular differences
between the plumbline and the ANS ellipsoidal normal
could usually be neglected.

With the adoption of the Geocentric Datum of Australia or
GDA94 (eg. Featherstone, 1996), these simplifying
assumptions will not necessarily remain valid
(Featherstone, 1997). This is because the geocentric
GRS80 ellipsoid (Moritz, 1980), used with the GDA94, is
a best fit to the level surfaces and plumblines of the Earth’s
gravity field on a global scale, and does not provide a best
fit over Australia. Importantly, survey measurements
made with respect to the gravity vector do not change with
a change of datum (Heiskanen and Moritz, 1967),
notwithstanding temporal variations due to geophysical
phenomena. Terrestrial surveys conducted on a geocentric
datum are more likely to require that the separation
between the geoid and ellipsoid and the angular differences
between the plumbline and the ellipsoidal normal are taken
into account during the reduction of survey data. This
also applies to the adjustment of existing terrestrial
geodetic networks onto a geocentric datum, such as those
undertaken by national and State/Territory mapping
agencies to implement the GDA94.

This paper reviews two of the various definitions of the
deviation of the vertical and illustrates the need for its
inclusion, and the consequences of its neglect, in terrestrial


https://core.ac.uk/display/195659285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

surveying. Importantly, the change to a geocentric datum
and ellipsoid from a regionally oriented datum and
ellipsoid represents a substantial change in concept that
has implications on the reduction and adjustment of
terrestrial survey data. Since the deviation of the vertical
in Australia will change by an average of 6.8” upon the
implementation of the geocentric GRS80 ellipsoid, the
corrections for its effect can no longer be ignored.
Fortunately, however, the new national geoid model,
AUSGe0id98 (Johnston and Featherstone, 1998), includes
a model of the deviations of the vertical with respect to the
GRS80 ellipsoid. This can be used to apply corrections
to terrestrial survey data using the formulae summarised in
this paper. Based on the worked examples in this paper, it
is recommended that corrections for deviations of the
vertical are routinely applied to all terrestrial surveys on
the GDAY4.

2. THE DEVIATION OF THE VERTICAL

2.1 Terminology

In this paper, the term “deviation of the vertical’ is used
(eg. Fryer, 1971; Cooper, 1987; Bomford, 1980), whereas
some readers may be more familiar with the synonymous
term “deflection of the vertical’ (eg. Heiskanen and Moritz,
1967; Vanitek and Krakiwsky, 1986; Torge, 1991). The
term “deviation of the vertical” will be used here, since it
is considered to more accurately describe what is being
discussed, whereas the term deflection of the vertical could
be misinterpreted as including the curvature of the
plumbline (defined later). The plumbline is a field line of
the Earth’s gravity field that is curved because it always
orthogonal to the level surfaces, which themselves are
curved.

Ellipsoid Normal
Plumbline \g

Gravity Vector

Ellipsoid

Figure 1. The deviation of the vertical

In Figure 1, the deviation of the vertical (8) is the angular
difference between the direction of the gravity vector (g), or
plumbline at a point, and the ellipsoidal normal through
the same point for a particular ellipsoid. Since the
plumblines are orthogonal to the level surfaces, the
deviation of the vertical effectively gives a measure of the
gradient of the level surfaces (including the geoid) with
respect to a particular ellipsoid. The deviation of the
vertical is classified as absolute when it refers to a
geocentric ellipsoid and relative when it refers to a local
ellipsoid. Depending on the orientation - as well as the
size and shape - of the ellipsoid used, the deviation of the
vertical can reach 20” in lowland regions and up to 70” in
regions of rugged terrain (Bomford, 1980). In Australia,
the largest deviation of the vertical with respect to the
GRS80 ellipsoid is 50.6” (cf. Table 1). Previously, the

largest measured deviation of the vertical was
approximately 30” with respect to the ANS (Fryer, 1971).

The deviation of the vertical, which is a vector quantity, is
usually decomposed into two mutually perpendicular
components: a north-south or meridional component (&),
which is reckoned positive northward (i.e. the plumbline
intersects the celestial sphere north of the ellipsoidal
normal), and an east-west or prime vertical component (),
which is reckoned positive eastward (i.e. the plumbline
intersects the celestial sphere east of the ellipsoidal
normal). In other words, the deviation components are
positive if the direction of the gravity vector points further
south and further west than the corresponding ellipsoidal
normal (Vanicek and Krakiwsky, 1986), or the level
surface is rising to the south or west, respectively, with
respect to the ellipsoid (Bomford, 1980). Taking Figure 1
as an example and assuming that left is west, right is east
and 6 = n, then the gravity vector points east, the
plumbline intersects the celestial sphere in the west and
the level surface rises to the east; therefore, n takes a
negative value.

These two components reduce to the total deviation of the
vertical (8) in Figure 1 according to

0 = &+n’ @
The component of the deviation of the vertical can be

resolved along any geodetic azimuth (a) by (Bomford,
1980; Vanitek and Krakiwsky, 1986)

€ = cosa + nsina 2

which is most often used in the reduction of survey
measurements (described later).

It is now important to distinguish the exact point at which
the deviation of the vertical applies, since it varies
depending upon position. The direction of the gravity
vector and thus the orientation of a survey instrument or
target, levelled using spirit bubbles or electronic level
sensors, varies along the (curved) plumbline. The
orientation of a survey instrument or target also varies from
location to location because the plumblines curve by
different amounts in different places. The level surfaces and
plumblines are curved because of the mass distributions
inside the Earth’s surface that generate the gravity field.
Accordingly, the orientation of survey instruments and
targets are always slightly different because of variations in
the gravity field and must thus be reduced to a consistent
orientation. It is acknowledged that there are several
subtly different definitions of the deviation of the vertical
(eg. Torge, 1991; Jekeli, 1999), but only two cases
relevant to surveying in Australia will be considered here.

2.2 Deviation of the Vertical at the Geoid

The deviation of the vertical at the geoid (6) is defined by
Pizzetti (Torge, 1991) as the angular difference between the
direction of the gravity vector and the ellipsoidal normal
through the same point at the geoid. This can be an
absolute quantity when using a geocentric ellipsoid (such
as the newly adopted GRS80) or a relative quantity when



using a locally oriented ellipsoid (such as the previous
ANS). However, the deviation of the vertical at the geoid
cannot be observed directly on land because of the presence
of the Earth’s topography. Therefore, deviations of the
vertical that are observed at the Earth’s surface (described
later) have to be reduced to the geoid or vice versa by
accounting for the curvature of the plumbline (also
described later), which is notoriously problematic.

As an alternative, absolute deviations of the vertical with
respect to a geocentric ellipsoid can be computed from
gravity measurements using VVening-Meinesz’s formula
(eg. Heiskanen and Moritz, 1967; Vanicek and Krakiwsky,
1986). Nowadays, however, it is more convenient to
estimate the deviation of the vertical at the geoid from the
gradient of a gravimetric geoid model, which has been
previously computed with respect to a geocentric ellipsoid.
This determination of deviations of the vertical can be
conceptualised as the reverse process of astro-geodetic
levelling or astro-geodetic geoid determination (eg.
Bomford, 1980; Heiskanen and Moritz, 1967), noting that
it uses absolute deviations of the vertical. This use of a
gravimetric geoid model is considered more convenient
because many such models have already been computed for
the transformation of GPS-derived ellipsoidal heights to
orthometric heights.
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where the subscript G is used to distinguish these
components of the deviation of the vertical at the geoid
(this notation which will be maintained throughout this
paper), p is the radius of curvature of the ellipsoid in the
meridian [north-south] at the point of interest, v is the
radius of curvature of the ellipsoid in the prime vertical
[east-west] at the point of interest, @ is the geodetic
latitude, and AN refers to the change in the gravimetric-
geoid-geocentric-ellipsoid separation between grid nodes of
latitude (A@) and longitude (AM).

The two radii of curvature of the ellipsoid are computed
from
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where the first numerical eccentricity (e) and the flattening
(f) of the ellipsoid are given by
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The approach is as follows: given a regular grid of geoid- a?
geocentrlc-elllpso_ld separz_itlons, the meridional [north- a-b)
south] () and prime vertical [east-west] (ng) components f = a (8)
of the absolute deviation of the vertical at the geoid can be
estimated (eg. Torge, 1991) by
ol
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Figure 2. Image of the magnitude of the north-south
component of the deviation of the vertical at the geoid (§g),
computed from the AUSGeoid98 (units in arc seconds).

Figure 3. Image of the magnitude of the east-west
component of the deviation of the vertical at the geoid
(ng), computed from the AUSGeo0id98 (units in arc seconds)



and the semi-major and semi-minor axes of the ellipsoid
are denoted by a and b, respectively. The GRS80
ellipsoid (Moritz, 1980) used for the GDA94 is based on
the values a = 6,378,137 m and the flattening f =
1/298.257 222 101. For the GRS80 ellipsoid, the
following values for e2 and b apply:

b = a(l-f) )
b = 6,356,752.314 m
e = 0.006 694 380 086

The numerical values for the GRS80 ellipsoid will be used
throughout this paper.

The above determination of absolute deviations of the
vertical from a gravimetric geoid model has already been
applied to the AUSGe0id98 geoid model of Australia
(Johnston and Featherstone, 1998). The east-west and
north-south components of the deviation of the vertical at
the geoid with respect to the GRS80 ellipsoid are
available, together with Windows-based interpolation
software, from the Australian Surveying and Land
Information Group’s world-wide web pages:
http://www.auslig.gov.au/geodesy/ausgeoid/geoid.htm.
These values can be bi-cubically interpolated in near-real-
time over the Internet, also at the above address. Figures
2 and 3 show the north-south and east-west components of
the deviation of the vertical over Australia, respectively, as
derived from the AUSGe0id98 using equations (3) and (4).
The images in Figures 2 and 3 only show the magnitude
of the deviations of the vertical. This is because the scale
of the maps and the 2’ by 2’ resolution of the
AUSGeoid98 prevents the presentation of deviation
vectors.

Table 1 shows the statistical properties of the deviations of
the vertical for the 1,638,000 node points of AUSGeoid98
(10°S < @ < 45°S; 108°E < A < 160°E). The maximum
deviation is at 119.033° E and -10.067° S (Java Trench);
on land, the largest value is 34.2" at 116.033°E and
31.733°S (near Perth).

Deviation max min mean std
north-south (&) 32.67 -48.11 -395 4.90
gast-west (ng) 28.84 -33.99 -298 4.09

total (6¢) 50.60 0.00 6.81 4.33

Table 1. Statistical properties of deviations of the vertical
at the geoid, computed from the AUSGeoid98 (units in arc
seconds)

It is interesting to note that the mean value of the total
deviation of the vertical (8) in Table 1 agrees well with
the value of 6 estimated by Featherstone (1997).
Likewise, the mean values of the east-west and north-south
deviation components in Table 1 agree reasonably well
with the estimates of the orientation of the AGD made by
Mather (1970).

Table 2 gives the geoid-GRS80-ellipsoid separations and
the two components of the deviations of the vertical (at the

geoid) as computed from AUSGe0id98 for the capital cities
of Australia and for Alice Springs. The listed values refer
to the GDA94 latitudes and longitudes shown. Brisbane
has the smallest total deviation and Alice Springs the
largest. All values are at least two times smaller than the
maximum values listed in Table 1.

City ® A Nm) & (") ne(")
Perth -32°00" 115°53' -32.163 +1.483-16.743
Darwin -12°29' 131°02' +51.511 -5.342 —6.282
Alice Spr —23°48' 133°53' +14.276 —16.957 —5.847
Adelaide -34°48' 138°37° +0.215 -4.408 -8.974
Melbourne -37°50' 145°10' +5.309 -6.160 —4.670
Hobart -42°55' 147°19' -3.497 -5.754 +6.571
Canberra -35°14' 149°09' +19.836 -4.804 —6.245
Sydney -33°53' 151°01' +22.828 —6.241 +1.976
Brishane -27°04' 152°57' +42.787 -5.149 +3.480

Table 2. Components of the deviations of the vertical at the
geoid (&g, Ng) and the geoid-ellipsoid separation (N)
computed from the AUSGeoid98, for each capital city in
Australia and Alice Springs

2.3 Deviation of the Vertical at the Earth’s
Surface

The deviation of the vertical at the surface of the Earth (B)
is defined by Helmert (Torge, 1991) as the angular
difference between the direction of the gravity vector and
the ellipsoidal normal through the same point at the
Earth’s surface. This can be an absolute quantity when
using a geocentric ellipsoid (such as the newly adopted
GRS80) or a relative quantity when using a locally
oriented ellipsoid (such as the previous ANS). The
deviation of the vertical at the surface of the Earth is of
more direct use to surveyors than the deviation of the
vertical at the geoid. This is because survey instruments
and targets are levelled on or close to the Earth’s surface
and are thus affected by the deviation of the vertical at this
point.

The deviation of the vertical at the Earth’s surface can be
computed simply by comparing astronomical and geodetic
coordinates at the same point on the Earth’s surface. The
corresponding deviation in the meridian is the difference
between astronomical latitude (@) and the geodetic latitude
(o) of the same point. Likewise, the deviation of the
vertical in the prime vertical is the difference, scaled for
meridional convergence, between astronomical longitude
(A\) and the geodetic longitude (A) of the same point.
These are given, respectively, by

&= P-0 (10)
Ne = (A=A)cos @ (11)

where the subscript S is used to distinguish these
components of the deviation of the vertical at the surface of
the Earth. This notation will be used throughout the
paper. In equations (10) and (11), it is assumed that the
minor axis of the ellipsoid is parallel to the mean spin axis
of the Earth’s rotation (cf. Bomford, 1980), which is the
case for the GDA and the AGD (Bomford, 1967).



The National Mapping Council (1986) and Fryer (1971)
published, in diagram form, measured surface deviations of
the vertical in relation to the previously used ANS. At
present, there are no listings or figures available to the
authors that give measured deviations of the vertical at the
Earth’s surface in relation to the GDA94 and the GRS80
ellipsoid. As stated, the deviations of the vertical at the
points of measurement (usually at or close to the Earth's
surface) should be used to reduce survey observations.
Therefore, it would be very useful to compare the
deviations of the vertical at the geoid as computed from
AUSGe0id98 with measured values. Such an evaluation
also requires the curvature of the plumbline (described
next) with respect to the GRS80 ellipsoidal normal to be
known. A direct comparison of measured values at the
surface with computed values at the geoid would give an
indication of the appropriateness of the deviations of the
vertical from the AUSGeo0id98 as approximations of the
deviation of the vertical at the Earth’s surface.

2.4 Curvature (Deflection) of the Plumbline

As stated, the deviation of the vertical changes with
position along the curved plumbline. Therefore, the
deviation of the vertical at the geoid (6;) does not
necessarily equal that at the Earth’s surface (65) and vice
versa. In order to relate these two quantities, the curvature
(or, more accurately, the deflection caused by the curvature)
of the plumbline between the geoid and Earth’s surface
(6659) is required. This quantity cannot be observed
directly because of the presence of the topography.
However, it can be estimated using a model of the Earth’s
gravity field within the topographic masses (eg. Papp and
Benedic, 2000) or by comparison of the deviations of the
vertical at the geoid, derived from a geoid model or
Vening-Meinesz’s integral, and measured deviations of the
vertical at the Earth’s surface (see above). However, the
latter approach is limited because the errors in the data are
most probably of the same size as the curvature of the
plumbline.

Alternatively, the curvature of the plumbline can be
estimated using an approximate formula (Vanicek and
Krakiwsky, 1986; Bomford, 1980). This is based on
normal gravity and thus only affects the north-south
deviation component (&¢y).

885 = 80g = 0.17" sin 2¢ H (12)

where the orthometric height H (in kilometres) is measured
along the plumbline between the geoid and surface of the
Earth. The evaluation of the actual curvature (deflection) of
the plumbline presents a very difficult task because
measurements cannot be made along the plumbline in the
topography. A crude estimate of the curvature of the
plumbline is deg5= 3.3” per (vertical) kilometre in rugged
terrain (Vanicek and Krakiwsky, 1986). Given the
relatively smooth terrain in Australia, the typical values in
Australia are probably less than 1”. However, this value
may be too optimistic in areas where steep geoid gradients
exist (cf. Figures 2 and 3). Bomford (1980) states that

until the actual curvature of the plumbline is known, the
above approximations are barely useful, and are thus
ignored. Nevertheless, it is essential to acknowledge their
existence.

3. THE USE OF DEVIATIONS OF THE
VERTICAL IN SURVEY REDUCTIONS AND
THE COMPUTATION OF HEIGHT
DIFFERENCES

Historically, the most influential use of the deviation of the

vertical led to the principle of isostasy, which is used to

describe the broad geophysical structure of the Earth’s
crust. The deviations of the vertical, observed as part of
the 1735-1744 Peruvian expedition to determine whether
an oblate or prolate ellipsoid approximated the figure of the

Earth, were shown by Bouguer to be smaller than

expected. These and subsequent measurements formed the

basis for the two models of isostatic compensation
developed by Airy-Heiskanen and Pratt-Heyford. These
models are analogous with Archimedes’s principle, where
the masses of mountains are buoyantly compensated either

by a thickening of the crust (Airy-Heiskanen model) or a

variation in the mass density of the crust (Pratt-Heyford

model). However, these two simplified models do not
always apply in practice because of the overriding
geophysical and mechanical properties of the Earth’s crust.

In terrestrial surveying, the deviation of the vertical has six

primary uses:

1. transformation between astronomical coordinates and
geodetic coordinates;

2. conversion between astronomic or gyro azimuths and
geodetic azimuths;

3. reduction of measured horizontal directions (and
angles) to the ellipsoid;

4. reduction of measured zenith angles to the ellipsoid;

5. reduction of slope electronic distance measurements
(EDM) to the ellipsoid using zenith angles; and

6. determination of height differences from zenith angles
and slope distances.

A reduction associated with item 5 is in the use of

ellipsoidal heights for the reduction of EDM distances to

the ellipsoid (cf. Featherstone, 1997), where large gradients

in the geoid-ellipsoid separation (equivalent to the

deviation of the vertical integrated over an EDM line)

become important.

3.1 Transformation of Coordinates

The deviations of the vertical allow the transformation
between astronomical (natural) coordinates (P, A),
observed with respect to the gravity vector, and the desired
geodetic coordinates (¢, A) on the ellipsoid and vice versa.
Rearranging equations (10) and (11), and adhering to the
same approximations, gives this coordinate transformation
as

= & - & (13)
A= A - s (14)
cos @



where the deviations of the vertical refer to the surface of
the Earth, since this is the point at which astronomic
coordinates are normally measured. If the deviations of the
vertical at the geoid are used in equations (13) and (14),
the limitation imposed by the curvature of the plumbline
should be noted. Following the recommendation of
Bomford (1980), the approximate formulae for the
curvature of the plumbline are ignored because they may
introduce more errors than they rectify. Therefore, it is
important to state in the documentation that accompanies
the survey data reduction if the deviations of the vertical at
the geoid have been used and that curvature of the
plumbline has been ignored.

Table 3 shows a worked example of the transformation of
astronomic coordinates to geocentric geodetic coordinates
using absolute deviations of the vertical at the geoid from
AUSGe0id98. In this example, the deviation values were
bi-cubically interpolated to the geocentric position in
Table 3 using AUSLIG’s internet-based facility. In
practice, the use of the AUSGe0id98 to transform
astronomical coordinates requires iteration, where the
deviations of the vertical are interpolated to the
astronomical position, equations (13) and (14) used to
determine an approximate geocentric position, then this
position is used to interpolate the appropriate deviations of
the vertical. This iteration is necessary because the
AUSGe0id98 grid nominally refers to a geocentric datum
(cf. Featherstone, 1995).

Astro-geodetic ® = 25° 56’ 54.552" S

Coordinates A = 133° 12’ 30.077" E
AUSGe0id98 Deviations &, = +2.312"

of the Vertical Ng = —7.935"

GDA94 Geodetic
Coordinates

@ = 25° 56’ 56.864" S
A = 133°12’ 37.212" E

Table 3. Sample transformation of astro-geodetic
coordinates to geocentric (GDA) geodetic coordinates using
the AUSGeo0id98 deviations of the vertical at the geoid in
equations (13) and (14)

Note that the GDA94 coordinates in Table 3 will differ
from the GDA94 coordinates as transformed from the
astronomically determined coordinates using the seven-
parameter, or other, datum transformation (AUSLIG,
1999). This is because the (assumed) astro-geodetic
coordinates for the Johnston Memorial Cairn (Table 3)
include an effect due to the orientation of the AGD
(Bomford, 1967; Mather, 1970). There is also an effect
due to the curvature of the plumbline over the ellipsoidal
height of the station. These effects will not be discussed
further since Table 3 is only to provide a numerical
example of using equations (13) and (14).

3.2 Laplace’s Equation for Azimuths

The deviations of the vertical at the Earth’s surface are
required to convert observed astronomic azimuths and
observed gyro azimuths to geodetic azimuths. This is
achieved rigorously using the formula (Vanicek and
Krakiwsky, 1986)

a = A-(nstan @) — (&5 sin a —ngcos a) cot ¢ (15)

where o = geodetic azimuth of the measured line,
clockwise through 360-degrees from north,
A = measured astronomic or gyro azimuth with
respect to the gravity vector,
( = geodetic zenith angle between the

observing and target stations (equation 18)
— a measured zenith angle can also be used
to a sufficient precision.

In relation to the accuracy with which the astronomic or
gyro azimuth can be measured, the third term on the right-
hand-side of equation (15) can be neglected, especially for
zenith angles close to 90 degrees. Therefore, equation (15)
reduces to the well-known Laplace correction

a=A - (nstan @) (16)

The Laplace correction is, thus, independent of the
azimuth of a line. Historically, the most common use of
equation (16) was at Laplace Stations, where astronomical
azimuths (as well as astronomical latitudes and longitudes)
were measured to constrain geodetic azimuths in terrestrial
geodetic networks. The reduced geodetic azimuths
provide the proper orientation of the geodetic network or
traverse. For example, in the long traverses conducted in
Australia during the establishment of the AGD,
astronomical azimuths were used to control and decrease
the propagation of errors in the traversed azimuths
(Bomford, 1967).

Equation (16) can usually be neglected for solar
determinations of astronomic azimuth, but not for stellar
determinations of astronomic azimuth or gyro azimuths
because of their increased precision. The Laplace
correction is particularly relevant for precision gyro
measurements in long tunnels, where neither the
deviations of the vertical at the surface nor those at the
geoid are necessarily applicable. Moreover, classical
Laplace Stations cannot be established in a tunnel. For
the planned 57 km rail base-tunnel under the Gotthard
Pass in Switzerland, the effect of the deviation of the
vertical on gyro measurements was investigated by
Carosio and Ebneter (1998). They used an above-ground
(open) traverse (ie. directions, zenith angles, slope
distances, azimuths) over 8.6 km and an under-ground
(open) traverse over 7.9 km. The under-ground traverse
(in the service tunnel of the existing Gotthard road tunnel)
included reciprocal precision gyro azimuth measurements
on four legs.

The results of different adjustments of the under-ground
traverse were compared with a (closed) precision traverse
through the full length of the main tunnel, which was
measured prior to the opening of the tunnel (Carosio and
Ebneter, 1998). The different adjustments show that the
computations with gyroscopic observations and with
corrections for the deviations of the vertical produce the
best results. Conversely, the computations with gyro
observations but without corrections for the deviations of



the vertical produce the worst results. The peak-to-peak
variation of the n component of the deviations of the
vertical is 7.5" and that of the § component 16.8" (Zanini
etal., 1993). The maximum values were 7.6" and 11.1"
for then and & components, respectively. The same
authors reported maximum coordinate differences
(compared to the reference traverse) of 39 mm for the 7.9
km long traverse with gyro-azimuths and with Laplace
corrections, and 137 mm for the traverse with gyro
observations and without Laplace corrections. The
magnitude of the Laplace corrections was greater than the
accuracy of the azimuths (£2.3") measured with the
Gyromat 2000 precision gyro-theodolite.

Table 4 shows a worked example of the calculation of a
geodetic azimuth from a gyro azimuth using the deviation
of the vertical at the Earth’s surface in equation (16).

Gyro Azimuth from 2 to 3 Ay = 306° 43'28.2"

Deviation of the Vertical in

Prime Vertical Direction Ns = +7.27"
Geodetic Latitude @, = 46°31'30"N
Laplace Correction (Equation 16) = —7.67"
Geodetic Azimuth 0,3 = 306°43'205"

Table 4. Sample computation of the conversion of a gyro
azimuth to a geodetic azimuth using the deviation of the
vertical at the Earth’s surface in equation (16)

3.3 Reduction of Measured Horizontal
Directions and Angles to the Ellipsoid
Horizontal directions (and angles) have to be corrected for
the deviation of the vertical at the Earth’s surface when the
instrument and the target are not at the same ellipsoidal
height. This can be visualised as an error like that
encountered for poorly levelled theodolites or total
stations. Assuming that the skew normal correction has
already been applied between stations (eg. Vanicek and
Krakiwsky, 1986), the correction to a measured horizontal
direction (Bomford, 1980; AUSLIG, 1999) is given by

d = D - (&sina —ngcos a) cot ¢ an
where d = desired direction related to the ellipsoid,
D = measured direction with respect to the
gravity vector at the Earth’s surface,
{ = geodetic zenith angle between the

observing and target stations (equation
18) — a measured zenith angle can also
be used to a sufficient precision,

It follows from equation (17), that the effect of the
deviation of the vertical on horizontal directions is zero, if
the observing and target stations are at the same height
above the ellipsoid. The correction of horizontal angles
follows from the difference of the corrections of the two
directions concerned. The error caused by the neglect of
this correction also propagates along a traverse, hence the
need for regular Laplace Stations (cf. Bomford, 1967).

Table 5 illustrates the effect of neglecting deviations of the
vertical on horizontal directions for a variety of geodetic

azimuths and zenith angles from the GDA94 position in
Table 3. The curvature of the plumbline is neglected since
the AUSGeoid98 deviations of the vertical at the geoid are
used in equation (17). The numerical examples in Table 5
show that the effect of the deviation of the vertical on a
horizontal direction can be relatively large, especially for
small zenith angles (ie. large height differences).

Measured Geodetic  Geodetic Reduced
Horizontal Zenith Azimuth Horizontal
Direction (D)  Angle (0) (a) Direction (d)
45° 00’ 00.00" 89° 45° 44° 59’ 59.87"
45° 00’ 00.00" 85° 45° 44° 59’ 59,37"
45° 00’ 00.00" 45° 45° 44° 59’ 52,75"

Table 5. Sample reductions of horizontal directions to the
GRS80 ellipsoid for the GDA94 position in Table 3 using
the AUSGeo0id98 deviations of the vertical in Eq. (17)

3.4 Reduction of Measured Zenith Angles to the
Ellipsoid
Zenith angles also have to be corrected for the deviation of
the vertical at the Earth’s surface, for exactly the same
reasons as horizontal directions and angles. Again, the
skew normal corrections and the corrections for
atmospheric refraction are assumed to have been applied.
In the case of a single measured zenith angle, the
component of the deviation of the vertical at the Earth’s
surface in the azimuth of the observation is required.
Accordingly, equation (2) for the deviations of vertical at
the surface of the Earth is applied to the observed zenith
angle to yield the geodetic zenith angle with respect to the
ellipsoidal normal (Vanitek and Krakiwsky, 1986)

¢

z + (&cosa + ngsin a)
Z7+ g (18)

where ( geodetic zenith angle between the observing

and target stations,

z = measured zenith angle between the
observing and target stations, and

€5 = deviation of the vertical at the Earth’s surface
in the geodetic azimuth of the observed line

(equation 2).

In reciprocal trigonometric levelling, a large proportion of
the effect of the deviation of the vertical may cancel on
differencing. Nevertheless, equation (18) should still be
applied to all observations of zenith angles, especially over
long baselines, or in regions where the gravity field varies
rapidly (cf. Figures 2 and 3 and Table 2). Since the
deviations of the vertical at the geoid are readily available
from the AUSGeoid98 and the reduction can be computed
very easily, they should be included so as to reduce their
effects on the survey results. It is important to point out
that there may be cases where the curvature of the
plumbline is sufficiently large to obscure any improvement
offered by including the deviation of the vertical.

Table 6 illustrates the effect of neglecting the deviations of
the vertical on zenith angles for a variety of azimuths
measured from the GDA94 position in Table 3. Again,



the curvature of the plumbline is neglected and the
AUSGe0id98 deviations of the vertical at the geoid are
used in equation (18). Accordingly, the effect of the
curvature of the plumbline has also been ignored in these
examples.

Measured Geodetic Geodetic
Zenith Angle (z)  Azimuth (o)  Zenith Angle (¢)
45° 00' 00.00" 0° 45° 00' 07.94"
85° 00' 00.00" 45° 85° 00' 07.25"
89° 00' 00.00" 90° 89° 00' 02.31"

Table 6. Sample reductions of zenith angles to the GRS80
ellipsoid for the GDA position in Table 3 using
AUSGe0id98 deviations of the vertical in equation (18)

3.5 Reduction of Measured Distances to the
Ellipsoid

Electronically measured distances (ie. EDM) can be
reduced to distances on the ellipsoid by using a measured
zenith angle and the ellipsoidal height at the instrument
station, or by using known ellipsoidal heights at both
ends of the line. The first method is usually used for short
distances, where the ellipsoidal heights of the target
stations are often not available. It is also the most widely
used method nowadays. As it relies on measured zenith
angles, it requires a knowledge of the deviation of the
vertical at the instrument station (cf. equation 18). The
second method was traditionally employed in connection
with medium- to long-range distance measurements. Even
though this second method does not require the deviations
of the vertical, it will be reviewed briefly for the sake of
completeness.

3.5.1 Reduction of Measured Distances to the
Ellipsoid Using Zenith Angles

The geometry of this reduction is depicted in Figure 4,

where

Z1,Z, = measured zenith angles at stations P, and P,

e} = refraction angle, assumed equal at P; and P,

€1,€, = deviations of vertical at the Earth’s surface €4
at P, and P, in the forward and reverse
geodetic azimuths of the line

(1,{, = geodetic zenith angles at P, P,

B = angle between the wave-path normals through
P,and P,

Rq = radius of curvature of the ellipsoid in the
geodetic azimuth of the line from P, to P,

H;,H, = orthometric heights (approximated by AHD
heights in Australia) at P, and P,

hi,h, = GRSB80 ellipsoidal heights at P, and P,

N{,N, = geoid-GRS80-ellipsoid separations
atP;and P,

d; = wave-path length

d, = wave-path chord length

dy = distance on the ellipsoid (assumed geodesic)

dus. = mean sea level distance

Figure 4 clearly assumes that the two (reciprocal) zenith
angle measurements, as well as the distance measurement,
are co-linear and that the trunnion axes heights (above the

ground marks) of theodolites, EDM devices, reflectors,
traversing targets, are thus the same for any one station.
Additional corrections to the measured zenith angles
and/or distances may apply, if these co-linearity conditions
are not fulfilled. A detailed description of these corrections
is beyond the scope of this paper, and the reader is referred
to Rieger (1996).

Figure 4. Geometry of the reduction of slope distances to
the ellipsoid using zenith angles and of the computation of
height differences. It follows from equation (18) that ¢, isa

positive value and €, a negative one.

The GRSB80 ellipsoidal heights at the end-points of the
baseline refer to the common trunnion axes heights of all
equipment used at the respective station. Therefore, for a
measurement from P, to P,, the values of h; and h, must
include the height of the instrument (above the ground
mark at P,) and the height of reflector (above the ground
mark at P,), respectively. The heights of instrument and
reflector are naturally measured along the plumbline and
are thus strictly incompatible with the GRS80 ellipsoidal
height required (see Section 2.4). Using the maximum
deviation of the vertical relative to GRS80 of 50.6" (Table
1) and a height of instrument of 1.7 m, the maximum
difference between a GRS80 ellipsoidal and orthometric
height of instrument computes as only 50 nanometres.
Accordingly, the difference between these two types of
heights of instrument and heights of reflectors can be safely
ignored in this and all other cases.

A rigorous reduction of the wave-path length (d) to the
GRS80 ellipsoidal distance (d,) is only possible if the
GRS80 ellipsoidal heights (h), the deviations of the
vertical at the Earth’s surface (€5) and the radius of
curvature (R,) of the ellipsoid along the geodetic azimuth
of the baseline are available (Figure 4).
e The GRSB80 ellipsoidal height (h) can be computed
from the orthometric height (H) by algebraic addition
of the appropriate geoid-ellipsoid separation (N).

h=H+N (19)



In Australia, the N values vary between approximately
—40 m and approximately +70 m with respect to the
GRS80 ellipsoid, and can be interpolated from the
AUSGe0id98 (described earlier).

*  The deviation of the vertical at the Earth’s surface in
the azimuth of the line (g5) can be computed from
equation (2) if the surface components &g and ng from
equations (10) and (11) are used. However, as stated,
these are not routinely available, so the deviations of
the vertical at the geoid from the AUSGeoid98 are
used as an approximation.

»  The radius of curvature of the GRS80 ellipsoid along
the line from P to P, can be computed from (eg.
Cooper, 1987; Rieger, 1996; AUSLIG 1999):

- vp
Ra = Vcosta + psinZa (20)

where all quantities have been defined earlier.

The ellipsoidal distance (d,) computes rigorously as
(Rieger, 1996)

d, sin (z; + £, + d) ) ’1
Ryq + hy + dycos (z + € + O) (21)

d, = Ry arctan (

where the argument of the arctan function is in radian
measure and the other quantities have been defined earlier.
Equation (21) can be simplified by assuming d, = d; and
by expressing the refraction angle () as a function of the
coefficient of atmospheric refraction (k), as well as d; and
Ry. For k=0.13 and R, = 6,371 km, the difference
between d, and d; (the first arc-to-chord correction) is only
0.02 mm for d; = 10 km and 0.47 mm for d;= 30 km.
Therefore, the wave-path chord distance (d,) may be safely
replaced by the wave-path length (d;) in all practical cases.
Therefore, equation (21) reduces to (Rieger, 1996)

. dik
dysin(z, + & + ZT}\’G) )
)

ds = R, arctan
dik
« thy +dyg cos(zl +e o
a

where the argument of the arctan function is, again, in
radian measure, as are the third terms of the arguments of
the sine and cosine functions. It is essential to convert the
values of z and € into radians before solving equation (22).

As far as the reductions to the geocentric GRS80 ellipsoid
are concerned, the propagation of any errors in Ry, N and €
into d, is of particular interest here. [The reader is referred
to Rileger (1996) for the error propagation in the termsd,,
7, and k] The total differential of equation (22) with
respect to the variables R,, N and € is (Rleger, 1996)

o) = () aRa) - () stvy)

(onaes) 56) (23)

where the terms d(*) indicate the error in the quantities *
in parentheses (defined earlier).

a) The Radius of Curvature of the Ellipsoid

For the practical reduction of measured slope distances to
the ellipsoid, a sphere of radius R is always used between
the terminals of a line. AUSLIG (1999) gives a diagram of
the variation of R, (equation (20)) with geodetic azimuth
for the average Australian latitude of 26°S (exactly). At
this latitude, R, varies by 34,559.159 m from p =
6,347,684.393 m (o = 0° or 180°) to v = 6,382,243.552
m (a = 90° or 270°) for the GRS80 ellipsoid.

To simplify the calculations further, a geometric mean
radius (Ryy) is sometimes adopted for a certain area, which
is computed for any point on the ellipsoid using

RM:

Vvop

(24)

where the values of v and p are computed for the GDA94
geodetic latitude using equations (5) and (6). Using
equation (24), the mean radius of the GRS80 ellipsoid at
the average Australian latitude of 26°S is Ry, =
6,394,940.517. Table 7 lists values for p, v and Ry, on
the GRS80 ellipsoid for the range of Australian geodetic
latitudes at 5° intervals.

Latitude p (north-south) v (east-west) Rwm

(degrees) (m) (m) (m)
-10 6 337 358.120 6 378 780.843 6 358 035.748
-15 6 339 703.298 6379 567.582 6 359 604.204
-20 6 342 888.481 6 380 635.807 6 361 734.215
-25 6 346 818.858 6 381 953.457 6 346 361.912
-30 6 383 480.917 6 367 408.777 6 367 408.777
-35 6 356 426.695 6 385172.174 6 370 783.222
-40 6 361 815.826 6 386 976.165 6 374 383.582
-45 6 367 381.815 6388 838.290 6 378 101.030

Table 7. Variation of the radii of curvature of the GRS80
ellipsoid for selected latitudes across Australia

Table 7 shows that, for the GRS80 ellipsoid, the
meridional [north-south] radius of curvature changes by
30,024 m between latitudes of —10° and —45° and the
prime vertical [east-west] radius of curvature changes by
10,057 m. Accordingly, the geodetic azimuth dependence
of the radius of curvature (equation (20)) is more significant
than the latitude dependence. It is important to note that
the use of an average radius of curvature (ie. equation (24)
instead of equation (20)) in equation (22) has the side effect
that reduced north-south distances will have a different
scale error to the reduced east-west distances. If used, this
can introduce systematic distortions into terrestrial
geodetic networks.

In terms of equation (22) it is now informative to
investigate the magnitude of the errors introduced by
selecting either a mean radius for a particular area or even a
mean radius for the whole of Australia. For this purpose,
only the first term on the right-hand-side of equation (23)
need be considered. It can be expressed as a fraction

0(da)
dy

(hl + Ah

sz) 5(Rq)

(25)



which allows the presentation of the errors as parts per
million (ppm) of the reduced ellipsoidal distance. As
expected, equation (25) shows that the error caused by an
erroneous radius of the ellipsoid is zero at a zero GRS80
ellipsoidal height.

The first case investigated uses a mean GRS80 ellipsoidal
radius for a project area (equation (24)) as an
approximation of the azimuth-dependent radius (equation
(20)). Table 8 lists the relative error in the reduced
distance (in ppm) caused by selecting a local mean radius
for three extreme locations in Australia, namely Cape York
(@ = 10°S), Mt. Kosciusko (¢ = 35°S) and south-east
Tasmania (¢ = 45°S). The upper part of Table 8 refers to
extreme elevations at these latitudes; the lower part gives
the values for an elevation of 500 m.

Latitude h 3Rq) 3(ds) / g

(degrees) (m) (m) (ppm)
_10 1000 20 711 0.51
35 2 200 14 372 0.78
45 1500 10 728 0.40
10 500 20 711 0.26
35 500 14 372 0.18
45 500 10 728 0.14

Table 8. Maximum errors caused in reduced ellipsoidal
distances (d,) due to the use of an azimuth-independent
mean GRS80 ellipsoidal radius (Ry,) for a specific area

To assess the feasibility of using a mean ellipsoidal radius
Ry, the rule of thumb that each individual reduction error
should be less than one third of the measuring or required
precision is used. On this basis, Table 8 shows that
surveyors can select a mean GRS80 ellipsoidal radius for a
project area anywhere in Australia and at any elevation,
where reduced distances do not have to be better than 2.5
ppm (ie. no better than 1 mm for maximum distances of
400 m). Surveyors working at elevations below 500 m
can use a mean GRS80 ellipsoidal radius for a project area
anywhere in Australia to an accuracy of 0.8 ppm in reduced
distances (ie. for distances of less than 1.25 km being no
better than 1 mm). For more accurate work, the correct
and azimuth-dependent radius of curvature of a line,
computed from equation (20), must be used.

The second case investigated uses a mean GRS80
ellipsoidal radius for the average latitude of Australia as an
approximation of the azimuth-dependent radius. Table 9
shows the maximum errors (in ppm) incurred when using
a mean radius of the GRS80 ellipsoid for the whole of
Australia. This comparison is based on Ry, = 6,364,940
m at @ = 26°S (equation (24)) for GRS80. Again, the
upper part of Table 9 refers to extreme elevations in
Australia, and the lower part to elevations of 500 m.

Using the previous rule of thumb in Table 9, surveyors
can select Ry, = 6,364,940 m at any elevation where

reduced distances do not have to be better than 3.3 ppm
(ie. 1 mm for distances of less than 330 m). Surveyors

working at elevations below 500 m can use the Australia-
wide mean radius of curvature for an accuracy of 1.0 ppm
in the reduced distances (ie. 1 mm for distances of less
than 1 km). For more accurate work, the local mean
radius (see Table 7) or, preferably, the correct and azimuth-
dependent radius of curvature of the line to be reduced
(equation (20)) must be used.

Latitude h 3(R,) 3(dy) / d,

(degrees) (m) (m) (ppm)
-10 1 000 27 582 0.68
-35 2 200 20 232 1.10
—45 1500 23 898 0.88
-10 500 27 582 0.34
-35 500 20 232 0.25
—45 500 23 898 0.29

Table 9. Maximum errors caused in reduced ellipsoidal
distances (d4) due to the use of a single, azimuth-
independent mean GRS80 ellipsoidal radius for the whole of
Australia (Ry = 6,364,940m at @ = 26°S)

b) The Geoid-Ellipsoid Separation

The second term on the right-hand-side of equation (23) is
now used to assess the errors in the reduction of distances
caused by the omission of, or errors in, the geoid-GRS80-
ellipsoid separation. Expressing the error in a fractional
form gives

o(d
A= - () s (29)

Considering the previously stated mean radius for an
Australian average latitude, equation (26) indicates that an
error &(N;) in N4 of 6.365 m generates a 1 ppm error d(d,)
in the reduced ellipsoidal distance. Using the
AUSGe0id98, the omission of N, creates errors of +6.3
ppm in the south-west of Western Australia (where N =
—40 m for GRS80) and errors of —11.0 ppm at Cape York
(where N = +70 m for GRS80). This shows that the
geoid-GRS80-ellipsoid separation cannot be ignored
unless a surveyor only requires these levels of accuracy in
the reduced distances.

It is therefore essential that surveyors compute the required
N values from the AUSGeoid98 for the reduction of
distances to the GRS80 ellipsoid (cf. Featherstone, 1997).
It is important to note that the N values obtained from the
AUSGe0id98 model are not free from errors. Reliable
estimates of the absolute errors in the AUSGeoid98 are
difficult to determine and vary from location to location
(described later). However, these errors are likely to be
very much smaller than 6 m and, therefore, will only affect
reduced distances by significantly less than 1 ppm. Since
the reduced distances are weakly dependent on errors in the
N values (equation (26)), it is often sufficient to compute
an average value (N,,) for a small project area. However,
in areas where there are steep geoid gradients (cf Figures 2
and 3 and Table 2), N values should be computed for each
and every point.



¢) The Deviation of the Vertical
The third term on the right-hand-side of equation (23) is
used next to evaluate the effect of errors in, or even the
complete omission of, the deviation of the vertical. Note
that this error is a function of the ellipsoidal height
difference (Ah). Table 10 lists the errors &(d,) in d, caused
by some realistic errors in the deviations of the vertical.
The absolute uncertainty of the AUSGeoid98-derived
deviations of the vertical is difficult to assess, since direct
comparisons with astro-geodetic surface deviation values
have not yet been carried out. Instead, Fryer’s (1971)
estimate of +2" for the accuracy of gravimetrically derived
deviations of the vertical is taken as a guide. It is likely
that the AUSGeoid98 deviations of the vertical are more
accurate than this estimate because of the advances made in
geoid modelling and improved data coverage and
processing since 1971. Nevertheless, the following values
for the errors &(g,) are used.
1. 27 (the expected accuracy of deviations of the vertical
at the geoid computed from the AUSGe0id98),
2. 7" (the average deviation of vertical at the geoid over
Australia — Table 1), and
3. 50" (the maximum value of deviation of vertical at the
geoid in Australia — Table 1).
The first value maps the unavoidable errors in the
deviations of the vertical into the ellipsoidal height
differences, which will be inherent to all reductions.
Conversely, the latter two values give an indication of the
errors in ellipsoidal height differences if the deviation of the
vertical is ignored altogether.

Ah M= 10 50 100 200 _ 500
3€) = 27 0.1 05 10 1.9 4.8
3e) = 77 03 17 34 68 170
3) = 50 2.4 121 242 485 1212

Table 10. Errors d(d,4) caused in the reduced ellipsoidal
distances d4 due to errors &(¢) in the deviation of the vertical
€

It follows from Table 10 that the deviations of the vertical
cannot be ignored in most cases where the GRS80
ellipsoidal height difference is not zero. Clearly, the
deviations of the vertical must be taken into account for
most reductions of distances to the GRS80 ellipsoid,
especially for large height differences. Therefore, it is
essential that surveyors amend their reduction software
accordingly. It is also suggested that surveyors interpolate
the values of £ and ng from the AUSGeoid98 and use
these in lieu of &g and ng in equation (2) to compute &g,
which is then used in equation (22). The likely differences
between the surface and the geoid values have been
discussed in Section 2.4. Following this and given that
the curvature of the plumbline is likely to be less than the
mean deviation of the vertical across Australia (Table 1),
the AUSGeo0id98-derived deviations are certainly of
importance.

d) A Sample Computation

Table 11 gives a numerical example for the reduction of
distances to the GRS80 ellipsoid that is based on actual
measurements. The components of the deviations of the
vertical and the geoid-ellipsoid separation were obtained
from the AUSGeoid98 on the basis of the latitudes and
longitudes listed in Table 11. The azimuth (a) was
derived from the (MGA94) plane bearing (8), using the
simplified relationship 6 = a + y wherey = -(A - Ay) sin
@ and Aq is the MGA central meridian; the arc-to-chord
corrections are ignored. For simplicity, the radius of
curvature is computed with the latitudes of the starting
points of the lines (as the deviations of the vertical must
also be calculated for the instrument stations). Tables 8
and 9 indicate that this small simplification is of no
consequence. For the sake of interest, the reductions of the
forward and the backward measurements are shown. The
small difference of 0.3 mm in the reduced distances is
caused by the deviation of the actual coefficient of refraction
from the assumed value (taken as 0.13 as the line crosses a
deep valley) and the measuring uncertainty of the zenith
angles. The ("sea-level™) distances, that are obtained with
a reduction that omits N and &, are shown at the bottom of
Table 11. Considering that the slope distance was
measured with sub-ppm precision, the error of 3.3 mm in
the "sea-level" distance is significant.

Parameter Unit Distance 4—>6 Distance 6—>4

Latitude GDA94  dec deg -33.21874250 -33.22165528

Longitude GDA94 dec deg 151.1229361 151.1169625

Azimuth GDA94 ~ dec deg 239.879454  59.882807

N-S Radius p m 6 354 580.7 6 354 583.7
E-W Radius v m 6 384 554.0 6 384 555.0
Radius in line R, m 6 376 979.4 6376 983.4
N-S Dev of Vert& " -6.156 -6.106
E-W Dev of Vertn ! -0.863 -0.848
Dev Vertin line € " +3.836 -3.797
slope distance d, m 644.9391 644.9391
meas zenith angle z dec deg  93.391933 86.612714
H (AHD) m 173.4470 135.3171
N (AUSGe0id98) m 25.334 25.322

h (ellipsoid) m 198.7810 160.6391
H.I. m 0.239 0.236
Coeff of Refract k 0.13 0.13
ellips distance d, m 643.7921 643.7918

Without N, €, with R,,=6 364 940 m :

"sea level" distance m 643.7953 643.7951

Table 11: Sample reduction of a slope distance d, to the
ellipsoid (d4) using ellipsoidal zenith angles { and Eq. (22)

3.5.2 Reduction of Measured Distances to the
Ellipsoid Using Ellipsoidal Heights
As mentioned before, long distances were traditionally
reduced to the ellipsoid using known ellipsoidal heights of
both terminals, rather than with the height and the zenith
angle at the instrument station (Section 3.5.1). A rigorous
reduction of the wave-path length (d,) to the ellipsoidal
distance (d,) is given by (Rleger, 1996)
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REsin? (1K) K, e
d, = 2R, arcsin 2 Rq 4
4= 2R € [Ra + Nyl [R + o]
(27)

where all terms have been defined previously and the
geometry of this reduction is depicted in Figure 4. The
ellipsoidal heights in equation (27) again represent the
trunnion axes elevations of the EDM instrument and the
reflector at the terminals P, and P,. As before, the GRS80
ellipsoidal heights must be calculated from the AHD
(assumed orthometric) heights by algebraic addition of the
appropriate geoid-ellipsoid separation (equation (19)).

Featherstone (1997) illustrates the need to include the
geoid-GRS80-ellipsoid separations in this reduction of
measured distances to the GRS80 ellipsoid. However,
less emphasis was placed on the effect of the change in
geoid heights over the baseline in question, which is
directly related to the deviation of the vertical (see
equations (3) and (4)). Both effects are revisited here, as is
the effect of approximations of the radius of curvature of the
GRS80 ellipsoid. [The reader is referred to Rueger (1996)
for the error propagation in this reduction with respect to
d, and k] Rieger (1996, as amended) expresses the total
differential of equation (27) with respect to the variables
Rq, N (h) and AN (Ah) as

d hy d?

o(dy) = O(Ry) — OR
@) = ( Rﬁfd)s Ra) - (13 r.3) 3R
(5 re) R
Ah d
- (54 a@h) - (%) 8w (28)
a
where Ah = h2—h1: HZ—H1+N2— Nl
= AH +AN
hy = 0.5 (hy + hy) = 0.5(H;y + Hy + Ny + Ny)
= HM + NM

Even though three out of five terms on the right-hand-side
of equation (28) relate to the error in the radius d(Ry), only
the first one is of significance. Omitting the second and
third right-hand-terms in equation (28) and dividing by d
gives an equation for the error in d, due to an error in R,
that is very similar to equation (25). However, rather than
h,, the value of hy, is required this time. The results
shown in Tables 8 and 9 and the associated discussions in
Section 3.5.1a also apply here.

The errors caused in the reduced ellipsoidal distance (d,)
by errors in the geoid-GRS80-ellipsoid separation can be
obtained by assuming that the orthometric heights H, and
H, are free from error and that, in consequence, d(Ah) =
O(AN) and d(hy;) = &(Ny). The error in d, caused by
O(Ny,) can be developed from the last (fifth) term of
equation (28) into the fractional form of equation (26).
This accounts for the part of the error in N that is the same
for N, and N,. Absolute errors of the N values derived
from the AUSGe0id98 can also be assessed this way
(described later). As before, an error 8(Ny,) in N, of 6.365

m generates a 1 ppm error d(d4) in the reduced distance (cf.
equation (26)).

The fourth term on the right-hand-side of equation (28) is
more significant; it can be expressed as

5d;) = -ah (26N 29)

Equation (29) is now used to assess the effects of the
precision of AN, or even the complete omission of AN.
Note that the proportional error ((AN) / d) is multiplied
by Ah, the total ellipsoidal height difference. Therefore,
Table 12 gives the errors in the reduced ellipsoidal
distances (d,) for some relevant geoid gradients (&(AN) /
d) in Australia and for a range of GRS80 ellipsoidal height
differences.

For values of AN derived from the AUSGe0id98, the
fractional error (8(AN) / d) is crudely estimated to be
typically less than 3 ppm, but this value is known to vary
from place to place. Nevertheless, the following values for
the errors in the geoid gradient (8(AN) / d) are used

1. 3 ppm (the expected overall accuracy of geoid
gradients computed from the AUSGe0id98),

2. 30 ppm (the average gradient of the AUSGeoid98 with
respect to the GRS80 ellipsoid, which is in a
approximately north-easterly direction),

3. 100 ppm (the large geoid-GRS80-ellipsoid gradient
across the Darling Fault near Perth (Friedlieb et al.,
1997)), and

4. 115 ppm (the largest geoid-GRS80-ellipsoid gradient
in central Australia, found on the geoid map shown in
Featherstone (1997, Fig. 1(b), p. 47)).

The first value above maps the unavoidable errors in the

computed geoid gradients into the ellipsoidal height

differences, which will be inherent to all reductions.

Conversely, the latter three values give an indication of the

errors in ellipsoidal height differences if the geoid gradient

is ignored altogether. This applies over all distances, and
especially where the deviations of the vertical (ie. geoid
gradients) are large. For instance, the geoid-ellipsoid
separation changes by 1 m over approximately 8 km near

Perth, Western Australia. It should be noted in this

context that the largest total deviation of the vertical listed

in Table 1 (50.6") is equivalent to an even larger geoid
gradient of 245 ppm. So, for the worst possible case in

Australia, the values listed for 115 ppm in Table 12 must

be doubled.

Table 12 shows that the AUSGeo0id98 provides AN values
that are sufficiently accurate for 1 mm distance reductions
provided that the ellipsoidal height difference is less than
100 m. However, totally ignoring the geoid gradient in
equation (27) creates quite large errors for the more extreme
geoid-GRS80-ellipsoid gradients in Australia. Even the
average geoid gradients cannot be ignored if the height
differences are larger than 10 m. However, Table 12 only
reflects Australian conditions. In Alpine areas, for
instance, the geoid slopes are not necessarily larger but the
height differences covered by EDM measurements are. For
example, EImiger (1977) reports an error of 150 mm for a



line of 2.5 km in Switzerland, because the geoid slope was
omitted from the reduction.

Ah [m] = 10 50 100 200 500
3(AN)d, = 3ppm 003 015 03 06 15
3(AN)d, = 30ppm 0.3 15 30 60 150
3(AN)/d, =100 ppm 1.0 50 100 200 50.0
3(AN)d, =115ppm 1.2 58 115 230 575

Table 12. Errors 8(d4) (in mm) caused in reduced
ellipsoidal distances (d4) due to the omission of some
typical gradients &(AN)/d, of the geoid-ellipsoid separation

Table 12 clearly shows that ignoring the change in the
geoid-ellipsoid separation AN introduces a distortion
whenever there is a large difference in geoid heights
between the terminals of a baseline. Importantly, this is in
addition to the distortion introduced by the omission of
the mean geoid height (Ny,) in the reduction of the slope
distance to the ellipsoid (cf. Featherstone, 1997). Figure 4
shows the mean sea level distance dyg, that is obtained if
the geoid-GRS80-ellipsoid separations N; and N, are
ignored. However, as described above and in Featherstone
(1997), the sea level correction to dyg,_is no longer
appropriate in the context of the GDA and the GRS80
ellipsoid. It is therefore recommended, that N values are
computed for both end-points when distances are to be
reduced using only the GRS80 ellipsoidal heights.

Parameter Unit Distance 4 —> 6
Latitude GDA94 dec deg -33.21874250
Longitude GDA94 dec deg 151.1229361
Azimuth GDA94 ~ dec deg 239.879454
N-S Radius p m 6 354 580.7
E-W Radius v m 6 384 554.0
Radius in line R, m 6 376 979.4
slope distance d; = d, m 644.9391
H; (AHD) m 173.4470
N; (AUSGe0id98) m 25.334

h; (ellipsoid) m 198.7810
H.l., m 0.2359

H, (AHD) m 135.3171
N, (AUSGe0id98) m 25.322

h, (ellipsoid) m 160.6391
HR., m 0.2365
Coeff of Refract k 0.13
ellips distance d, m 643.7921
Without N, with Ry, = 6 364 940 m :

"sea level" distance m 643.7954

Table 13. Sample reduction of a slope distance to the
ellipsoid using equation (27) and the ellipsoidal heights of
both terminals

Table 13 gives a numerical example (real data) for the
reduction of a slope distance to the GRS80 ellipsoid with
ellipsoidal heights at both end-points. The geoid-GRS80-
ellipsoid separations N at both end-points were obtained
using AUSLIG's internet-based interpolation of the
AUSGe0id98. The reduced distance d, agrees very well

with that obtained in Table 11. When reducing the data

in Table 13 with an Australian average radius of curvature
(Ry = 6,364,940 m), exactly the same result is obtained.

For comparison, the result of the (erroneous) reduction to
"sea-level" is shown at the bottom of Table 13.

3.6 Height Differences from Zenith Angles and
the AHD
Typically, zenith angles are measured in connection with
electronic distance measurements, especially when using a
total station. In consequence, orthometric or ellipsoidal
height differences can be computed from the same data.
The question of the deviations of the vertical must be
carefully considered in the context of using the computed
height differences. Although Australia has adopted a
geocentric horizontal datum, the Australian Height Datum
(AHD) will be maintained as the vertical datum.

3.6.1 Height Differences for the AHD

Height differences, that are compatible with the AHD and
spirit-levelled height differences, can be computed from
measured slope distances and zenith angles using (Rieger,

1996)
(1- 4n2)
1- —
2
H2 - Hl = d2 coszq t +rl21 (d2 sin Zl)
+ hrye - i (30)

orthometric height difference
between P; and P,

where H, - H;

hryay = height of instrument at Py
hr(z) = height of target at P,
2] = measured zenith angle at P;.

All other quantities have been defined earlier (also see
Figure 4).

Note that the measured zenith angle (z) must be used in
equation (30), which is necessary since height differences
related to the geoid, and not the ellipsoid, are required in
this case. Therefore, the deviation of the vertical is not
required in this reduction. Equation (30) also assumes co-
linearity of the measured distance d; and the zenith angle
z, (Figure 4). If this is not the case, additional corrections
apply (Rieger, 1996). Brunner (1973) gives a graph
depicting the accuracy of equation (30). From this, the
maximum error in (H, — H;) is less than 0.1 mm for slope
distances less than 2.5 km and ellipsoidal height
differences less than 1000 m.

The only parameter in equation (30) that relates to the
GRS80 ellipsoid is the radius of curvature along the line
(Ry). Any error &(R,) in this propagates as follows into
the computed orthometric height difference (H, — H,):

@2
st - o = - ((1- 05 ) (G 2)) 3Ry @D
where the approximation (d, sin z;) = d, has been
assumed. It is evident that the error in the orthometric
height difference depends on k, d, and sin z; but not on
the measured height difference. Table 14 gives some
values of the error in AH due to the maximum error d(Ry)



= 27,582 m (Tables 8 and 9). The error in AH is always
zero fork=+1 and z = 90°.

ds [m]= 100 500 1000 2000

deviations of the vertical shown in Table 11. The GRS80
ellipsoidal height differences are shown at the bottom of
Table 15. Because of the geoid slope between Stations 4
and 6 (refer to the N values in Table 11), the ellipsoidal
height differences differ by 12 mm.

Parameter Unit AH 4—>6 AH 6—>4

Latitude GDA94  dec deg -33.21874250 -33.22165528

k=0 z=90° 0.0 —0.1 —0.3 -1.4
k=-1 z=90° 0.0 —0.2 —0.7 2.7
k=-1 z=45° 0.0 —0.2 —0.8 -3.3
k=-3 z=90° 0.0 —0.3 -1.4 5.4
k=-3 z=45 0.0 —0.4 -1.8 —7.1

Longitude GDA94 dec deg 151.1229361 151.1169625

Table 14. Errors &(AH) (in millimetres) caused in the
orthometric height difference AH due to the use of an
azimuth-independent and Australia-wide ellipsoidal mean
radius (Ry = 6,364,940 m) rather than R4

The coefficients of refraction (k) used in Table 14 may
seem large. However, in short-range EDM, the prevailing
coefficient of refraction will vary considerably according to
weather, time of day, season and (smallest) ground
clearance. For these ‘grazing’ EDM rays, which are often
encountered in short-range EDM, k varies between k =
-3.0 (midday) and k = +3.0 (midnight).

Table 14 does not show the errors for positive coefficients
of refraction, because they are smaller than those for the
negative values. The errors listed in Table 14 can be
considered insignificant since the errors in AH due to the
uncertainty of the coefficient of refraction are, even in the
best case of simultaneous reciprocal zenith angle
measurements, at least six times larger (Rieger, 1996)
than those caused by the use of an azimuth-independent
and Australia-wide ellipsoidal mean radius. Therefore, the
use of an Australia-wide mean radius (Ry, = 6,364,940 m)
for the GRS80 ellipsoid in equation (30) is entirely
justified. In this context, it should be noted that the
computation of AHD height differences from zenith angles
and slope distances is restricted to a few hundred metres, if
height differences at centimetre level or better are required
(Rieger, 1996).

Table 15 gives a numerical example of the computation of
AHD height differences from measured zenith angles using
equation (30). Importantly, no deviations of the vertical

and no geoid-ellipsoid separations are required in this case.

Again, for convenience, the radii of curvature of the
ellipsoid are computed with the latitude of the instrument
stations (rather than the midpoint of the line). Since the
actual value of the coefficient of refraction k is usually
unknown, the height differences are computed with k = 0.0
for lines close to the ground and with k = 0.13 for lines
that are several metres above the ground (Riieger 1996).
The AHD height differences were also computed with the
mean radius for Australia. They differ by only 0.1 mm
from the results shown in Table 15. The difference
between the (absolute) forward and the return height
differences is due to the uncertainty of the k value used as
well as the measuring uncertainty of the zenith angles z.

For interest only, the GRS80 ellipsoidal height differences
(see Section 3.6.2) have also been computed, using the
geoid-GRS80 ellipsoid separations and the absolute

Azimuth GDA94 ~ dec deg 239.879454  59.882807

N-S Radius p m 6 354 580.7 6 354 583.7
E-W Radius v m 6 384 554.0 6 384 555.0
Radius in line R, m 6376 979.4 6 376982.4
slope distance d, m 644.9391 644.9391
meas zenith angle z dec deg  93.391933 86.612714
H (AHD) m 173.4470 135.3171
H.I. m 0.239 0.236
H.R. m 0.236 0.241
Coeff of Refract k 0.13 0.13

H, — H; (AHD) m -38.1271 +38.1294

Ellipsoidal Ah:

h,—h; (GRS80)  m  —38.1391  38.1413

Table 15. Sample computation of height differences from
zenith angles and slope distances using eqgs. (30) and (32)

3.6.2 Ellipsoidal Height Differences for GPS

Height differences, that are compatible with GRS80
ellipsoidal heights, can also be computed from measured
slope distances and zenith angles provided that the
deviation of the vertical with respect to GRS80 is known.
However, the terrestrial observation and computation of
GRS80 ellipsoidal height differences are not standard
practice, since AHD differences are required for work in
Australia. Instead, GRS8O0 ellipsoidal height differences
are generally measured using GPS, principally because this
technique is more accurate. The ellipsoidal heights
obtained by GPS are then converted to AHD using the
geoid-GRS80-ellipsoid separations. Therefore, the formula
below is only given for completeness and for those rare
occasions when a GRS80 ellipsoidal height difference has
to be computed that is compatible with the ellipsoidal
heights obtained by GPS.

Ellipsoidal height differences (h, — h;) are obtained using
(Rieger, 1996)
k
(1"gnq)

443ﬁ;—f(%gan

+ Ny — hre (32)

where all quantities have been defined earlier (also see
Figure 4). Itis clearly not possible to compute GRS80
ellipsoidal height differences from measured zenith angles
without a knowledge of €5. This is because the observed
zenith angle (z) must first be converted to a geodetic zenith
angle (¢) using equation (18). As for equation (30),
equation (32) assumes collinearity of the measured distance
and the measured zenith angle. If this is not the case,
additional corrections apply (Rieger, 1996).

h, - hy = d,cos {4 +



To be able to apply equation (32), the deviations of the
vertical in the azimuth of the line need to be known. As
mentioned before, the only practical way to achieve this is
to compute these from the AUSGeoid98 and thus neglect
the curvature of the plumbline. The effect of errors in Ry
on Ah is the same as those on AH (Section 3.6.1), and can
be estimated from Table 14 and equation (31).

Any error in the deviation of the vertical, or its complete
omission, naturally affects the derived GRS80 ellipsoidal
height difference. This is evaluated using the total
differential of equation (32) with respect to €, which is
expressed as

0

5
- @esin 1) (Gog065 zoézlgs )

d
~d Cooe06) @)

o(h; - hy)

0

where (d, sin {;) = d, has now been assumed and &(g,) is
in seconds of arc. The secondary influence of Ah and k on
o(h, — hy) is sufficiently small to be ignored. Table 16
summarises the error d(h, — h;) in the computed GRS80
ellipsoidal height difference due to an error &(g4) in the
deviation of the vertical. The values of &(¢,) are the same
as those used in Table 10 and have been selected to show
the error inherent to all reductions as well as the effect of
neglecting the deviation of the vertical. Again note that
the curvature of the plumbline has been ignored in all these
examples.

dg [m] = 100 300 600 1000 2000
o(gy) = 2" -1.0 -2.9 -58 -9.7 -194
o(,)= 7" -34 -102 -204 -339 -67.9
O(g;) =50" -242 727 -1454 -2424 4848

Table 16. Errors (Ah) (in mm) caused in the ellipsoidal
height difference (Ah) due to the error &(€4) in the deviation
of the vertical

4. CONCLUDING REMARKS

This paper has become necessary to remind surveyors of
the definition and use of the deviation of the vertical in
terrestrial surveying. The need to seriously consider the
effects of the deviation of the vertical has come about
because of the introduction of the GDA94. It appears that
the GDA94 was introduced primarily to make life easier for
GPS users. As a consequence, life will be more difficult
for terrestrial surveys on the GDA94. The GRS80
ellipsoid associated with this new datum is no longer a
best fit to the level surfaces and plumblines of the Earth’s
gravity field over Australia. Therefore, the associated
(absolute) deviations of the vertical generally become larger
and more significant in survey data reductions.

Fortunately, absolute deviations of the vertical at the geoid
are readily and freely available for the whole Australian
continent as part of the AUSGeo0id98 model. An
alternative source of vertical deviations is to create a local
geoid model and calculate the deviation components from
this. As reported by Dymock et al. (1999) and Chen et al.

(1999), this might be required for countries or regions
where no accurate geoid information is available.
However, due to the availability of AUSGeoid98, we
believe that there is no need for surveyors to derive their
own (local) geoid and deflection models for areas in
Australia. Instead, all that surveyors need to know is the
GDA94 latitude and longitude to compute the N, &g and
Ne values forthe AUSGeo0id98 at a particular point. The
State and Territory survey organisations and AUSLIG
(1999), on their respective web-sites, provide information
on how to compute GDA latitudes and longitudes from
coordinates known in the datum previously used in
Australia.

We believe that it is appropriate for surveyors to routinely
apply corrections for the deviations of the vertical and
geoid-GRS80 ellipsoid separations to terrestrial survey
data for all work on the new GDA94. Some possible
simplifications have been discussed here as have the errors
resulting from non-compliance. The only exception is that
height differences from zenith angles and slope distances
should normally be computed with zenith angles, that
have not been corrected for the deviations of the vertical,
since surveyors normally require height differences that are
compatible with AHD heights.

In the context of this paper, it has been assumed that
heights on the Australian Height Datum are free of error.
As Morgan (1992), Featherstone (1998) and others have
pointed out, this is clearly not the case; the Australian
Height Datum of 1971 contains levelling errors and
uncorrected sea-surface-topography effects on the tide gauge
data. It is suggested that the AHD be readjusted, with
new data included and all known errors of old data
corrected. As noted earlier, we also suggest that the
available measured deviations of the vertical (at the surface)
be compared with the predicted (from AUSGeoid98)
deviations of the vertical at the geoid.
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