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Introduction

Over the last two decades, cardiac computed tomography 
(CT) has witnessed significant developments in the 
diagnosis of cardiovascular disease, owing to the technical 
improvements in CT imaging, which allows rapid data 
acquisition with high spatial resolution. CT angiography 
(CTA) has been widely used in the diagnostic evaluation of 
many cardiovascular diseases, and this technique currently 
serves as the first line modality in the early diagnosis of 
abdominal aortic aneurysm (AAA), aortic dissection and 
pulmonary embolism (PE) (1-5). Coronary CT angiography 
(CCTA) represents one of the most important technical 
advancements in cardiovascular CT practice, and it is 
becoming a standard clinical assessment for patients with 
low to intermediate pre-test probability for coronary artery 
disease (6-15). CTA is also commonly used to follow-up 
patients treated with endovascular stents and stent grafts 

with the aim of determining stent and stent graft patency, 
stent graft-related complications (16-20).

Despite significant improvements in cardiovascular CT 
practice, CTA still remains a challenging procedure in 
routine clinical practice due to the following reasons: first, 
acquisition of optimal image quality remains an issue in 
CCTA, as heart rate control with appropriate electrocardio- 
gram (ECG)-gating and good time of contrast injection 
comprises an essential component of CTA. Second, 
radiation dose associated with CTA is a medical concern; 
although significant progress has been made in reducing 
radiation dose with the use of dose-saving strategies, with 
resultant dose value similar to or even lower than invasive 
coronary angiography (21). However, a collaborative 
team between skilled medical imaging technologists and 
physicians play an important role in achieving such a 
low-dose protocol with diagnostic quality images, since 
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suboptimal scanning techniques or inappropriate referral 
protocols result in suboptimal image quality and high 
radiation dose.

This review provides an overview of the diagnostic 
application of CTA in cardiovascular CT practice with a 
focus on the diagnostic accuracy of CTA in the common 
cardiovascular disease, including AAA, aortic dissection and 
PE. CTA in the assessment of endovascular stent graft repair 
of aortic aneurysm and aortic dissection is also reviewed. 
More attention is paid to the CCTA in the diagnosis of 

coronary artery disease with regard to the diagnostic and 
prognostic value of this rapidly evolved technique. Finally, 
recently introduced capabilities for CCTA such as fractional 
flow reserve (FFR) CT and effective dose reduction through 
iterative reconstruction (IR) are highlighted.

CTA in AAA and endovascular stent graft repair

With rapid technically developments in CT imaging 
technique, in particular, the widespread use of multislice 
CT, CTA has become a routine imaging modality in the 
diagnostic evaluation of patients with AAA, while invasive 
angiography is only reserved for solving complications 
situations where CTA shows indeterminate results.

CTA imaging of abdominal aorta, aneurysm and 
relationship between the aneurysm and aortic branches 
has been complemented by a number of two-dimensional 
(2D) and 3D reconstruction visualisations which enhances 
the diagnostic value of CTA to a greater extent (22-27). In 
addition to the routinely viewed 2D axial images (Figure 1A),  
multiplanar reformation (MPR) CTA images are generated 
for measurement of aneurysm length in relation to the 
proximal and distal aneurysm necks (Figure 1B), while 
maximum-intensity projection (MIP) is commonly used to 
demonstrate the extent of aneurysm in relation to the aortic 
branches (Figure 1C). 3D volume rendering technique (VRT) 
provides volumetric information of the aneurysm and other 
structures as shown in Figure 2. Measurement of proximal 
aneurysm neck length between the renal arteries and 
aneurysm plays an important role in pre-operative planning 

A B C

Figure 1 Measurements of aortic aneurysm diameter and aneurysm extent in relation to the aortic branches. (A) 2D axial CT shows maximal 
abdominal aortic aneurysm diameter of 59.3 mm; (B) coronal multiplanar reformation shows aneurysm extent of 92.5 mm, ranging from 
the proximal to distal segments of the aneurysm; (C) sagittal maximum-intensity projection demonstrates an infrarenal aortic aneurysm with 
extensive calcifications in the arterial wall. CT, computed tomography; 2D, two-dimensional.

Figure 2 3D volume rendering shows an infrarenal aortic aneurysm 
in relation to the renal arteries and common iliac arteries. 3D, 
three-dimensional.
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of endovascular aneurysm repair (EVAR) (Figure 3).
While open surgical repair of AAA is still commonly 

performed, EVAR has been increasingly used in many clinical 
centres due to its less invasiveness, lower procedure-related 
complications compared to open surgery (28-30). EVAR has 
been reported to be especially suitable for patients with co-
morbid medical conditions such as cardiac disease, chronic 
obstructive pulmonary disease, diabetes, renal disease, 
cerebrovascular disease or peripheral artery disease (31,32). 
Stent-graft integrity is of paramount importance to EVAR 
of AAA, and this can only be assessed by medical imaging. 
Currently, CTA is the preferred imaging modality for 
routine imaging follow-up of postoperative EVAR (16-19).  
CTA follow-up of EVAR includes measurements of 
aneurysm diameter to determine aneurysm sac size change 
(33-35), detection of stent graft-related complications 
such as endoleaks (Figure 4), which is the most commonly 

Figure 3 3D volume rendering shows measurement of the distance between the right (A) and left renal arteries (B) and the proximal 
segment of the aneurysm. 3D, three-dimensional.

Figure 4 A type I endoleak is present in the proximal and distal segments of aortic stent graft, as demonstrated on the axial CT images (long 
arrows in A and B). A type II endoleak (short arrow in B) is also noticed within the aneurysm sac at the level of common iliac artery due to 
patent inferior mesenteric artery (arrowhead in B). A type II endoleak (short arrows) is present in the anterior aspect of an aortic aneurysm 
following endovascular repair due to backfilling from the patent inferior mesenteric artery (long arrows) (C). CT, computed tomography.
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Figure 5 (A) A 74-year-old man had stent migration of 10.2 mm  
due to foreshortening of the longitudinal aneurysm sac at the 
24-month follow-up (B). The arrow in A indicates a type II 
endoleak, which resolved spontaneously. Reprint with permission 
from ref (40).
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reported occurrence following EVAR (36-39), and stent 
graft migration (Figure 5) (40,41).

Another 3D visualisation tool generated from CTA is 
virtual intravascular endoscopy (VIE) which shows unique 
intraluminal views of the aortic wall as well as stent wires 
(42-45). Studies have shown that VIE allows demonstration 
of intraluminal appearances of stent grafts (Figure 6), 
in particular the relationship between stent wires and 
renal artery ostia (Figure 7). This is clinically significant 
as the long-term outcomes of EVAR still remains to be 
understood, thus, VIE serves as a complementary tool to 
conventional CTA-generated visualisations for accurate 
assessment of treatment outcomes of EVAR (42-46).

CTA in aortic dissection

CTA or echocardiography is usually performed in patients 

with suspected acute aortic dissection based on clinical 
presentation and initial investigations (47-50). A systematic 
review of the diagnostic value of CTA, transesophageal 
echocardiography, and magnetic resonance imaging (MRI) 
reported that the mean sensitivity and specificity was more 
than 95% for all three examinations (51). Although MRI 
was found to be slightly superior to the other two modalities 
in patients with high pretest probability of aortic dissection, 
CTA is the preferred imaging modality in patients with 
low or intermediate pretest probability of aortic dissection; 
in particular, CT is widely available in the emergency 
department (47).

CTA-generated axial CT imaging supplemented by 2D 
or 3D reconstructions is able to identify the intimal flap 
which separates the true lumen from the false lumen, the 
size of true and false lumen (Figure 8), localization of the 

Figure 6 (A) CT angiography-generated maximum-intensity 
projection shows renal stents in bilateral renal arteries in a patient 
treated with fenestrated stent grafting; (B,C) corresponding virtual 
intravascular endoscopy reveals intraluminal appearance of the renal 
stents which are smooth and circular. CT, computed tomography.

Figure 7 2D axial CT image shows that suprarenal stent graft 
is placed above the left renal artery (arrows in A) in a patient 
treated with suprarenal aortic stent-graft. Corresponding virtual 
intravascular endoscopy confirms that the left renal ostium is crossed 
by a single stent wire (B). Short arrow in B indicates the renal 
ostium, while long arrows refer to the suprarenal stent wires. 2D, 
two-dimensional; CT, computed tomography.
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Figure 8 Sagittal reformatted CT angiography shows Stanford type 
A aortic dissection with true lumen (short arrows) compressed by 
the false lumen. Aortic dissection arises from the ascending aorta as 
indicated by the large arrows. CT, computed tomography.

Figure 9 2D axial images of CT angiography show Stanford type A aortic dissection extending from the ascending aorta to the abdominal 
aorta with true lumen (short arrows) much smaller than the false lumen. The left renal artery (long arrow) arises from the true lumen. 2D, two-
dimensional; CT, computed tomography.

intimal tear, extent of aortic dissection with regard to the 
involvement of aortic branches (Figure 9), and the presence 
of hematoma, mediastinal hematoma or pleural effusion (52).

Conventional CTA without ECG-gating allows for 
acquisition of static images of intimal flap, thus reflects the 
configuration of the intimal flap at an arbitrary time point. 
However, motion artifacts of the ascending aorta or of 
an intimal flap can cause cardiac pulsation, thus affecting 
image quality in aortic dissection (53). ECG-gated CTA is 
therefore recommended for evaluation of aortic dissection 
as it allows the phase-resolved cine imaging by eliminating 
the impact of motion artifacts due to cardiac pulsation (54), 
and the 4D images enable assessment of the dynamics of 
the intimal flap movement during a cardiac cycle (55-57). 
Studies reported that ECG-gated CTA can assess the intimal 
flap motion by demonstrating the actual status of true and 
false lumen during cardiac cycle (Figure 10), thus, providing 
more information about true lumen collapse. Identification 
of pulsating and static types of aortic dissection with ECG-
gated CTA is considered useful for differentiation of unstable 
aortic dissection from stable one (55,58).

The management of an aortic dissection depends on 
the type, time course, and symptoms associated with the 
dissection. Acute Stanford type A aortic dissection represents 
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a surgical emergency, and it is managed by surgical 
repair, while management of Stanford type B dissection 
is determined by the situation whether the dissection is 
complicated or not. Due to invasiveness and high mortality 
associated with surgical repair, endovascular stent grafting 
is increasingly used as a less invasive alternative to treat 
complicated type B dissection (59). CTA is used as a routine 
imaging modality for follow-up of endovascular repair of 
aortic dissection by showing the stent graft in relation to the 
aortic branches (Figure 11), stent grafts or stents position in 
the aorta (Figure 12), and volumetric changes in the true and 
false lumen (Figure 13) (60,61).

CTA in PE

CT pulmonary angiography (CTPA) has been widely 
recognized as the method of choice for diagnosis of 
suspected PE due to its superior sensitivity and specificity 
to ventilation-perfusion (V/Q) radioisotope scanning 
(62,63). The main advantages of CTPA over V/Q scans in 
PE include higher diagnostic accuracy, faster acquisition 
time with high contrast images, and readily availability at 
many clinical centres (64). The wide availability and high 
diagnostic performance have led to the increasing use of 
CTPA as the first line modality to detect or exclude PE 

Maximal area of TL at 20% of the R-to-R interval

Maximal area of TL at 20% of the R-to-R interval

Minimal area of TL at 80% of the R-to-R interval

Minimal area of TL at 80% of the R-to-R interval
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B

Figure 10 (A) Typical axial source images of a subject with aortic dissection in which true lumen (TL) becomes maximal at 20% of the R-to-R 
interval of the electrocardiogram (left) and TL becomes minimal at 80% of the R-to-R interval (right); (B) typical multiplanar reconstruction 
images from the left anterior oblique view of a subject with aortic dissection in which TL becomes maximal at 20% of the R-to-R interval of the 
electrocardiogram (left) and TL becomes minimal at 80% of the R-to-R interval (right). Reprint with permission from ref (55).
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Figure 11 A series of 2D axial images in a patient with Stanford type B aortic dissection treated with endovascular stent graft show that the 
stent graft is placed in the ascending aorta, just below the left subclavian artery. 2D, two-dimensional.

Figure 12 Adjunctive stent placement during the initial procedure. (A) The right renal artery originally perfused by the false lumen (left panel) 
was treated with a stent inserted from the true lumen through the uncovered dissection stent (right panel). This patient also underwent coil 
embolization of the distal false lumen and a lumbar artery; (B) the dissected right common iliac artery (left panel) was treated with placement of 
two stents (right panel). Reprint with permission from ref (60).

A
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both in the emergency department and in-patient setting.
The use of CTPA as a reliable diagnostic imaging 

modality to exclude PE has been confirmed by clinical trials 
(65,66). A meta-analysis of safety of ruling out PE by CTPA 
showed that a normal CTPA alone can safely exclude PE in 
all patients in whom CTPA is required to rule out PE, with 
pooled 3-month venous thromboembolism rate for patients 
with a normal CTPA being 1.2% (95% confidence interval: 
0.8-1.8%) (67).

Technical improvements in multislice CT allow accurate 
detection of PE, in particular subsegmental PE. A meta-

analysis shows that the rate of isolated subsegmental 
PE detected by multislice CTPA is twice as high when 
compared to that used by single slice CTPA (68).  
Despite high radiation dose associated with CTPA, it 
still remains the most reliable imaging modality for 
detection of PE. The PIOPED III study reported that 
MR pulmonary angiography (MRPA) has a sensitivity of 
78% and a specificity of 99% compared to CTPA and V/Q  
scans, which are regarded as the reference standard (69). 
Furthermore, MRPA was technically inadequate in 25% of 
the patients. Similar diagnostic value of MRPA was reported 
in another study with similar percentage of inconclusive 
results due to technical reasons (70).

For visualization of the pulmonary embolism with 
CTPA, 2D axial and multiplanar reformation images are 
the most commonly used visualization tools for detection 
of segmental and subsegmental PE (Figure 14). Others 
postprocessing tools are also available to evaluate the CTPA 
datasets, which include MIP, and VTR (71,72) (Figure 15).

CCTA in coronary artery disease

Increasing evidence shows that CCTA is a well-established 
imaging modality in the diagnosis of coronary artery 
disease due to its less invasiveness, high diagnostic value, 
and widespread accessibility (7-10,73-77). Expansion of 
multislice CT systems from a 64- to 320-slice system has 
allowed for the accurate assessment of stenosis severity 
and atherosclerotic plaque composition (Figure 16) (78), 
or even the acquisition of whole-heart coverage in one 
gantry rotation (15). Systematic reviews and meta-analyses 
reported the high diagnostic accuracy of 320-slice CCTA, 
with sensitivity similar to that observed in 64-slice CCTA, 
but specificity higher than in 64-slice CCTA (79,80). 
Although extended z-axis coverage is improved with use 
of 320-slice CCTA, temporal resolution of 320-slice CT 
is inferior to that of 64- or 128-slice CT, thus, heart rate 
control is still necessary in most of CCTA examinations (81). 
Table 1 summarizes the diagnostic value of these studies 
performed with 64- and 320-slice CCTA in coronary artery 
disease.

In addition to the excellent diagnostic performance in 
coronary artery disease, CCTA also shows high prognostic 
value in the prediction of major adverse cardiac events. 
A direct correlation between CCTA findings and the 
occurrence of future cardiac events has been reported by 
studies based on short-term to long-term follow-up, with 
results showing that normal CCTA is associated with a very 

Figure 13 True lumen (TL, green) and false lumen (FL, red) 
were selected separately from the innominate artery to the 
aortic bifurcation for all follow-up CT scans and compared with 
preoperative examinations. This example demonstrated the behavior 
over the time of lumina in the different aortic segment after 
treatment with the endovascular stent grafting technique. Reprint 
with permission from ref (61). CT, computed tomography.

Preoperative

S
te

nt
-g

ra
ft

 s
eg

m
en

t
S

te
nt

-g
ra

ft
 s

eg
m

en
t

B
ar

e 
st

en
t t

ho
ra

ci
c 

se
gm

en
t

B
ar

e 
st

en
t t

ho
ra

ci
c 

se
gm

en
t

Postoperative 2 years



384 Sun et al. CT angiography in the diagnosis of cardiovascular disease

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2014;4(5):376-396www.amepc.org/qims

Figure 14 (A) 2D axial CT images show pulmonary embolism located in the main pulmonary trunk, with involvement of bilateral main 
pulmonary arteries (arrows); (B) the same patient as A, pulmonary embolism extends to the segmental branches (arrows). 2D, two-dimensional; 
CT, computed tomography.

B

A

low rate of adverse cardiac events (<1%), while in patients 
with obstructive coronary artery disease, the event rate is 
significantly higher (3-59%) (82-91) (Figure 17). These 
results indicate that CCTA could serve as an independent 
predictor of major adverse cardiac events in patients with 
suspected coronary artery disease, although multicentre 
studies with long-term follow-up are required since most of 
the currently reports are based on single centres’ experience 
with short to mid-term follow-up.

In recent years, there has been an increasing interest 

in the investigation of diagnostic performance of non-
invasive FFR derived from CCTA (FFRCT). Computation 
of FFRCT is performed by computational fluid dynamics 
(CFD) modelling after segmentation of coronary arteries 
and left ventricular myocardium. The FFRCT ratio 
is obtained by dividing the mean pressure distal to the 
coronary stenosis by the mean aortic pressure, which can 
be measured during CFD simulations. An FFR of ≤0.80 
is currently used as a cut off value to determine coronary 
stenoses responsible for ischemia (Figures 18,19) (92,93).
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Figure 15 CT pulmonary angiography in a 57-year-old man with mild pleuritic chest pain. (A) Consecutive transverse sections show isolated 
peripheral pulmonary embolus (arrows) in a subsegmental pulmonary artery in segment 9 of the left lung; (B) oblique sagittal multiplanar 
reformation also shows embolus (arrow); (C) coronal volume-rendered display (posterior view) shows isolated peripheral filling defect (arrow) in 
otherwise normal pulmonary vascular tree. Reprint with permission from ref (72). CT, computed tomography.

Figure 16 Coronary CT angiography characterization of plaque composition. (A) A calcified plaque (arrow) is seen in the proximal segment 
of right coronary artery in a 65-year-old woman with suspected coronary artery disease; (B) a non-calcified plaque (arrow) is detected in the 
proximal segment of right coronary artery in a 67-year-old woman with known coronary artery disease; (C) a mixed plaque (arrow) is observed 
in the proximal segment of left anterior descending coronary artery in a 55-year-old female with suspected coronary artery disease. CT, 
computed tomography.
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Figure 17 Unadjusted all-cause 3-year Kaplan-Meier survival by presence, extent, and severity of coronary artery disease by coronary CT 
angiography as stratified by age <65 or ≥65 years. Although rates of mortality in relationship coronary artery disease extent are lower in patients 
age <65 years (A), patients age <65 years with 2- and 3-vessel coronary artery disease experience a higher relative rate of mortality referenced 
to patients age <65 years with no coronary artery disease in comparison with patients age ≥65 years with 2- and 3-vessel coronary artery disease 
referenced to patients age ≥65 years with no coronary artery disease (B). Reprint with permission from ref (91). CT, computed tomography.

Table 1 Diagnostic value of coronary CT angiography in coronary artery disease according to systematic reviews and meta-analyses

Type of CT scan First author
No. of articles in 

the analysis

Patient-based sensitivity  

% [95% CI]

Patient-based specificity 

% [95% CI]

64-slice coronary CT 

angiography

Abdulla et al. 2007 (9) 27 97.5 [96-99] 91 [87.5-94]

Stein et al. 2008 (10) 23 98 [96-98] 88 [85-89]

Mowatt et al. 2008 (11) 28 99 [97-99] 89 [83-94]

Sun et al. 2008 (7) 15 97 [94-99] 88 [79-97]

Guo et al. 2011 (14) 24 98 [99-99] 87 [83-90]

Salavati et al. 2012 (73) 25 99 [97-99] 89 [84-92]

Prospectively ECG-

triggered coronary CT 

angiography

Von Ballmoos et al. 2011 (74) 16 100 [98-100] 89 [82-89]

Sun et al. 2012 (75) 14 99 [98-100] 91 [88-94]

Sun et al. 2012 (76) 22 97.7 [93.7-100] 92.1 [87.2-97]

Sabarudin et al. 2013 (77) 23 98.3 [96-100] 90.5 [85.7-96]

320-slice coronary CT 

angiography

Gaudio et al. 2013 (79) 7 95.4 [88.8-98.2] 94.7 [89.1-97.5]

Li et al. 2013 (80) 10 93 [91-95] 86 [82-89]

CT, computed tomography; ECG, electrocardiogram.
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Currently, there are three multicentre trials, namely 
DISCOVER-FLOW (Diagnosis of Ischemia-Causing 
Coronary Stenoses by Noninvasive FFR Computed from 
Coronary Computed Tomographic Angiograms, conducted 
at four sites in three countries including Korea, Latvia 
and USA), DeFACTO (Determination of Fractional Flow 
Reserve by Anatomic Computed Tomographic Angiography, 
conducted at 17 centres in 5 countries including Belgium, 

Canada, Korea, Latvia and USA) and NXT (NeXt sTeps, 
conducted at 10 centres in 7 countries including Australia, 
Denmark, Germany, Japan, Korea, Latvia and the UK) 
investigating the diagnostic value of FFRCT in coronary 
artery disease (94-96). On a per-patient analysis, diagnostic 
sensitivity and specificity of FFRCT ranged from 86-90% 
and 54-79%, while on a per-vessel analysis, diagnostic 
sensitivity and specificity of FFRCT were 84% and 86-



387Quantitative Imaging in Medicine and Surgery, Vol 4, No 5 October 2014

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2014;4(5):376-396www.amepc.org/qims

Figure 18 Fractional flow reserve (FFR) derived from computed tomography (CT) angiography (FFRCT) results for 66-year-old man with 
multivessel coronary artery disease but no lesion-specific ischemia. (A) Coronary computed tomography angiography (CCTA) demonstrating 
stenosis in the left anterior descending coronary artery (LAD); (B) FFRCT demonstrates no ischemia in the LAD, with a computed value of 
0.91; (C) invasive coronary angiography (ICA) with FFR also demonstrates no ischemia in the LAD, with a measured value of 0.89; (D) CCTA 
demonstrating stenosis in the left circumflex coronary (LCx) artery; (E) FFRCT demonstrates no ischemia in the LCx, with a computed value of 
0.91; (F) ICA with FFR also demonstrates no ischemia in the LCx, with a measured value of 0.91. Reprint with permission from ref (92).

Figure 19 FFRCT results for 66-year-old man with multivessel coronary artery disease and lesion-specific ischemia. (A) Coronary CT angiography 
(CCTA) demonstrating stenosis in the left anterior descending coronary artery (LAD); (B) FFRCT demonstrates ischemia in the LAD, with a 
computed value of 0.64; (C) invasive coronary angiography (ICA) with FFR also demonstrates ischemia in the LAD, with a measured value of 0.72; 
(D) CCTA demonstrating stenosis in the left circumflex (LCx); (E) FFRCT demonstrates ischemia in the LCx, with a computed value of 0.61; (F) 
ICA with FFR also demonstrates ischemia in the LCx, with a measured value of 0.52. Reprint with permission from ref (92). FFRCT, fractional 
flow reserve (FFR) derived from coronary computed tomography (CT) angiography.
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88%, respectively. The present findings support that 
FFRCT is superior to CCTA for the diagnosis of ischemia-
causing lesions on both per-patient and per-vessel analysis 
as determined by an invasive FFR the reference standard. 
However, more multicentre trials need to be performed 
to compare the clinical impact of FFRCT guided versus 
standard diagnostic evaluation on clinical outcomes, costs 
and quality of life in patients with suspected coronary artery 
disease.
CTA-radiation dose

It is a well-known fact that CT is associated with high 
radiation dose which has raised concerns in the medical 
field over the last decade. With increasing applications of 
CTA in the cardiovascular practice, the research focus has 
shifted from the previous emphasis on diagnostic value of 
CTA to the current focus on reduction of radiation dose 
with acceptable diagnostic image quality. This is reflected 
by implementing various dose-reduction strategies with 
effective outcomes having been achieved.

CTA is commonly used as the gold standard of 
surveillance in patients following EVAR of AAA. However, 
excessive dependence on CT is expensive and exposes 
the patients to nephrotoxic intravenous contrast and 
ionizing radiation (97,98). Increasing the proportional 
use of non-nephrotoxic imaging modalities after EVAR 
has been advocated as an alternative approach to reduce 
surveillance-related morbidity (99). On the basis of 5-year 
follow-up outcomes, Sternbergh et al. proposed a modified 
surveillance protocol to alter the intensity and frequency of 
postoperative imaging follow-up. In patients without early 
endoleaks, the 6-month surveillance is eliminated, and the 
yearly aortic ultrasound examination is recommended for 
long-term surveillance of more than 1 year (100). There is 
increasing evidence of a trend from using conventional CT 
follow-up to ultrasound monitoring (100,101), so there is 
a need for a contemporary evaluation of surveillance after 
EVAR. A survey involving 41 clinical centres experienced 
in EVAR in the UK has shown there is significant 
heterogeneity in national practice for postoperative 
surveillance after EVAR (102). Intensive use of CT was 
observed in some centres and this may lead to cumulative 
renal injury due to repeated administration of contrast 
agents and radiation exposure. A recent study concluded 
that contrast-enhanced ultrasound is as accurate as CTA in 
monitoring endoleaks, aneurysm sac diameters, and target 
vessel patency in patients treated with fenestrated stent 
grafts (103).

The increased use of CTPA, especially in young 
patients with suspected PE raises concerns about the 
risk of radiation-induced malignancy and developing 
contrast-induced nephrotoxicity. Low radiation dose 
CTPA protocols with low contrast volume are increasingly 
studied due to the advantages of reducing radiation dose 
and minimising the risk of contrast-induced nephropathy 
(104-108). Low tube voltage and high pitch protocols have 
been reported to be effective approaches for reduction 
of radiation dose and contrast volume during CTPA 
examinations. Studies reported that using 80 kVp in CTPA 
can reduce radiation dose by 40% and contrast volume by 
25% without compromising image quality (109,110). IR 
is a recently introduced algorithm which has been shown 
to reduce image noise and improve image quality while 
significantly reducing radiation dose in CT scans (111-113).  
High-pitch CTPA with low kVp combined with IR has 
been reported in recent studies to show that radiation dose 
is reduced by 52%, with contrast volume of 20 mL used 
in low-dose protocol (114,115). Another strategy on dose 
reduction is the application of dual-energy CT (DECT) 
which allows material decomposition of soft tissue, iodine 
and air within the chest CT scan. DECT has been shown 
to reduce patient dose by 28% compared with single-source 
CT while improving image visualisation of pulmonary 
vessels and diagnostic confidence (116,117). Further studies 
will provide more evidence of the clinical impact of DECT 
on CTPA (118).

High radiation dose associated with CCTA is well 
recognised in the literature, with significant progress having 
been made over the last decade on dose reduction during 
CCTA examinations. The commonly used dose-reduction 
strategies include ECG-controlled tube current modulation, 
adjustment of kVp values based on patient’s body mass 
index, high-pitch CCTA protocols, prospectively ECG-
triggered CCTA, and use of IR algorithms (74-77,119-128). 
With use of these approaches, radiation dose can be reduced 
by more than 80% from initially 20 mSv to about 2 mSv 
while still maintaining high level of diagnostic accuracy. 
Currently, the low-dose CCTA protocols are increasingly 
used in clinical practice with dose similar to or even lower 
than of invasive coronary angiography. Dose of less than 1 
mSv are already achievable with the current CT scanners, 
while ultra-low-dose CCTA has been reported in a recent 
study with the mean radiation dose of 0.29 mSv, which is 
comparable to a chest x-ray examination in two views (Figure 
20) (129). These technical developments confirm that 
this technique has become a more attractive alternative to 
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invasive coronary angiography.

Summary and concluding remarks

CT angiography represents  the  most  important 
development in CT imaging, and it has evolved from the 
initial role of serving as a supplementary modality to an 
essential tool that plays an important role in the diagnosis 

and management of cardiovascular disease which involves 
arterial system in the body. Technological advancements 
in CT data acquisition and image processing techniques 
have enabled this technique to become a routine imaging 
modality in daily clinical practice. With emergence of novel 
CT scanner geometries, advanced data reconstruction and 
postprocessing techniques, CT angiography will continue 
to play a dominant role in the diagnosis of cardiovascular 

Figure 20 Normal coronary arteries. Images of normal coronary arteries in a 53-year-old patient (body mass index 17 kg/m2) by coronary 
CT angiography with 0.19 mSv. Images without model-based iterative reconstruction algorithm (MBIR): (A) left anterior descending; (B) left 
circumflex; and (C) right coronary artery. Images with MBIR: (D) left anterior descending; (E) left circumflex; and (F) right coronary artery; (G) 
three-dimensional volume-rendered computed tomography image. (H and I) Invasive coronary angiography confirming normal left and right 
coronary vessels. Reprint with permission from ref (129). CT, computed tomography.
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disease, prediction of disease extent and assistance of 
clinicians in effective patient management.

Disclosure: The authors declare no conflict of interest.
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