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1 Introduction

It is well-known that semidefinite programming has wide applications in engineering, eco-

nomics and combinatorial optimization and has received considerable attention in the opti-

mization community (see, e.g., [1, 30, 12] and the references therein). Recent research shows

that semidefinite programming is also very useful in nonconvex quadratic optimization (see,

[19, 29, 35, 36] and the references therein). Linear semidefinite programs are mainly solved

by interior-point algorithms (see, e.g., [30, 34, 31, 28, 17] and the references therein). Non-

linear semidefinite programming arises in optimal structural design (see [21, 22]), optimal

robust control (see [9, 11]) and feedback control (see [7, 11]). For a comprehensive review

of the applications of nonlinear (nonconvex) semidefinite programs, we refere the reader to

[2, 15]. In comparison with linear semidefinite programming, the study of nonlinear semidef-

inite programming, in particular, nonconvex semidefinite programming, is somewhat limited

(see [20, 26, 23, 24, 3, 4, 8, 2, 14, 15]). Recently, a class of penalty/barrier multiplier meth-

ods was proposed for the solution of convex semidefinite programming with a linear matrix

inequality constraint (see [18]). Most recently, a class of linear and nonlinear semidefinite

programs are reformulated into nonlinear programs. As a result, this class of semidefinite

programs can be solved through the solution of the reformulated nonlinear programs (see

[5, 6]). Barrier methods were suggested for the general (SDP) in [21, 22, 2, 14, 15]. These

methods require a strict (interior) fesaible solution as the starting point, which is not easy

to be found even if it exists.

It is well-known that sequential penalty method is an important method for constrained

nonlinear programming (see, e.g., [10]). Compared with barrier methods, penalty methods

are more robust and need not start with a feasible point. In this paper, we shall reformulate

a general nonlinear semidefinite program into a mathematical program with a nonsmooth

matrix equality constraint and then apply a sequential quadratic penalty method to the

reformulated problem.

Let Sm be the set of m×m real symmetric matrices and for A ∈ Sm, the notation A ≽ 0

means that A is positive semidefinite. By A ̸≽ 0, we mean that A is not positive semidefinite.

Let A,B ∈ Sm. We write A ≽ B if and only if A − B ≽ 0. Let A ≽ 0. Denote by A1/2 or√
A the unique (positive semidefinite) square root of A. For A ∈ Sm, define |A| = (A2)1/2.

If A is nondegenerate, denote by A−1 or 1/A the inverse of A. Denote A ≻ 0 if and if A is

positive definite.

Consider the following nonlinear semidefinite program:

(SDP) min f(x)

s.t. x ∈ Rn
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g(x) ≽ 0,

where f : Rn → R, g : Rn → Sm are continuously differntiable.

Suppose that X and Y are two normed spaces. Let h : X → Y be a (Fréchet) differen-

tiable operator. Let x ∈ X. We use Dh(x) to denote the (Fréchet) derivative of h at x. Let

d ∈ X. We use Dh(x)(d) to denote the directional derivative of h at x in the direction d.

Denote by X0 the feasible set of (SDP), i.e., X0 = {x ∈ Rn : g(x) ≽ 0}. Throughout the
paper, we assume that X0 ̸= ∅.

Note that A ≽ 0 if and only if |A| − A = 0 ([27]). It follows that (SDP) can be

reformulated as the following equivalent constrained optimization problem:

(P) min f(x)

s.t. x ∈ Rn

|g(x)| − g(x) = 0.

A solution scheme for (P) is to solve the following quadratic penalty problem:

(PPr) minF (x, r) =: f(x) + r∥|g(x)| − g(x)∥2,

where r > 0 is the penalty parameter and the norm ∥ · ∥ is the Frobenius norm of an m×m

matrix, i.e., ∥A∥ =
√
trace(ATA), for any m×m matrix A.

It is clear from [?] that the symmetric-matrix-valued function |X|X is continuously dif-

ferentiable on Sm. As a result, the real-valued function ∥|g(x)| − g(x)∥2 = 2trace(g2(x)) −
2trace(|g(x)|g(x)) is also continuously differentiable. However, we note that the term ∥|g(x)|−
g(x)∥2 in the objective function of (PPr) may not be twice continuously differentiable no

matter how highly smooth the symmetric-matrix-valued function g(x) is. This fact prevents

the application of the popular Newton method to solve (PPr) when the data of (SDP) are

twice continuously differntiable. On the other hand, the matrix g(x) may be singular, which

prevents us from invoking of the function“sqrtm(X)” (to compute |g(x)| =
√
g2(x)) if we

use the MATLAB code to solve (PPr) directly. These considerations lead us to adopt the

following smoothing scheme for (PPr):

(PP ϵr
r ) f(x) + r∥

√
g2(x) + ϵ2rI − g(x)∥2,

where ϵr > 0 is a scalar satisfying rϵ2r → 0 as r → +∞ and I ∈ Sm is the identity matrix.

The outline of the paper is as follows. In Section 2, we investiagte the differentiablity

and convexity of the objective function of the penalty problem (PPr) and the convexity

of the smoothed penalty problem (PP ϵr
r ). In Section 3, we study necessary and sufficient
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conditions for the convergence of optimal values of the penalty problems (PPr) ((PP
ϵr
r )) to

that of (SDP). Some sufficient conditions will also be given to guarantee the existence and

convergence of the optimal solutions of the penalty problems (PPr) ((PP
ϵr
r )). In Section 4,

we derive necessary optimality conditions for a local solution of the penalty problem (PPr)

((PP ϵr
r )). Section 5 deals with the convergence of stationary points of the penalty problems

(PPr) ((PP
ϵr
r )). Section 6 concludes the paper.

2 Some Basic Properties of Penalty Problems

In this section, we discuss some basic issues such as the differentiablity and the convexity of

penalty problems (PPr) and (PP ϵr
r ).

Definition 2.1. Let h : Rn → Sm. We say that h is convex on Rn if for any θ ∈ [0, 1] and

any x1, x2 ∈ Rn, there holds h(θx1 + (1− θ)x2) ≼ θh(x1) + (1− θ)h(x2)).

It is elementary to verify that h is convex if and only if for any Λ ≽ 0, the function

trace(Λh) : Rn → R is convex.

First we deal with the differentiablity of the objective function of (PPr).

We need the following lemma, which was proved in [25].

Lemma 2.1. Let f0 : R → R be continuously differentiable. Define F : Sm : Sm by

F (X) = UTf0(Λ)U , where X = UTΛU is the spectral decomposition of X. Then, F is also

continuously differentiable, and for any Y ∈ Sm,

DF (X)(Y ) = A(X,Y ) +
∑
i

f ′
0(λi)PiY Pi,

where

A(X, Y ) =
1

2

∑
i̸j

f0(λi)− f0(λj)

λi − λj
(PiY Pj + PjY Pi)

and λi are different eigenvalues of X and Pi is the projection onto the eigenspace correspond-

ing to λi.

Now we have the next result.

Lemma 2.2. Let F be defined as in Lemma 2.1. Define ψ(X) = trace(F (X)). Then, for

any Y ∈ Sm, we have

Dψ(X)(Y ) = trace(F ′(X)Y ),
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where F ′(X) = UTf ′
0(Λ)U.

Proof. Note that trace(A(X, Y )) = 0 since PiPj = 0 if i ̸= j. The conclusion follows from

Lemma 2.1 and this observation. 2

The following lemma is a direct consequence of Lemma 2.2.

Lemma 2.3. Let h1(X) = trace [(X + |X|)2] , h2(X) = trace
[
(
√
X2 + ϵ2I +X)2

]
, X ∈ Sm.

Then, both h1 and h2 are continuously differentiable (in fact, C1,1) on Sm, and for any

Y ∈ Sm,

Dh1(X)(Y ) = 2trace[(X + |X|)Y ),

Dh2(X)(Y ) = 2trace


(
X +

√
X2 + ϵ2I

)2
√
X2 + ϵ2I

Y

 .

The following proposition follows from Lemma 2.3 and the chain rule.

Proposition 2.1. Suppose that g : Rn → Sm is continuously differentiable. Then the

function trace
(
(|g(x)| − g(x))2

)
is continuously differentiable on Rn and

D
[
trace(|g| − g)2

]
(x)(d) = 2trace (g(x)Dg(x)(d))− 2trace (|g(x)|Dg(x)(d)) . (1)

Furthermore, if g is C1,1 on Rn, then trace
(
(|g(x)| − g(x))2

)
is also C1,1 on Rn.

By Proposition 2.1, it is clear that if the functions involved in (SDP) are continuously

differentiable (resp. C1,1), then the objective function of penalty problem (PPr) is also

continuously differentiable (resp. C1,1).

Now we consider the convexity of the objective function of (PP ϵr
r ) if f and −g are convex.

We need the next lemma, which follows immediately from Theorem 2.3.14 of [16].

Lemma 2.4. Let h1 and h2 be defined as in Lemma 2.2. Then, both h1 and h2 are convex

on Sm.

Now we prove the following lemma.

Lemma 2.5. Let h1 and h2 be defined as in Lemma 2.2. Let X1 ≼ X2. Then, hi(X1) ≤
hi(X2), i = 1, 2.
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Proof. It is clear from Lemma 2.2 that Dhi(X) ≽ 0, i = 1, 2. Moreover, by the convexity of

hi, we have

hi(X2)− hi(X1) = trace(Dhi(X1)(X2 −X1)) ≥ 0.

The proof is complete. 2

The next proposition shows that if (SDP) is a convex programming, then penalty prob-

lems (PPr) and (PP ϵr
r ) are also convex.

Proposition 2.2. Suppose that f and −g are convex on Rn. Then the objective functions

of penalty problem (PPr) and (PP ϵr
r ) are also convex.

Proof. We only prove that the objective function of penalty problem (PP ϵr
r )is convex since

the case of (PPr) can analogously proved.

It is enough to show that h2(x) = ∥
√
g2(x) + ϵ2rI − g(x)∥2 is convex on Rn. Let α ∈ [0, 1]

and x1, x2 ∈ Rn. By the convexity of −g, we have

−g(αx1 + (1− α)x2) ≼ −αg(x1)− (1− α)g(x2).

This combined with Lemmas 2.4 and 2.5 yields

h2(αx1 + (1− α)x2) = ∥
√
(−g(αx1 + (1− α)x2))

2 + ϵ2rI − g(αx1 + (1− α)x2)∥2

≤ ∥
√
(αg(x1) + (1− α)g(x2))

2 + ϵ2rI − (αg(x1) + (1− α)g(x2)) ∥2

≤ αh2(X1) + (1− α)h2(x2).

3 Convergence Analysis of Optimal Values and Opti-

mal Solutions

In this section, we give necessary and sufficient conditions that guarantee the convergence

of optimal values of (PPr) ((PP
ϵr
r )) to that of (SDP) as r → +∞. We also investigate the

convergence of optimal solutions of (PPr) ((PP
ϵr
r )) to that of (SDP) as r → +∞.

Consider the perturbed problem of (SDP):

(SDPu) min f(x)

s.t. x ∈ Rn

g(x) + uI ≽ 0,
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where u ≥ 0 is a scalar. Denote by v(u), v1(r), v2(r, ϵr) the optimal values of problems

(SDPu), (PPr) and (PP ϵr
r ), respectively. Then, it is obvious that v(0) is the optimal value

of the problem (SDP).

3.1 Penalty Problems (PPr)

In this subsection, we discuss the convergence of optimal values and optimal solutions of

(PPr).

Theorem 3.1. Assume that there exists r̄ > 0 and m0 ∈ R such that

F (x, r̄) ≥ m0, ∀x ∈ Rn. (2)

Then, limr→+∞ v1(r) = v(0) if and only if lim infu→0+ v(u) = v(0).

Proof. Sufficiency. Suppose to the contrary that there exist 0 < rk → 0 and δ > 0 such

that

v1(rk) ≤ v(0)− δ,∀k.

It follows that there exists xk such that

m0 + (rk − r̄)∥|g(xk)| − g(xk)∥2 ≤ f(xk) + rk∥|g(xk)| − g(xk)∥2

≤ v(0)− δ/2, ∀k. (3)

As a result,

∥|g(xk)| − g(xk)∥2 ≤
v(0)−m0 − δ/4

rk − r̄
= τk. (4)

Suppose that

g(xk) = UT
k diag(λ1,k, · · · , λm,k)Uk, (5)

where Uk is an orthogonal matrix and λ1,k ≥ λ2,k ≥ · · · ≥ λm,k. Then, from (4) we have

|λi,k| − λi,k ≤ τ
1/2
k . (6)

From (6), we deduce that

λi,k ≥ −τ 1/2k /2, i = 1, · · · ,m.

It follows that

g(xk) ≽ −τ 1/2k /2I.
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Thus, we have from the definition of v(u) that

v(−τ 1/2k /2) ≤ f(xk).

This, combined with (3), yields

v(−τ 1/2k /2) ≤ v(0)− δ/2.

Hence,

v(0) ≤ lim inf
l→+∞

≤ v(0)− δ/2,

which is impossible.

Necessity. Suppose to the contrary that there exist uk → 0+ and K > 0 such that

v(uk) ≤ v(0)− δ, k ≥ K.

As a result, there exists xk such that

g(xk) + ukI ≽ 0 (7)

and

f(xk) ≤ v(0)− δ/2, k ≥ K. (8)

Let rk = 1/uk. It follows that

v1(rk) ≤ f(xk) + 1/uk∥|g(xk)| − g(xk)∥2, ∀k.

This, together with (8), gives us

v1(1/uk) ≤ v(0)− δ/2 + 1/uk∥|g(xk)| − g(xk)∥2. (9)

Assume g(xk) as in (5). Then from (7), we have

λi,k + uk ≥ 0, i = 1, · · · ,m.

As a result,

0 ≤ |λi,k| − λi,k ≤ 2uk.

This, together with (9), implies

v1(1/uk) ≤ v(0)− δ/2 + 1/uk · 2m · u2k
= v(0) + 2m · uk − δ/2.

Passing to the limit, we get

v(0) = lim
k→+∞

v1(1/uk) ≤ v(0)− δ/2,

8



which is impossible. The proof is complete. 2

Some sufficient conditions that guarantee the lower semicontinuity of the perturbation

function v(u) at the origin are presented in the following proposition, whose proof is similar

to that of Proposition 3.2 in [32].

Let X(u) = {x ∈ Rn : g(x) + uI ≽ 0}, u ≥ 0.

Proposition 3.1. Consider (SDP) and its perturbed problem (SDPu) (u ≥ 0). If one of

the following conditions holds, then the perturbation function v(u) is lower semicontinuous

at the origin.

(i) The set-valued mapX(u) is upper semicontinuous at u = 0 andX(0) = X0 is compact.

(ii) The set-valued map X(u) is upper semicontinuous at u = 0 and there exists a

neighbourhood U of X(0) = X0 such that f is uniformly continuous on U .

(iii) f is level-bounded on Rn, i.e., lim
∥x∥→+∞

f(x) = +∞.

(iv) There exists α > 0 such that f is level-bounded on the set

Λα = {x ∈ Rn : g(x) + αI ≽ 0},

namely, for any sequence {xk} ⊂ Λα with ∥xk∥ → +∞, we have limk→+∞ f(xk) = +∞.

Remark 3.1. Some sufficient conditions, which are easy to verify, that guarantee the upper

semicontinuity of the set-valued map X(u) at the origin can be found in [33].

Denote by S and S1
r , the sets of optimal solutions of (SDP), (PPr), respectively.

The next theorem gives some sufficient conditions for the existence of optimal solutions

to (PPr) and their convergence.

Theorem 3.2. Consider problems (SDP ) and (PPr). Assume that (2) holds. Suppose that

one of the conditions (i), (iii) and (iv) of Proposition 3.1 holds. Then

(a) S is nonempty and compact;

(b) there exists r̄′ > 0 such that S1
r is nonempty and compact whenever r ≥ r̄′;

(c) suppose that xr ∈ S1
r . Then {xr} is bounded and every limit point of {xr} belongs

to S.

Proof. We only prove the case when (iv) of Proposition 3.1 holds since the other two cases

are easier to prove.

9



(a) Since X0 ̸= ∅, fix an x0 ∈ X0. Then the set {x ∈ X0 : f(x) ≤ f(x0)} ⊂ Λα
∩{x ∈ Rn :

f(x) ≤ f(x0)} is compact. Therefore, S ̸= ∅. As S ⊂ {x ∈ X0 : f(x) ≤ f(x0)}, it follows

that S is bounded. It is obvious that S is closed. Hence, S is nonempty and compact.

(b) Let x0 ∈ X0. We show that there exists r̄′ > 0 such that, for any r ≥ r̄′,

{x ∈ Rn : f(x) + r∥|g(x)| − g(x)∥2 ≤ f(x0) + r∥|g(x0)| − g(x0)∥2 = f(x0)} ⊂ Λα. (10)

Otherwise, there exists 0 < rk → +∞ and xk ∈ Rn such that

f(xk) + rk∥|g(xk)| − g(xk)∥2 ≤ f(x0) (11)

and

g(xk) + αI ̸≽ 0. (12)

From (11) and (2), we have

∥|g(xk)| − g(xk)∥2 ≤
f(x0)−m0

rk − r̄
= τk.

By the same argument as in the proof of the sufficiency part of Theorem 2.1, we have

g(xk) ≽ −τ 1/2k /2I.

Consequently,

g(xk) + τ
1/2
k /2I ≽ 0

when k is sufficiently large. This contradicts (12). Hence, there exists r̄′ > 0 such that (10)

holds. As a result, S1
r is nonempty and compact whenever r ≥ r̄′.

(c) Let xr ∈ S1
r , r ≥ r̄′. Then {xr} ⊂ Λα. Hence, {xr} is bounded. Suppose that x̄ is a

limit point of {xr}. Then there exist 0 < rk → +∞ and xrk ∈ Srk such that limk→+∞ xrk = x̄.

Let x0 ∈ X0. Then, from xrk ∈ Srk , we have

f(xrk) + rk∥|g(xrk)| − g(xrk)∥2 ≤ f(x0). (13)

It follows that

∥|g(xrk)| − g(xrk)∥2 ≤
f(x0)− f(xrk)

rk
.

Passing to the upper limit as k → +∞, we obtain

∥|g(x̄)| − g(x̄)∥ ≤ 0.

Hence, g(x̄) ≽ 0, i.e., x̄ ∈ X0. Furthermore, from (13), we have

f(xrk) ≤ f(x0).
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Passing to the limit as k → +∞, we have f(x̄) ≤ f(x0). By arbitrariness of x0 ∈ X0, we see

that x̄ ∈ S. The proof is complete. 2

Recall that v1(r) is the optimal value of problem (PPr) . We have the following conver-

gence result for approximate optimal solutions of (PPr). The proof is elementary and thus

omitted.

Theorem 3.3. Suppose that 0 < δk → 0. Let 0 < rk → +∞ and each xk satisfy

f(xk) + rk∥|g(xk)| − g(xk)∥2 ≤ v1(rk) + δk.

Then each limit point of {xk} is a solution to (SDP).

3.2 Penalty Problems (PP ϵr
r )

In this subsection, we deal with the convergence of optimal values and optimal solutions of

(PP ϵr
r ).

Theorem 3.4. Assume that (2) holds. Then, the following two statements are true:

(i) If lim infu→0+ v(u) = v(0), then for any sequence 0 < ϵr with rϵ2r → 0 as r → +∞,

there holds limr→+∞ v2(r, ϵr) = v(0).

(ii) The converse of (i) is also true.

Proof. (i) Let x0 ∈ X0. Then

v2(r, ϵr) ≤ f(x0) + rtrace
[
(
√
g2(x0) + ϵ2rI − g(x0))

2
]
.

It follows that

lim sup
r→+∞

v2(r, ϵr) ≤ f(x0) + lim sup
r→+∞

rϵ2rtrace

 ϵ2rI

(
√
g2(x0) + ϵ2rI + g(x0))2


= f(x0).

Hence,

lim sup
r→+∞

v2(r, ϵr) ≤ v(0). (14)

Suppose to the contrary that for some δ > 0,

lim sup
r→+∞

v2(r, ϵr) ≤ v(0)− δ.
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Then there exist rk → +∞ and ϵrk > 0 satisfying rkϵ
2
rk

→ 0 such that

v1(rk, ϵrk) ≤ v(0)− δ/2,∀k.

It follows that there exists xk such that

m0 + rk
∥∥∥(√g2(xk) + ϵ2rkI − g(xk))

∥∥∥2 − r̄∥|g(xk)| − g(xk)∥2

≤ f(xk) + rk
∥∥∥(√g2(xk) + ϵ2rkI − g(xk))

∥∥∥2
≤ v(0)− δ/4, ∀k. (15)

As a result,

rk∥
√
g2(xk) + ϵ2rkI − g(xk)∥2 − r̄∥|g(xk)| − g(xk)∥2 ≤ v(0)−m0 − δ/4. (16)

Assume g(xk) as in (5). Then, from (16) we have

rk
m∑
i=1

(√
λ2i,k + ϵ2rk − λi,k

)2
− r̄

m∑
i=1

(|λi,k| − λi,k)
2 ≤ v(0)−m0 − δ/4.

It follows that
m∑
i=1

[
λ2i,k − λi,k

√
λ2i,k + ϵ2rk

]

≤
v(0)−m0 − δ/4−mrkϵ

2
rk
− 2

∑m
i=1 r̄λi,k|

(
λi,k| −

√
λ2i,k + ϵ2rk

)
2(rk − r̄)

Note that

rkϵ
2
rk

→ 0

and

λi,k
(
|λi,k| −

√
λ2i,k + ϵ2rk

)
→ 0, i = 1, · · · ,m. (17)

Consequently,

m∑
i=1

[
λ2i,k − λi,k

√
λ2i,k + ϵ2rk

]

≤ sk =:
v(0)−m0 − δ/4−mrkϵ

2
rk
− 2

∑m
i=1 r̄λi,k|

(
λi,k| −

√
λ2i,k + ϵ2rk

)
2(rk − r̄)

→ 0.

That is,

m∑
i=1

[
λ2i,k − λi,k

√
λ2i,k + ϵ2rk

]
=

m∑
i=1

λi,k(λi,k − |λi,k|) +
m∑
i=1

λi,k
[
|λi,k| −

√
λ2i,k + ϵ2rk

]
=

∑
λi,k<0

2λ2i,k +
m∑
i=1

λi,k
[
|λi,k| −

√
λ2i,k + ϵ2rk

]
≤ sk.
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This, combined with (17), shows that there exists a positive sequence s′k → 0 such that

∑
λi,k<0

2λ2i,k ≤ s′k.

Hence,

λi,k ≥ −
√
s′k, if λi,k < 0.

So

λi,k ≥ −
√
s′k, i = 1, · · · ,m.

Let 0 < τk =
√
s′k → 0. Then,

As a result,

g(xk) + τkI ≽ 0.

By assumption, we have

lim inf
k→+∞

f(xk) ≥ lim inf v(τk) = v(0). (18)

On the other hand, from (15) we have

f(xk) ≤ v(0)− δ/4.

It follows that

lim sup
k→+∞

f(xk) ≤ v(0)− δ/4,

contradicting (18). Hence,

lim inf
r→+∞

v(r, ϵr) ≥ v(0).

This combined with (14) yields

lim
r→+∞

v(r, ϵr) = v(0).

(ii) Suppose to the contrary that

lim inf
u→0+

v(u) ≤ v(0)− δ,

for some δ > 0. Then there exists uk → 0+ and K > 0 such that

v(uk) ≤ v(0)− δ/2, k ≥ K.

As a result, there exists xk such that

g(xk) + ukI ≽ 0 (19)
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and

f(xk) ≤ v(0)− δ/4, k ≥ K. (20)

Let rk = 1/uk, ϵrk = uk. Then 0 < rk → +∞, ϵrk > 0 and rkϵ
2
rk

= uk → 0. It follows that

v1(rk, ϵrk) ≤ f(xk) + 1/uktrace
(
(
√
g2(xk) + u2kI − g(xk))

2
)
,∀k. (21)

Assume g(xk) as in (5). Then

trace
(
(
√
g2(xk) + u2kI − g(xk))

2
)
=

m∑
i=1

(√
λ2i,k + u2k − λi,k

)2
. (22)

From (19), we have

λi,k ≥ −uk, i = 1, · · · ,m. (23)

Consider the function

F (y) =
√
y2 + u2k − y, y ∈ R.

We have

F ′(y) =
y√

y2 + u2k
− 1 =

y −
√
y2 + u2k√

y2 + u2k
< 0.

Hence, F (y) is decreasing. In addition, F (y) > 0,∀y ∈ R. These properties of F (y) combined

with (21)-(23) yield

v1(rk, ϵrk) ≤ f(xk) +muk(
√
2 + 1)2.

This, together with (20), gives us

v1(rk, ϵrk) ≤ v(0)− δ/4 +muk(
√
2 + 1)2.

As a result,

lim sup
k→+∞

v1(rk, ϵrk) ≤ v(0)− δ/4,

contradicting the assumption. The proof is complete. 2

Denote by S2
r the set of optimal solutions of (PP ϵr

r ).

The next theorem gives sufficient conditions for the existence of optimal solutions to

(PP ϵr
r ) and their convergence.

Theorem 3.5. Consider problems (SDP ) and (PP ϵr
r ). Assume that (2) holds. Suppose

that one of the conditions (i), (iii) and (iv) of Proposition 3.1 holds. Then

(a) S is nonempty and compact;

(b) there exists r̄′′ > 0 such that S2
r is nonempty and compact whenever r ≥ r̄′′;

14



(c) suppose that xr ∈ S2
r , r ≥ r̄′′. Then {xr} is bounded and every limit point of {xr}

belongs to S.

Proof. We only prove the case when (iv) of Proposition 3.1 holds since the other two cases

are easier to prove.

(a) The same as the proof of statement (a) of Theorem 3.2.

(b) Let x0 ∈ X0. We show that there exists r̄′′ > 0 such that for r ≥ r̄′′,

{x ∈ Rn : f(x)+r∥
√
g2(x) + ϵ2rI−g(x)∥2 ≤ f(x0)+r∥

√
g2(x0) + ϵ2rI−g(x0)∥2} ⊂ Λα. (24)

Otherwise, there exists 0 < rk → +∞ and 0 < ϵrk with rkϵ
2
rk

→ 0, and xk ∈ Rn such that

f(xk) + rk∥
√
g2(xk) + ϵ2rkI − g(xk)∥2 ≤ f(x0) + rk∥

√
g2(x0) + ϵ2rkI − g(x0)∥2 (25)

and

g(xk) + αI ̸≽ 0. (26)

From (25) and (2), we have

rk∥
√
g2(xk) + ϵ2rkI − g(xk)∥2 − r̄∥|g(xk)| − g(xk)∥2

≤ f(x0)−m0 + ∥
√
g2(x0) + ϵ2rkI − g(x0)∥2.

Arguing as in the proof of the sufficiency part of Theorem 3.4, there exist a subsequence

{rkl} of {rk} and a sequence 0 < τl → 0 such that

g(xkl) + τlI ≽ 0.

Consequently,

g(xkl) + αI ≽ 0

when l is sufficiently large. This contradicts (26). Hence, there exists r̄ > 0 such that (24)

holds. As a result, S2
r is nonempty and compact whenever r ≥ r̄′′.

(c) Let xr ∈ S2
r , r ≥ r̄′′. Then {xr} ⊂ Λα. Hence, {xr} is bounded. Suppose that x̄ is a

limit point of {xr}. Then there exist 0 < rk → +∞ and xrk ∈ S2
rk
such that limk→+∞ xrk = x̄.

Let x0 ∈ X0. Then from xrk ∈ S2
rk
, we have

f(xrk) + rk∥
√
g2(xrk) + ϵ2rkI − g(xrk)∥2 ≤ f(x0) + rk∥

√
g2(x0) + ϵ2rkI − g(x0)∥2. (27)

It follows that

∥
√
g2(xrk) + ϵ2rkI − g(xrk)∥2 ≤

f(x0)− f(xrk)

rk
+ ∥

√
g2(x0) + ϵ2rkI − g(x0)∥2.
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Passing to the upper limit as k → +∞, we obtain

∥|g(x̄)| − g(x̄)∥ ≤ 0.

Hence, g(x̄) ≽ 0, i.e., x̄ ∈ X0. Furthermore, from (27), we have

f(xrk) ≤ f(x0) + rk
∥∥∥√g2(x0) + ϵ2rkI − g(x0)

∥∥∥2
= f(x0) + rk

∥∥∥∥∥∥ ϵ2rkI√
g2(x0) + ϵ2rkI + g(x0)

∥∥∥∥∥∥
2

= f(x0) + rkϵ
2
rk

∥∥∥∥∥∥ ϵrkI√
g2(x0) + ϵ2rkI + g(x0)

∥∥∥∥∥∥
2

. (28)

Note that rkϵ
2
rk

→ 0 and

{∥∥∥∥ ϵrk I√
g2(x0)+ϵ2rk

I+g(x0)

∥∥∥∥2
}

is bounded. Taking the limit in (28) as

k → +∞, we have f(x̄) ≤ f(x0). By the arbitrariness of x0 ∈ X0, we see that x̄ ∈ S. The

proof is complete. 2

Recall that v2(r, ϵr) is the optimal value of problem (PP ϵr
r ). We have the following con-

vergence result for the approximate optimal solutions of (PP ϵr
r ), whose proof is similar to

that of Theorem 3.3 and thus omitted.

Theorem 3.6. Suppose that 0 < δk → 0. Let 0 < rk → +∞ and 0 < ϵrk satisfy rkϵ
2
rk

→ 0.

Let each xk satisfy

f(xk) + rk∥
√
g2(xk) + ϵ2rkI − g(xk)∥2 ≤ v1(rk, ϵrk) + δk.

Then each limit point of {xk} is a solution to (SDP).

4 Convergence of Stationary Points of the Penalty Prob-

lems

In this section, we present necessary optimality conditions for a local minimum of (PPr) (

(PP ϵr
r )). We show that any limit point of a sequence of stationary points of (PPr) ((PP

ϵr
r ))

satisfies the KKT optimality condition of (SDP).

Definition 4.1 [23]. Let x0 ∈ Rn be feasible to (SDP). We say that the Mangasarian-

Fromovitz constraint qualification holds at x0 if there exists d ∈ Rn such that g(x0) +
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Dg(x0)(d) ≻ 0.

Definition 4.2. Let x̄ be feasible to (SDP). We say that x̄ satisfies the KKT optimality

condition of (SDP) if there exists Ω ∈ Sm with Ω ≽ 0 such that

∂f(x̄)

∂xi
− trace

(
Ω
∂g(x̄)

∂xi

)
= 0 (29)

and

Ωg(x̄) = 0. (30)

It was established in [23] that if x̄ is a local solution of (SDP) and the Mangasarian-

Fromovitz constraint qualification holds at x̄. Then x̄ is a KKT point of (SDP).

First we give necessary optimality conditions for (PPr).

Theorem 4.1. Suppose that x̄r is a local minimum of (PPr). Then

∂f(x̄r)

xi
+ rtrace

[
(g(x̄r)− |g(x̄r)|)

∂g(x̄r)

∂xi

]
= 0, i = 1, · · · , n. (31)

Proof. The conclusion follows directly from Proposition 2.1 and the standard necessary

optimality conditions for a local minimum of an unconstrained optimization problem. 2

Let

h(x) = ∥
√
g2(x) + ϵ2rI − g(x)∥2.

It is straightforward to prove the next lemma.

Lemma 4.1.

∂h(x)

∂xi
= 2trace

2g(x)− 2g2(x) + ϵ2rI√
g2(x) + ϵ2rI

 ∂g(x)

∂xi

 , i = 1, · · · , n. (32)

Now we derive optimality conditions for a local minimum of (PP ϵr
r ).

Theorem 4.2. Let x̄r be a local solution to (PP ϵr
r ). Then

∂f(x̄r)

xi
+ 2rtrace

2g(x̄r)− 2g2(x̄r) + ϵ2rI√
g2(x̄r) + ϵ2rI

 ∂g(x̄r)

∂xi

 = 0, i = 1, · · · , n. (33)

Proof. Since x̄r is a local solution to (PP ϵr
r ), by the standard necessary optimality condition,

we have
∂f(x̄r)

xi
+ r

∂h(x̄r)

∂xi
= 0, i = 1, · · · , n. (34)

Substituting (32) into (34), we obtain (33). 2
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4.1 Penalty Problems (PPr)

In this subsection, we show the convergence of stationary points of (PPr).

The next lemma is useful for convergence analysis. Since the proof is straightforward,

we omit it.

Lemma 4.2 Let 0 < rk → +∞. Let x̄k ∈ Rn,∀k. Suppose that there exists M ∈ R such

that

f(x̄k) + rk∥|g(x̄k)| − g(x̄k)∥2 ≤M. (35)

Then any limit point of {x̄k} is feasible to (SDP).

The convergence of stationary points of (PPr) is presented in the following theorem.

Theorem 4.3. Let 0 < rk → +∞ as k → +∞. Consider the problems (SDP) and (PPrk).

Let each x̄k be generated by some method for solving (PPrk). Suppose that there exists

M ∈ R such that (35) holds. Then each limit point of {x̄k} is feasible for (SDP). Further-

more, suppose that each x̄k satisfies the optimality condition of (PPrk) given by (31) (with r

replaced by rk). Let x̄ be a limit point of {x̄k} and let the Mangasarian-Fromovitz constraint

qualification hold at x̄. Then x̄ satifies the KKT optimality condition of (SDP).

Proof. By Lemma 4.2, each limit point of {x̄k} is feasible for (SDP). Assume without loss

of generality that x̄k → x̄ as k → +∞. Let

Ωk = −2rk [g(x̄k)− |g(x̄k)|] ≽ 0. (36)

Then (31) (with r replaced by rk ) becomes

∂f(x̄k)

∂xi
− trace

[
Ωk
∂g(x̄k)

∂xi

]
= 0, i = 1, · · · , n. (37)

We assert that {Ωk} is bounded. Otherwise, assume without loss of generality that ∥Ωk∥ →
+∞ and

lim
k→+∞

Ωk/∥Ωk∥ = Ω′ ≽ 0.

Dividing (37) by ∥Ωk∥ and passing to the limit as k → +∞, we get

trace

(
Ω′∂g(x̄)

∂xi

)
= 0, i = 1, · · · , n. (38)
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Note that

trace(Ω′g(x̄)) = lim
k→+∞

trace

(
Ωk

∥Ωk∥
g(x̄k)

)

= lim
k→+∞

trace

(
|g(x̄k)|(g(x̄k)− |g(x̄k)|)

∥(g(x̄k)− |g(x̄k)|∥

)
≤ 0

because |g(x̄k)| ≽ 0 and g(x̄k)− |g(x̄k)| ≼ 0.

On the other hand, from Ω′ ≽ 0 and g(x̄) ≽ 0, we deduce that

trace(Ω′g(x̄)) ≥ 0.

Hence, we have

trace(Ω′g(x̄)) = 0. (39)

By the Mangasarian-Fromovitz constraint qualification at x̄, there exists d ∈ Rn such that

g(x̄) +Dg(x̄)(d) ≻ 0. It is obvious that Ω′ ̸= 0. It follows that

trace (Ω′(g(x̄) +Dg(x̄)(d)) > 0.

This, combined with (39), yields

trace (Ω′Dg(x̄)(d)) > 0,

contradicting (38). So we assume without loss of generality that Ωk → Ω ≽ 0. Taking the

limit in (37) as k → +∞, we obtain (29). Moreover,

trace(Ωg(x̄)) = lim
k→+∞

trace (Ωkg(x̄k))

= lim
k→+∞

trace (rk|g(x̄k)|(g(x̄k)− |g(x̄k)|))

≤ 0

In the meantime, trace(Ωg(x̄)) ≥ 0. Hence, trace(Ωg(x̄)) = 0, implying (30). The proof is

complete. 2

4.2 Penalty Problems (PP ϵr
r )

In this subsection, we carry out convergence analysis of the stationary points of (PP ϵr
r ).

We need the following lemma, whose proof is straightforward and thus omited.
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Lemma 4.3. Let 0 < rk → +∞ and 0 < ϵrk → 0. Let x̄k ∈ Rn, ∀k. Suppose that there

exists M ∈ R such that

f(x̄k) + rk∥
√
g2(x̄k) + ϵ2rkI − g(x̄k)∥2 ≤M. (40)

Then any limit point of {x̄k} is feasible to (SDP).

The following theorem gives convergence results for the stationary points of the penalty

problems (PP ϵr
r ).

Theorem 4.4. Let 0 < rk → +∞ and 0 < rkϵ
2
rk

→ 0 as k → +∞. Consider the problems

(SDP) and (PP
ϵrk
rk ). Let each x̄k be generated by some method for solving (PP

ϵrk
rk ). Suppose

that there exists M ∈ R such that (40) holds. Then each limit point of {x̄k} is a feasible

solution to (SDP). Furthermore, suppose that each x̄k satisfies the optimality condition of

(PP
ϵrk
rk ) given by (33) (with r and ϵr replaced by rk and ϵrk , respectively). Let x̄ be a limit

point of {x̄k} and let the Mangasarian-Fromovitz constraint qualification hold at x̄. Then x̄

satifies the KKT optimality condition of (SDP).

Proof. The assertion that each limit point of {x̄k} is a feasible solution to (SDP) follows

directly from Lemma 4.3. Assume without loss of generality that x̄k → x̄ as k → +∞. Let

Ωk = −2rk

2g(x̄k)− 2g2(x̄k) + ϵ2rkI√
g2(x̄k) + ϵ2rkI

 . (41)

Then (33) (with r and ϵr replaced by rk and ϵrk , respectively) becomes

∂f(x̄k)

∂xi
− trace

[
Ωk
∂g(x̄k)

∂xi

]
= 0, i = 1, · · · , n. (42)

Note that
2g2(x̄k) + ϵ2rkI√
g2(x̄k) + ϵ2rkI

=
√
g2(x̄k) + ϵ2rkI +

g2(x̄k)√
g2(x̄k) + ϵ2rkI

≽ 2g(x̄k).

Consequently,

Ωk ≽ 0. (43)

Now we prove that {Ωk} is bounded. Otherwise, assume without loss of generality that

∥Ωk∥ → +∞ and

lim
k→+∞

Ωk/∥Ωk∥ = Ω′. (44)

It is clear from (43) and (44) that

Ω′ ≽ 0, (45)

∥Ω′∥ = 1. (46)
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Dividing (42) by ∥Ωk∥, we obtain

∂f(x̄k)
∂xi

∥Ωk∥
− trace

[
Ωk

∥Ωk∥
∂g(x̄k)

∂xi

]
= 0, i = 1, · · · , n. (47)

Taking the limit in (47) as k → +∞, we get

trace

(
Ω′∂g(x̄)

∂xi

)
= 0, i = 1, · · · , n. (48)

Assume that

g(x̄k) = UT
k diag(λ1,k, · · · , λm,k)Uk,

where Uk is an m×m orthogonal matrix and λ1,k ≥ λ2,k ≥ · ≥ λm,k. As a result,

Ωkg(x̄k) = 2rkU
T
k diag


(√

λ21,k + ϵ2rk − λ1,k
)2

√
λ21,k + ϵ2rk

λ1,k, · · · ,

(√
λ2m,k + ϵ2rk − λm,k

)2
√
λ2m,k + ϵ2rk

λm,k

Uk. (49)

Assume that

g(x̄) = UTdiag (λ1, · · · , λs, 0 · · · , 0)U, (50)

where U is an m×m orthogonal matrix, s = rank(g(x̄)) and λ1 ≥ λ2 ≥ · · · ≥ λs > 0.

By the continuity of g, we have

lim
k→+∞

λi,k = λi > 0, i = 1, · · · , s, (51)

lim
k→+∞

λi,k = 0, i = s+ 1, · · · ,m. (52)

Therefore,

lim
k→+∞

2rk

(√
λ2i,k + ϵ2rk − λi,k

)2
√
λ2i,k + ϵ2rk

λi,k

= 2 lim
k→+∞

rkϵ
4
rk√

λ2i,k + ϵ2rk
·
(√

λ2i,k + ϵ2rk + λi,k
)2
λi,k

= 0 · 1

4λ3i
= 0, i = 1, · · · , s. (53)

Hence,

lim
k→+∞

2rk

(√
λ2i,k + ϵ2rk − λi,k

)2
√
λ2i,k + ϵ2rk

λi,k/∥Ωk∥

= 0, i = 1, · · · , s. (54)
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On the other hand,

lim
k→+∞

∣∣∣∣∣∣∣2rk
(√

λ2i,k + ϵ2rk − λi,k
)2

√
λ2i,k + ϵ2rk

λi,k/∥Ωk∥

∣∣∣∣∣∣∣
≤ lim

k→+∞
|λi,k| = 0, i = s+ 1, · · · ,m. (55)

The combination of (49), (54) and (55) yields

lim
k→+∞

∥∥∥∥∥ Ωk

∥Ωk∥
g(x̄k)

∥∥∥∥∥ = ∥Ω′g(x̄)∥ = 0.

So

Ω′g(x̄) = 0. (56)

Since the Mangasarian-Fromovitz constraint qualification holds at x̄, there exists d ∈ Rn

such that

g(x̄) +Dg(x̄)(d) ≻ 0.

Therefore, when t > 0 is sufficiently small,

g(x̄) +Dg(x̄)(d)− tΩ′ ≻ 0. (57)

It follows from (48) that

trace(Ω′Dg(x̄)(d)) = 0. (58)

(56)-(58) and (46) together give us

0 ≤ trace (Ω′ (g(x̄) +Dg(x̄)(d)− tΩ′))

= trace(Ω′g(x̄)) + trace(Ω′Dg(x̄)(d))− t∥Ω′∥2

= 0 + 0− t = −t < 0,

which is impossible. So we conclude that {Ωk} is bounded. Assume without loss of generality

that

lim
k→+∞

Ωk = Ω ≽ 0. (59)

Taking the limit in (42) as k → +∞, we obtain (29). Further from (49)-(52), we can establish

(53), and by the boundedness of {∥Ωk∥}, we have

lim
k→+∞

∣∣∣∣∣∣∣2rk
(√

λ2i,k + ϵ2rk − λi,k
)2

√
λ2i,k + ϵ2rk

λi,k

∣∣∣∣∣∣∣
≤ lim

k→+∞
∥Ωk∥|λi,k|

= 0, i = s+ 1, · · · ,m. (60)
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The combination of (49), (53) and (60) implies

Ωg(x̄) = lim
k→+∞

Ωkg(x̄k) = 0. (61)

(29), (59) and (61) together show that x̄ is a KKT point of (SDP). The proof is complete.

2

5 Conclusions

A nonlinear semidefinite program was converted into a mathematical program with a matrix

equality constraint. A sequential quadratic penalty method was applied to the converted

problem. Necessary and sufficient conditions for the convergence of optimal values of the

penalty problems were given. Some sufficient conditions were provided for the existence and

convergence of optimal solutions of the penalty problems. Under certain conditions, it was

shown that any limit point of a sequence of stationary points of the penalty problems is a

KKT stationary point of the original semidefinite programming problem.
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