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Abstract—The convoluted nature of thermal infrared 

radiation and poor understanding of the physical mechanisms 

of human emittance, make objective image acquisition and 

processing protocols prerequisite for meaningful diagnostic 

specificity. A longitudinal dataset of clinical thermal infrared 

images was objectively processed to facilitate visualization of 

osseous stress pathology in the lower limbs.. This paper details 

processing of 500+ thermal infrared images acquired during a 

recent three month clinical study into osseous stress pathology 

in the lower limbs of Australian Army basic trainees. The use 

of thermal chroma-keying in segmentation and multitemporal 

image calibration is demonstrated. The ‘OpenSURF’ 

implementation of the scale and rotation-invariant interest 

point detector and descriptor are shown to be performant in 

registration of multitemporal clinical thermal infrared image 

data. Thermal ‘signs’ observed in longitudinal images appear 

to be revealing detectable changes in osseous stress 

pathophysiology.  

 

Index Terms— Thermal infrared imaging, medical image 

processing, thermal image calibration, osseous stress pathology. 

I. MOTIVATION 

N, conventional biometric applications, thermal infrared 

imaging (TIRI) constitutes one of a multispectral suite of 

remote sensing modalities tasked with bimodal classification 

[1, 2]. In a clinical or laboratory setting however, one may 

consider more demanding and potentially more revealing 

modes of application [3]. Firstly, TIRI hardware may be 

readily configured to give sufficient spatial resolution at the 

region of interest (ROI) for meaningful pixel-based 

analyses, and secondly, laboratory conditions allow for 

quantitative deconvolution of measured emittance via 

mapping of spectral emissivity [4]. Such experimentally 

derived anatomic emissivity maps (e-maps) may reveal 

inter-subject and/or broad spectrum consistencies upon 

which precise quantitative thermography of human ROI’s 

may be based. During a recent three month clinical pilot 

study into TIRI-based detection of osseous stress pathology 

in the lower legs of Australian Army basic trainees [5], a 

dataset of over 500 TIRI’s was amassed, with MRI and 

nuclear scintigraphic validation of clinical fracture 

diagnosis. This paper describes the selection, optimization, 

and application of a series of image processing techniques to 

this dataset, with a view to facilitation of objective TIRI-

based visualization of osseous stress pathology. 

II. PRE-PROCESSING 

When physical bodies exhibit temperatures within the 

range characteristic to in-vivo human tissues, emittance 

becomes suprathreshold at wavelengths greater than 3µm [4, 

6]. In passive broadband TIRI (as opposed to interferometric 

/ spectroscopic modes [7]) this emittance is read out as a 

convoluted function of both the temperature and emissivity 

of the subjective body, where emissivity (Є) is a coefficient 

describing radiative properties as a ratio of said spectral 

emittance to that from a notional ideal ‘blackbody’ emitter 

of the same temperature, as in (1); 
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Where; λ = wavelength of subjective emittance, T = 

temperature of the physical body, ψ = emission angle, Є = 

emissivity of the subjective physical body, h = Planck’s 

constant, c = the speed of light, and k = Boltzmann’s 

constant. The pixel graylevels in the subjective database 

map directly to this emittance, with the steps required to 

process longitudinal clinical data being analogous to those 

multitemporal remote sensing [8], yet afforded greater 

controls during image acquisition [4].  

A. Segmentation 

As detailed in the image acquisition protocols of [5], a 

backing mat of uniform thermo-optical properties was 

placed directly beyond the ROI to facilitate subsequent 

image segmentation. Segmentation of the human ROI from 

the background is conducive to both subsequent in-ROI 

contrast enhancement operations, and multitemporal image 

calibration. Following an iterative row-by-row search and 

crop routine, the lower leg emittance was segmented from 

the background using Otsu’s histogram-based threshold 

selection method [9]. The masking method produced results 

similar to that in figure 1, left. 

B. Intertemporal Image Calibration 

As detailed in protocol #592-10 [5], we strove to 

consistently image recruits during weeks 1, 4, 7 and 9 of 

basic training, as aligned with scheduled medical checkups 

and inoculation parades. Following segmentation, inter-

temporal images were calibrated by application of a global 

linear offset, as determined by histogram centroids, figure 1  
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Fig. 1. Intertemporal image calibration offset taken from the centroids of 

the histogram representation of the segmented, emissively uniform, 

backgrounds of images taken from the same recruit during weeks 1, 4, 7, 

and 9 of their basic training, as detailed in [5]. 

 

 

right. As indicated by the uniform histogram widths in 

figure 1, this global linear offset application is valid. 

C. Enhancement 

During image acquisition, the TIRI system is set to detect 

emittance in a range closely encompassing ROI-

characteristic variation [4]. Following segmentation and 

subsequent masking of the background to a graylevel of 

zero; the width of each histogram in a multitemporal set is 

expressed as a ratio of the widest histogram in that set. This 

ratio is then used as a coefficient for a linear contrast stretch 

over all graylevels except 0, which is occupied by the 

masked background. Following this selective normalization, 

each image was subject to contrast-limited adaptive 

histogram equalization. [10]. 

III. PROCESSING 

As with all change detection applications, the 

preprocessed images (figure 2) must be searched for 

characteristic interest points. The authors identified SURF 

(speeded up robust features) which is a performant scale- 

and rotation-invariant interest point detector and descriptor 

[11]. SURF approximates or even outperforms previously 

proposed schemes with respect to repeatability, 

distinctiveness, and robustness, yet can be computed and 

compared much faster [11-13].  

Having recently been found second most performant in a 

recent registration-specific evaluation of selected open- 

source implementations [13], OpenSURF [12] was selected 

for detection and characterization of interest points in this 

work. Moreover, [14] demonstrated OpenSURF’s high 

performance in recognition of 3D non-planar objects based 

upon local grayscale, as applicable to the authors’ ongoing 

work in registration of 2D TIRI’s to 3D volumes rendered 

from thermometric MRI data sets [4, 6]. 

 
Fig. 2. Preprocessed multitemporal TIRI sequence from a symptomatic 

participant [5]. 

 

 
Fig. 3. Detection of interest points in a pre-processed TIRI (a) via the 

fast Hessian detector approximation (b) in OpenSURF. Detected interest 

points are plotted onto (a) in (c). 

 

A. Interest Point Identification 

The TIRI interest points were detected using 

OpenSURF’s variant on the fast Hessian detector [12]. 

OpenSURF reduces computational expense in interest point 

detection via satisfactory approximation of the Hessian 

(figure 3b) discriminant via the Laplacian of Gaussians [12, 

13]. Interest points detected by application of this method to 

figure 3a, are plotted onto figure 3c.  

B. Interest Point Characterization 

Once detected, interest points are characterized via local 

distribution, as classified by Haar wavelets, (figure 4). The 

descriptor entries of a sub-region represent the nature of the 

underlying intensity pattern. In figure 4 left, in the case of a 

homogeneous region, all values are relatively low. Middle: 

In presence of frequencies in x direction, the value of |dx| is 

high, but all others remain low. If the intensity is gradually 



 

increasing  in the x direction, both values dx and |dx| are 

high  

 
Fig, 4. SURF interest point descriptor based upon Haar wavelets [11]. 

 

 
Fig. 5. OpenSURF-based generation of point correspondences and 

resultant warp of ‘wk_1’ image onto a ‘wk_4’ base image. 

 

 

[11]. When applied to the TIRI’s, the descriptor’s 

performance benefitted greatly from previous segmentation 

and contrast enhancement. Once interest points in 

temporally consecutive images are characterized, those of 

most statistical similarity are assigned to each other in pairs, 

as visualized in figure 5, left. 

C. Difference Imaging 

Once interest points have been identified and 

characterized, they can be used as control points in 

registration, as in figure 5. As shown in figure 5 right 

‘wk_1_warp’, the algorithm provides an excellent warp with 

minimal distortion to the original. Following such a high-

fidelity registration, it is meaningful to perform subtractive 

change detection, as in figure 6 below. Figure 6 shows 

consistency in the site of most emissive change over time; 

namely, the anteromedial aspect of the tibia.  

This localization of change conforms to intuitive 

agreement with current understanding of osseous stress 

pathophysiology [15], and the thermophysiology of the 

underlying anatomy (figure 7). Specifically, the red arrows 

in figure 7 indicate the ‘zip-up’ optical flow of interest 

points at the interface of ROI’s overlying the thermogenic 

muscle compartments and the relatively anemic / hemostatic 

anteromedial pretibial. 

 
Fig. 6. Longitudinal difference imaging in a gradually progressing 

pathological subject, showing a consistent site of emissive change overlying 

the anteromedial aspect of the tibia. 

 

 

 
Fig. 7. Optical flow visualization of the progressive ‘zipping up’ of the 

emissive pre-muscle compartment regions over the pre-anteromedial tibial 

region with sustained stress; and correlation of detected TIR topography 

with underlying thermogenic anatomy. 

 

 

 

In the authors’ concomitant modeling and anatomic 

validation work (figure 8), initial results show promise for 

validation of representative etiological bioheat transfer 

models via registration of 2D TIRI’s to 3D thermometric 

MRI volumes. 

 



 

 
Fig. 8. Cadaveric excision of tissue volumes overlying the 

thermophysically distinct third of the anteromedial tibial diaphysis [16];  

and conceptual visualization of high-fidelity 3D thermometric MRI volume 

generation and TIRI import. 

 

IV. CONCLUSION 

A clinical image acquisition protocol suggested in [4] is 

validated, whereby the deliberate restriction of the scene to 

contain just the ROI and a known, uniformly emissive 

surface, allows both multitemporal calibration, and 

facilitates high- fidelity segmentation of the ROI from the 

scene. Modality- and application-appropriate algorithmic 

approaches to image processing and analysis are identified, 

justified, and demonstrated on clinically acquired 

longitudinal dataset. The SURF scale- and rotation-invariant 

interest point detector and descriptor algorithm has 

demonstrated high-fidelity registration in clinical TIRI data. 

In particular reference to osseous stress pathology, TIRI has 

shown potential for staging and perhaps even early detection 

in a representative sample of ten longitudinal 3 and 4 image 

sequences. 
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