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Synopsis  
Dormancy or torpor is a widely-recognized behavioral and physiological state of both 

animals and plants that generally indicates inactivity and reduced metabolic rate. It can 

involve very different physiological states in response to a variety of environmental 

stimuli, including temperature, water, or food. It can last < 1 day, may occur for a few 

consecutive days, or may last an entire season or even many years. Torpor involves 

physiological changes related especially to body temperature, metabolism and water 

balance. Hibernation is when an organism spends the winter in a state of dormancy; it is 

long-term multi-day torpor for survival of cold conditions. Estivation is summer 

dormancy, for survival of hot and dry periods. The general roles of torpor, hibernation or 

estivation are avoidance of unfavorable or lethal short- or long-term (seasonal) climatic 

conditions and conservation of energy during this period of inactivity. Seasonal 

dormancy allows species to exploit ephemeral environments and colonize habitats that 

would otherwise be unsuitable for growth or survival at certain times of the year. There 

are costs to dormancy and torpor, but the advantages contribute to the fitness of 

individuals and species that use it. 
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Introduction  

Dormancy is a widely-recognized behavioral and physiological state of both animals and 

plants that generally involves inactivity and reduced metabolic rate (Figure 1). Torpor is a 

similar term to dormancy, meaning inactivity or lethargy. Dormancy or torpor can 

involve very different physiological states, in response to a variety of different stimuli, 

including low temperature, high temperature, lack of water, or lack of food. It can be a 

short-term event (< 24 hours), can occur for a few consecutive days, or may last an entire 

season or even many years. Dormancy can also involve a developmental arrest 

(diapause). Cryptobiosis, which literally means ‘hidden life’, is a more extreme state than 

dormancy, with almost no detectable activity or metabolism. It is most prevalent in lower 

vertebrates, and is often a seasonal survival strategy to cold or desiccation. 

<Figure 1 near here> 

 

Cryptobiosis 

This state of “suspended animation” has been observed for a variety of invertebrate 

animals and plants during extreme environmental conditions. It was first described for 

invertebrate animals that survived an absence of water by becoming inactive and 

allowing their tissues to become desiccated (anhydrobiosis e.g. rotifers). Two other forms 

of cryptobiosis also involve an altered state of cell water, freezing temperatures 

(cryobiosis e.g. a frozen insect) and high osmotic concentration (osmobiosis e.g. brine 

shrimp eggs in a salt lake). Another form of cryptobiosis is survival of a lack of oxygen 

(anoxybiosis e.g. killifish eggs sealed inside their egg capsule). The best known example 

of cryptobiotic animals is probably the eggs of brine shrimp (Artemia), which can survive 

extended periods of complete desiccation, high salt concentration, or anoxia; their 
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desiccated eggs are also remarkably resistant to extremes of temperature. Various 

“resurrection” plants are well known examples of cryptobiotic plants, being able to 

recover from desiccation for extended periods. Seeds of some plants are also 

spectacularly resistant to desiccation, sometimes for very long periods of time (e.g. seeds 

more than 1000 years old of the Indian Lotus from an ancient lake bed in China). 

 All of these forms of cryptobiosis involve complete inactivity. Ecological 

advantages of cryobiosis include survival of harsh environmental conditions, and 

dispersal of highly resistant life stages. However, the physiological adaptations required 

by these animals and plants to survive extreme conditions at no detectable metabolic rate 

are generally complex and specialized.  

 

Diapause and Quiescence 

Diapause is an ecological strategy for the avoidance of harsh conditions that involves the 

cessation of development of a sub-adult life stage. It is essentially a time-delaying tactic 

to synchronize further stages of the life cycle with appropriate environmental conditions. 

Diapause is especially common in insects but is also observed in a wide variety of other 

invertebrate animals (e.g. brine shrimp embryos) and vertebrate animals (e.g. annual 

killifish embryos), as well as many plants (e.g. buds, bulbs, rhizomes and seeds). Some 

plant seeds require drying out before they can develop, ensuring that adverse dry seasons 

pass before the embryo starts to develop. Diapause is also a reproductive strategy in a 

variety of mammals for the delayed implantation and development of embryos (e.g. 

macropod marsupials, mustelids, deer).  

Quiescence is a period of inactivity, similar to diapause, but is a facultative 

response to an immediate change in environmental conditions that is terminated simply 

by the resumption of more favorable environmental conditions, rather than a programmed 

and obligate response. It may be a response to harsh environmental conditions such as 

low or high temperature, or drought. Many invertebrates and plants (particually the 

seeds), become quiescent. 

 

Hibernation (winter dormancy) 
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Hibernation is when an organism spends the winter in a state of dormancy; it is long-term 

multi-day torpor. Many plants survive extended periods of cold and desiccation, either as 

above-ground trees or shrubs, or as underground structures. Protective scales around stem 

tips allow buds of above-ground plants to endure winter conditions without damage. The 

above-ground structures of other plants die back in unfavorable conditions, leaving 

dormant underground bulbs, rhizomes, tubers or corms, for which the soil buffers 

environmental extremes. Many plants accumulate solutes in their fluids to prevent 

freezing during winter, while others can tolerate freezing of water in their xylem and 

other extracellular water pools. For ectothermic animals, hibernation is primarily a 

behavioral state with reduced body temperature hence activity and metabolic rate. Some 

use supercooling or anti-freeze solutes to avoiding freezing, or tolerate freezing of their 

extracellular fluids (e.g. weta crickets and wood frogs). Many endothermic mammals also 

hibernate (Table 1). Mammalian hibernators typically use multi-day torpor for weeks or 

even months (e.g. Figure 2), and attain very low Tbs (e.g. 0 to -5 C). Only one bird, the 

poorwill, is known to hibernate, although many other birds (and mammals) readily use 

single-day torpor during winter.  

<Figure 2 near here> 

 

Estivation (summer dormancy) 

Estivation is summer dormancy i.e. long-term torpor during summer for survival of hot 

and dry periods. Many desert plants survive extended periods of high temperature and 

low rainfall. Some survive as desiccated seeds (5-10% water content), particularly annual 

species, but some survive desiccation as adults. These “resurrection” plants, such as the 

Rose of Jericho (Selaginella), can desiccate to about 5% water content during dry 

periods, but survive and “come back to life” after rain. Pincushion lilies similarly re-

activate by regenerating from buds after rain. 

 Amongst invertebrates (e.g. earth worms and insects) and usually involves an 

inactive stage with a water-resistant covering. For example, estivating earthworms form a 

mucus cocoon to resist desiccation, and many insect pupae are remarkably resistant to 

water loss. Amongst vertebrates, fishes, amphibians and reptiles enter a similar estivation 

state. Fishes and amphibians often form a cocoon of dried mucus (e.g. African 
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lungfishes) or shed epidermal layers (e.g. some desert frogs; Figure 3) to resist epidermal 

water loss; the cocoon covers the entire body surface except for the nostrils. Reptiles 

have a relatively water-impermeable epidermis and do not need to form a cocoon to 

reduce evaporative water loss. Estivating ectotherms typically have an intrinsic metabolic 

depression for energy conservation. 

<Figure 3 near here> 

 Some mammals also estivate (Table 1). For example, desert ground squirrels enter 

a long-term estivation state that is physiologically similar to hibernation except for the 

higher Ta and Tb. Other mammals such as cactus mice and kangaroo mice use single-day 

torpor cycles during summer. 

 

Thermal and energetic physiology of torpor  

Torpor involves a number of physiological changes, especially related to body 

temperature, metabolism and water balance. These physiological changes are interrelated 

insofar as body temperature influences energetics, and water balance is related to both 

body temperature and metabolism. However, the detail of the physiological consequences 

of torpor differs between organisms. 

 

Ectothermic animals and plants  

For ectotherms, body temperature (Tb) is essentially equal to ambient temperature (Ta) 

during hibernation/aestivation. This means that any decrease in Ta during hibernation or 

aestivation is accompanied by a decrease in Tb, which in turn is accompanied by an 

exponential decline in metabolic rate (MR) as described by the Q10 relationship i.e 

 

 Q10 = (MRTb2/MRTb1)
10/(Tb2 - Tb1)            or            MRTb2 = MRTb1 Q10

(Tb2 - Tb1)/10               (1)   

 

where MRTb2 is the metabolic rate at Tb2 and MRTb1 is MR at Tb1. For most physiological 

variables, Q10 is generally about 2.5. This decrease in MR results in substantial energy 

savings and thus a prolonged survival period in the cold.  

For some ectotherms there is an unequivocal intrinsic metabolic depression during 

estivation that occurs without any changes in Tb (e.g. snails, fishes and amphibians). 
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Some plant seeds, during dormancy, are also hypo-metabolic or even ametabolic. This 

intrinsic metabolic depression, which is often a decrease in MR to about 20% of normal, 

occurs in the absence of any Tb, ionic, osmotic or any other discernable physiological 

perturbation. The cue for intrinsic metabolic depression would appear to be a change in 

environmental conditions that indicates impending potential for desiccation. Intrinsic 

metabolic depression is not a short-term (e.g. daily) event; it often takes about 2-4 weeks 

for metabolic depression to become fully developed. It is probably more important for 

aestivation, which has a lesser hypometabolism by lowered Tb than hibernation. The 

molecular or biochemical mechanisms for this intrinsic metabolic depression are not well 

understood; however its physiological significance is clearly extension of the 

hibernation/estivation period that can be survived by conserving energy.  

 

Endothermic animals 

Endothermic vertebrate animals have a fundamentally different relationship between 

ambient temperature (Ta) and body temperature (Tb) than ectothermic animals and plants 

as a consequence of thermoregulatory thermogenesis. Thermal and energetic 

consequences of torpor are therefore more complex for endotherms because at low Ta 

their MR is normally increased above basal (BMR) by metabolic thermogenesis that 

maintains Tb constant (normothermia). During torpor, there is a profound decrease in 

MR, typically to 1% or even less of normothermic MR, and a concomitant decrease in Tb 

often close to Ta (Figure 4). Entry into torpor appears to be a controlled physiological 

process, not simply an inability to thermoregulate. During torpor at moderate to high Tas, 

Tb declines to nearly Ta and MR declines exponentially with Tb. This is the same pattern 

as for ectotherms, and indicates a state of non-thermoregulation. However, if Tb 

decreases below a species-specific setpoint value at lowered Ta, then Tb is regulated at 

that setpoint by the onset of thermogenesis; this is the same as the normothermic 

thermoregulatory response except that the Tb setpoint is lower than for normothermia. 

For many single-day torpidators the torpor setpoint is about 20 oC, but it is generally 

much lower for hibernators (about 0-5 oC, but as low as -5 oC for arctic ground squirrels). 

<Figure 4 near here> 
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  Two mechanisms contribute to the marked decline in MR of endotherms during 

torpor. Defense of normal body temperature is relaxed and so the thermogenic increment 

in MR above BMR is eliminated. As a consequence, heat production is less than heat loss 

and Tb declines to close to Ta and so there is a there is a further decline in MR due to the 

Q10 effect. However, if Ta decreases below the torpor setpoint where Tb is again 

defended, then MR increases for thermogenesis. For most endotherms, the decline in MR 

during torpor is accounted for by the elimination of the thermogenic MR increment and 

the decline in Tb and MR with a typical Q10 (≈ 2.5). 

 Intrinsic metabolic depression is a third possible mechanism contributing to MR 

reduction during torpor. However, the contributions of the elimination of thermogenic 

MR increment and the decline in Tb and Q10 effect are so great that the contribution of 

intrinsic metabolic depression, should it occur in an endotherm, would be a relatively 

minor absolute energy saving. 

Arousal from torpor is typically a physiologically-driven event requiring 

considerable thermogenesis by shivering (skeletal muscle thermogenesis) or metabolism 

of specialized brown adipose tissue (in placental mammals but not marsupials or birds). 

There is also increasing evidence that many species use passive rewarming (e.g. basking) 

to arouse, since it greatly reduces the metabolic cost of arousal. Long-term hibernation by 

mammals is not necessarily a continuous period of prolonged inactivity. It is periodically 

broken by a short period of arousal, then re-entry into hibernation (e.g. Figure 2). The 

reason for these periods of arousal and re-entry is not clear. There appears to be some 

physiological “need” to periodically arouse. It has been suggested that perhaps some 

accumulated metabolite needs to be eliminated by urination, which only occurs if the 

animal is normothermic. 

The beneficial energy savings of torpor are clearly evident from the difference 

between the high normothermic MR and the greatly reduced torpid MR, even after 

accounting for the metabolic cost of arousal. For daily torpor, the energy saving depends 

on the length of the torpor bout and the depth of torpor; for a dunnart, the daily energy 

saving is about 36% for 13 hrs of torpor (see Figure 4).  For hibernation, the daily energy 

saving is greater because metabolic rate is low for typically 24 hrs per day; for a 

hibernating ground squirrel, the energy saving is about 85% over 6 months. 
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There is a complex pattern of single-day torpor, multi-day hibernation, and multi-

day aestivation amongst mammals and birds (Table 1) that partly reflects phylogeny but 

also body mass. Torpor is more advantageous for small than large species. Small species 

have a higher mass-specific metabolic rate and therefore benefit more from the energetic 

saving associated with torpor. The rate of entry into and arousal from torpor is strongly 

dependent on body mass. Small species enter torpor quicker because of their higher 

thermal conductance (higher surface-to-volume ratio) and they also arouse quicker 

because of their higher mass-specific MR and lower thermal inertia. In contrast, larger 

species cool and rewarm slower, so the energy savings are less, especially for daily 

torpor. 

     

Cues for Dormancy 

Many plants respond to the climatic cycle of their habitat. In particular, photoperiod, 

temperature and rainfall are important cues for the commencement, and also cessation of 

dormancy. Some species respond to long-term climatic cycles, while others undergo 

more immediate facultative responses to ambient temperature or water availability. For 

animals, single-day torpor can occur rapidly in response to short-term environmental 

changes, such as inclement weather. It generally occurs on a circadian cycle, 

corresponding to the normal period of activity/inactivity. Onset of hibernation or 

estivation, being seasonal long-term periods of dormancy, is a more prolonged and 

sometimes programmed response to an impending change in environmental conditions. 

For example, desert frogs initiate estivation if conditions become dry, by burrowing, 

forming a cocoon, and initiating intrinsic metabolic depression; this can take 3-4 weeks, 

but occurs independent of time of year. In contrast, hibernation by some mammals such 

as ground-squirrels is obligate and only occurs at a specific time of the year after a period 

of preparation (e.g. seeking out or constructing suitable hibernation sites, increased 

activity and feeding, deposition of energy stores ands changes in body fluid solutes). This 

pattern of obligate hibernation is controlled on a circannual cycle by cues that include 

shortening photoperiod and decreasing air temperature. Reduced water availability and 

high Ta are primary cues for estivation.  

 



 9 

Ecological consequences of dormancy 

The general roles of torpor, hibernation and estivation are avoidance of unfavorable 

short-term or long-term (seasonal) climatic conditions and conservation of energy during 

this period of inactivity. Seasonal dormancy also has obvious ecological benefits. It 

allows species to exploit ephemeral environments. Hibernation and estivation enable 

species to colonize habitats that would otherwise be unsuitable for growth or survival at 

certain times of the year due to harsh environmental conditions. Timing of active life 

stages or generations can be optimized. Seasonal dormancy therefore contributes to the 

fitness of individuals and species. 

 There would also appear to be costs associated with torpor. Many species do not 

use or survive torpor, and species capable of torpor do not necessarily use it on a routine 

basis. There is a fundamental physiological advantage (at least for endotherms and even 

for many ectotherms) of maintaining a high and stable body temperature e.g. growth, 

digestion, muscle contractility, immunological defense. There is also a physiological 

danger of thermal death or being unable to arouse if the Ta becomes too low (e.g. 

freezing), or death if energy reserves become insufficient for arousal. Ecological costs of 

torpor could include vulnerability to predation, competition from con-specifics that do 

manage to successfully forage, reduced reproductive success and lower rates of essential 

activities such as cell division and digestion. There are also similar and additional costs 

of seasonal dormancy. It can delay reproduction and development, diminish post-hibernal 

reproduction, require that short-lived species survive for longer, and result in sex-biased 

populations if there is differential survival based on gender. For multi-day torpor by 

endotherms, there appears to be a necessity for periodic arousal, suggesting some 

physiological requirement for an occasional return to a high Tb (see above). 
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Tables 
 
Table 1. Summary of torpor patterns in monotreme, marsupial and placental mammals, 
and birds, for single-day torpor (T), hibernation (H), or estivation (E). 
 
Taxon Torpor pattern 
MONOTREMATA 
    Tachyglossidae H 
    Ornithorhynchidae - 
METATHERIA 
    Didelphidae T 
    Microbiotheriidae H 
    Dasyuridae T 
    Myrmecobiidae T 
    Petauridae T 
    Burramyidae H 
    Acrobatidae H 
    Tarsepididae T 
EUTHERIA 
    Rodentia T, H, E 
    Insectivora T 
    Chiroptera T, H 
    Carnivora T, H?  
    Primates T?, H/E 
    Macroscelidae T 
AVES 
    Coliiformes T 
    Trochiliformes T 
    Strigiformes T 
    Caprimulgiformes T, H 
    Columbiformes T 
    Coraciformes T 
    Passeriformes T 
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Illustrations 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic summer of different hypobiotic (metabolism less than normal), 
including hypometabolism and ametabolism. Adapted from Keilin (1959). 
 
 
 
 

 
 
Figure 2. Pattern of body temperature during a seasonal hibernation cycle for a 
groundsquirrel. Modified from Wang (1978). 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Aestivating frog (Cyclorana cultripes) in cocoon of shed skin. Photograph by 
G. Thompson  and P. Withers. 
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Figure 4. A daily torpor cycle in a typical single-day torpor mammal, the dunnart 
Sminthopsis macroura, showing the decline in Tb and MR during entry into torpor, a 
short period of sustained torpor, and then the increase in Tb and MR during arousal from 
torpor. Data from F. Geiser. 
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Figure 4. Permission granted by F Geiser for use of data to redraw figure (see email). 
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