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Abstract 66 

Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical 67 

to quantifying the global carbon budget. Allometric models provide cost-effective methods for 68 

biomass prediction. But do such models vary with ecoregion or plant functional type? We 69 

compiled 15,054 measurements of individual tree or shrub biomass from across Australia to 70 

examine the generality of allometric models for prediction above-ground biomass. This provided 71 

a robust case study because Australia includes ecoregions ranging from arid shrublands to 72 

tropical rainforests, and has a rich history of biomass research, particularly in planted forests. 73 

Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multi-74 

stemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood 75 

density; and other trees of low wood density), relationships between biomass and stem diameter 76 

were generic. Simple power-law models explained 84-95% of the variation in biomass, with little 77 

improvement in model performance when other plant variables (height, bole wood density), or 78 

site characteristics (climate, age, management) were included.  79 

Predictions of stand-based biomass from allometric models of varying levels of 80 

generalisation (species-specific, plant functional type) were validated using whole-plot harvest 81 

data from 17 contrasting stands (range: 9 to 356 Mg ha-1). Losses in efficiency of prediction were 82 

< 1% if generalised models were used in place of species-specific models. Furthermore, 83 

application of generalised multi-species models did not introduce significant bias in biomass 84 

prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass 85 

prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-86 

effective prediction of biomass across a wide range of stands, we recommend use of generic 87 

allometric models based on plant functional types. Development of new species-specific models 88 

is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. 89 

high-value monocultures).  90 

 91 
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Introduction 92 

Vegetation is an important sink within the global carbon budget, with carbon storage 93 

facilitated by uptake of atmospheric carbon dioxide through photosynthesis (Le Quéré et al., 94 

2015). Ground-based information on the carbon storage in vegetation is critical for calibrating 95 

carbon budgets, largely calculated using remote sensing metrics (e.g. Haverd et al., 2013; 96 

Mitchard et al., 2013; Chen et al., 2015), or regional carbon accounting models (e.g. Richards & 97 

Evans 2004; Paul et al., 2015a,b). In addition, accurate ground-based estimates of biomass are 98 

important for the assessment and management of wood and biomass products (e.g. Canadell & 99 

Raupach 2008), fire hazard (van der Werf et al., 2010), habitat suitability (e.g. Hatanaka et al., 100 

2011), and water yield and quality within catchments (e.g. George et al., 2012).  101 

Typically, ground-based estimates of biomass are obtained by applying allometric models 102 

to field measurements of biometric data such as stem diameter or plant height (e.g. Picard et al., 103 

2012). Two key decisions frame the construction of allometric models to predict total above-104 

ground biomass (AGBIndiv, oven-dry weight of an individual plant). The first is deciding which 105 

predictor variable(s) to use. Stem diameter (D, typically measured over bark at 130 cm height 106 

above the ground) is commonly used because it can be easily measured with high accuracy 107 

(Husch et al., 2003, but see Clark, 2002 for issues in some tropical forests). Plant height (H) and 108 

bole wood density (ρ) are also often considered, since D
2
Hρ is expected to strongly correlate 109 

with AGBIndiv (e.g. Chave et al., 2005). The second decision relates to the level of generalisation 110 

to be used. Most allometric models are based on relatively small species-specific datasets 111 

obtained from local areas, and often ignore variation across both species and sites (Henry et al., 112 

2011; de Miranda et al., 2014). 113 

Localised species-specific models provide the most accurate estimates of AGBIndiv for the 114 

domain for which they were developed (e.g. Wirth et al., 2004; Williams et al., 2005; Basuki et 115 

al., 2009; Paul et al., 2013a,b; Ngomanda et al., 2014), but can generate substantial uncertainty 116 

when applied outside the range of calibration, with potential for significant biases (20-200%, e.g. 117 
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Ketterings et al., 2001; Wirth et al., 2004; Chave et al., 2014; Ishihara et al., 2015). The 118 

development of new models for new local area-by-species combinations is costly, particularly 119 

for woody ecosystems where there are numerous species. 120 

Generalised allometric models can greatly simplify AGBIndiv estimation by assuming that 121 

all individuals, irrespective of species or site, are represented by one allometric relationship. 122 

Data from large numbers (100s to 1000s) of destructively-sampled plants can then be used to re-123 

parameterise new broadly applicable models (e.g., Brown et al., 1989; Jenkins et al., 2003; 124 

Moore 2010; Paul et al., 2013a,b; Chave et al., 2005, 2014; Gonzalez-Benecke et al., 2014; 125 

Ishihara et al., 2015). Models developed with such relatively large sample sizes have the added 126 

advantage of greatly reducing uncertainty in parameter estimates (Chave et al., 2004; van 127 

Breugel et al., 2011; Roxburgh et al., 2015) when compared to most (~75%) localised species-128 

specific models that are developed with N < 50 trees (e.g. Zianis et al., 2005; Genet et al., 2011). 129 

Because it is physically difficult to collect and assemble AGBIndiv data, many questions 130 

about the usefulness of generic approaches and models remain unanswered. For example, it is 131 

unclear to what extent data should be pooled or separated according to their physical, 132 

phylogenetic and/or phenological characteristics; often defined as plant functional types (e.g. 133 

trees vs. shrubs (Paul et al., 2013a), multi-stemmed vs. single-stemmed trees (Paul et al., 134 

2013a,b), angiosperms vs. gymnosperms (Chojnacky et al., 2014)). Similarly, we need to 135 

quantify the extent to which the use of multi-species allometric models introduces bias to 136 

AGBIndiv predictions for some species relative to others. Finally, we need guidance as to which 137 

types and combinations of predictor variables (plant dimensions, bioclimatic variables, and stand 138 

characteristics) will best predict AGBIndiv using generalised models.  139 

At the scale of individual plants, allometry-predicted AGBIndiv can be validated by 140 

independent sampling of new plants. However, it is difficult to ascertain whether sampled plants 141 

have been truly selected at random. If specific criteria have been applied for selection (e.g. only 142 

healthy trees) the resulting allometric model may be inherently biased. A true test of this possible 143 
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bias would be a direct validation of stand-based allometric model predictions of above-ground 144 

biomass (AGBStand) against that measured through whole-plot harvesting. Such testing has been 145 

undertaken in monoculture hardwood forests (Arthur et al., 2001; Paul et al., 2013b), and in 146 

mixed-species vegetation (Búrquez & Martínez-Yrízar, 2011; Paul et al., 2013a), but not using 147 

generic allometric models.  148 

Australia provides a good case study for testing generalised allometric models given it 149 

has both a long history of research contributing to AGBIndiv datasets (e.g. Holland, 1969; Forrest 150 

& Ovington, 1970; Attiwill, 1979), and spans a broad range of ecoregions, ranging from arid 151 

shrublands to tropical rainforests, with plant functional types varying from shrubs and short 152 

multi-stemmed trees through to some of the largest trees in the world (e.g. Sillett et al., 2015; 153 

Specht & Specht, 2002, Specht & Specht, 2013). Improving methods for quantifying biomass 154 

and its carbon content in Australia is also of global significance given high inter-annual 155 

variability in biomass carbon globally (Houghton et al., 2012; Ballantyne et al., 2015), with 156 

semi-arid ecosystems in Australia playing a significant role (Poulter et al., 2014).  157 

For this project, an AGBIndiv dataset of unprecedented size was compiled, composed of 158 

15,054 destructively-measured individuals from both managed (i.e. planted) and natural 159 

ecosystems across Australia. This dataset was used to assess whether diameter-based allometric 160 

models of biomass were improved: (i) by the inclusion of other plant variables (e.g. height, wood 161 

density); (ii) by the inclusion of site characteristics (e.g. climate, age, management); and (iii) 162 

when based on species rather than broader categories like plant functional groups. Our objectives 163 

were first, to recommend the most appropriate allometric model(s) for estimating AGBIndiv in 164 

Australian ecosystems, and secondly, to quantify bias of the recommended model(s) when tested 165 

against direct measurements of AGBStand obtained using whole-plot harvesting across a range of 166 

contrasting sites. 167 

 168 
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Materials and methods 169 

Dataset 170 

Datasets of AGBIndiv were obtained from destructive harvesting of 15,054 individual trees 171 

and shrubs. Data represented a range of managed and natural woody ecosystems across 826 sites 172 

in various ecoregions of Australia (Fig. 1), and obtained from numerous published and 173 

unpublished sources (Table S1; Paul et al., 2015c). They included 274 species, 53 of which had 174 

N > 50 individuals, sufficient for developing species-specific models that provide a reasonable 175 

approximation of AGBIndiv given population level variability (Roxburgh et al., 2015). To utilise 176 

the wider dataset, we categorised all species into plant functional types as described below. 177 

 178 

Plant functional types 179 

Five categories of plant functional types of unique physiognomic growth form (Gitay and 180 

Noble 1997) were included: (i) shrubs or small trees characterised by being relatively short 181 

(generally < 2 m height) and typically multi-stemmed or highly branched, with a relatively small 182 

(< 7 cm) stem diameter (FShrub); (ii) multi-stemmed hardwood (angiosperm) trees, including 183 

mallees from the genus Eucalyptus, and trees from the genus Acacia (FMulti); (iii) typically 184 

single-stemmed hardwood trees from the genus Eucalyptus and closely-related genera of 185 

Corymbia and Angophora (FEuc); (iv) other tree species that typically have single stems and 186 

relatively high wood density (mean 0.67 g cm-3) (FOther-H); and (v) other trees, namely conifers 187 

from the genera of Pinus, Araucaria and Agathis, that typically have single stems and relatively 188 

low stem wood density (mean 0.40 g cm-3) (FOther-L). Each of these five plant functional types 189 

could also be further sub-categorised as indicated in Fig. S1. 190 

Most of these plant functional types include plant species with distinctive branch 191 

architecture and/or stem wood density. A highly branched architecture is a unique characteristic 192 

of species within FShrub, while a unique characteristic of conifer species within FOther-L is a 193 

relatively low wood density. By comparison, such distinctions were less obvious between the 194 
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three categories of trees of relatively high wood density (FMulti, FEuc and FOther-H), with their 195 

categorisation based on two issues of practicality. The first related to the height at which stem 196 

diameter was typically measured in multi- and single-stemmed trees, resulting in the FMulti 197 

category having different predictor variables to that of the other two hardwood tree categories. 198 

When compared to single-stemmed trees, multi-stemmed mallee eucalypts and shrubs have stem 199 

diameter measurements taken closer to the ground (usually 10 cm height) below the point at 200 

which the stem forks (e.g. Paul et al., 2013a,b). Second, for practicality, the relatively 201 

heterogeneous category of FOther-H was segregated from the much more widely sampled FEuc 202 

category that solely represented typically single-stemmed Eucalyptus trees of relatively high 203 

wood densities (Ilic et al., 2000). 204 

The majority of the 15,054-tree dataset comprised two categories of plant functional 205 

types, namely FEuc (40%) and FMulti (36%), largely representing the ecoregions that supported 206 

either ‘Mediterranean forests, woodlands and scrub’, or ‘Temperate broadleaf and mixed forests’ 207 

(Fig. 2). Although FOther-L represented only 5% of the dataset, this category was also largely 208 

found in these two ecoregions. In contrast, FShrub and FOther-H comprised 16% and 3% of the 209 

dataset, respectively, but were sourced from a wide range of ecoregions.  210 

  211 

Explanatory variables 212 

The primary set of collated data included three explanatory variables for AGBIndiv: stem 213 

diameter (D, over bark, cm), height (H, m) and, as described below, measured, estimated or 214 

derived basic density of stem wood (ρ, g cm-3, typically measured as oven-dry mass per green 215 

volume of stem at a standard height of 130 cm, Table 1). Secondary data relating to the site from 216 

which an individual was sampled were also collated (Table 1). These included whether the site 217 

was ‘natural’ (i.e. naturally regenerated shrubland, woodland, or forest) or managed (i.e. human-218 

induced establishment via either nursery stock, direct seeding or human-induced natural 219 

regeneration). If the stand was managed, it was also recorded whether or not the stand was 220 
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relatively young, defined as < 20 years since establishment. Climatic data were collated (BoM, 221 

2015; mean data based on 30-year period 1961-1990, resolution of approximately 2.5 km) and 222 

included long-term mean annual precipitation (MAP, mm yr-1) and mean annual temperature 223 

(MAT, oC).  224 

 225 

Measurements and data cleaning 226 

Conventionally, tree diameter is measured at 130 cm (D130) height above ground level to 227 

avoid marked stem buttress swelling or exposed lignotubers in some species, and thus better 228 

represents the diameter of a log above the stump. Consequently, most trees (FEuc, FOther-H and 229 

FOther-L) had D130 measurements. For species of FShrub and FMulti, where D130 measurements 230 

introduced errors due to the presence of multiple stems at this height, or where the individual 231 

was too small to have a measurable D130, D was typically measured at 10 cm height above the 232 

ground (D10). For such multi-stemmed individuals, a single, pooled D estimate was obtained 233 

from the quadratic mean - representing the sum of the cross sectional areas of individual stems 234 

(Chojnacky & Milton, 2008).  235 

For many individuals in the dataset, D was measured at multiple heights, allowing 236 

derivation of generic relationships for prediction of D at a given height based on D measured at 237 

another height (Table S2). These relationships were used to ‘gap-fill’ D estimates where 238 

required, with D10 and D130 estimated for 33% and 14% of the 15,054 individuals, respectively. 239 

Similarly, generic relationships were derived to ‘gap-fill’ H estimates of an individual through 240 

the development of generic relationships between H and either D10 or D130 (Table S2). In this 241 

way, H was estimated for 15% of the individuals in the database. The wood specific gravity ρ 242 

was measured (or estimated based on local data) in only 8% (or 4%) of individuals in the dataset. 243 

For individuals where ρ was not measured, estimates were derived based on the species (49% of 244 

the dataset), or if unavailable, the genus (39% of the dataset) using the global wood density 245 

database (Chave et al., 2009; Zanne et al., 2009). 246 
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Very small individuals (i.e. D10 < 0.3 cm) were not included in the database. Such 247 

individuals are unlikely to conform to biomass scaling laws typical of woody plants given 248 

relatively little secondary thickening (e.g. Niklas, 2004; Enquist et al., 2007). Data for a further 249 

72 individuals from 51 sites (and 24 sources) were also excluded as outliers. Here, individuals 250 

were defined as outliers if their measured AGBIndiv fell outside the 99.9% confidence interval of 251 

prediction of the appropriate plant functional type model. Although the AGBIndiv of these outliers 252 

were assumed to come from a normally-distributed population and had no major influence on 253 

model fit, they were nonetheless removed on the basis that they were highly unlikely values of 254 

AGBIndiv for the measured dimensions, and were most likely due to errors in data entry of field 255 

measurements of fresh weights.  256 

 257 

Statistical analysis 258 

A simple power-law allometric model was used to predict AGBIndiv based on the 259 

explanatory variable, X (Eq. 1). Eq. 1 is linearized by logarithmic transformation (Eq. 2) so that 260 

coefficients (a and b) may be estimated using ordinary least squares linear regression analyses, 261 

with data corrected for heteroscedasticity, such that residual errors were normally distributed on 262 

the logarithmic scale (ε; which becomes a multiplicative error in the power model, ε’, Picard et 263 

al. (2012)). 264 

  AGBIndiv = a X 
b+ ε’      (1) 265 

ln(AGBIndiv)= ln(a) + b ln(X) + ε    (2) 266 

Xiao et al. (2011) found that Eq. 2 produced more accurate estimates of biomass than 267 

alternative nonlinear fitting. Eq. 2 was applied to the entire dataset (universal model, AllUniversal), 268 

and to the datasets for each of the five plant functional types: FShrub, FMulti, FEuc, FOther-H and FOther-269 

L. The simplest versions of the models depicted by Eq. 2 had X = D, where D was D130 (or D10) 270 

for FEuc, FOther-H and FOther-L, and by necessity, D10 for FShrub, FMulti, and hence, AllUniversal. 271 
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When back-transforming from logarithmic to natural scales (i.e. to obtain the estimate of 272 

AGBIndiv), a correction factor (CF) is required to remove bias. Nine different CFs were reviewed 273 

by Clifford et al. (2013), and the MM CF (Minimise Mean Square Error CF, Shen and Zhu 274 

2008) was recommended for predicting biomass of new trees or shrubs as it gave relatively low 275 

prediction bias. Because the value of the MM CF varies with D, a range of MM CF values are 276 

reported here. The more commonly used Baskerville CF (Baskerville 1972, which assumes the 277 

variability is constant across D) may lead to biased AGBIndiv estimates, particularly for 278 

individuals that have a D that is appreciably larger or smaller than the mean D used to develop 279 

the allometric model. But in this study the MM and Baskerville CF’s were consistent, at less two 280 

decimal places, due to our sample sizes. Therefore, although the MM CF is recommended, we 281 

also report the Baskerville CF for reference. 282 

To confirm the validity of tested models, we checked: (i) that there was no 283 

heteroscedasticity by confirming standardised residuals were not correlated with the 284 

ln(AGBIndiv), and (ii) for influential points (i.e. data points having a Cook’s D value > 1; Cook, 285 

1979). Then, performance of valid models was quantified using five fit statistics: (i) standard 286 

errors of the coefficients ln(a) and b, (ii) residual standard error of Eq. 2, RMSE, (iii) adjusted 287 

coefficient of determination, R2, (iv) 95% confidence interval of the slope and intercept of the 288 

line of best fit to the plot of observed versus predicted back-transformed AGBIndiv, and (v) 289 

average bias, or mean of the residuals expressed in absolute terms and provided as a proportion 290 

(%) of the observed value (i.e. mean absolute prediction error ‘MAPE’, using back-transformed 291 

AGBIndiv predictions) (Sileshi 2014).  292 

Additional measures of accuracy were used to aid comparisons among alternative models 293 

with differing numbers of variables. These included Mallows’ Cp statistics (Mallows, 1973) and 294 

Akaike’s information criterion (AIC, Burnham & Anderson, 2004). Models of poor fit have Cp 295 

values greater than the number of model parameters (including the intercept), while the lowest 296 

AIC indicates the most parsimonious model. The Bayesian information criterion (BIC) was also 297 
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assessed (Burnham & Anderson, 2004), but not reported as it provided very similar indications 298 

to AIC. 299 

 300 

Testing compound predictor variables including height and wood density  301 

To explore whether accuracy of AGBIndiv prediction could be improved by using a 302 

compound predictor variable cf. D-alone, we tested three alternatives of X: (i) D alone, based on 303 

a simple geometrical argument that should hold across forests (Chave et al., 2005), (ii) the 304 

compound stem volume index D
2
H, and (iii) the compound stem mass index D

2
Hρ. We 305 

calculated for each dataset, the change in fit statistics (RSME, R
2 and AIC) between D-alone 306 

based model and each of the two alternative compound predictor variables, i.e.: D2
H, and D2

Hρ. 307 

For example, for the FEuc model, changes in fit statistics were assessed for (FEuc using D-alone) – 308 

(FEuc using D
2
H), and for (FEuc using D-alone) – (FEuc using D

2
Hρ). To examine uncertainties 309 

associated with the inclusion of estimates, rather than direct measured, of H and ρ (Sileshi et al., 310 

2014), these analyses were repeated using sub-sets of data that only included individuals for 311 

which H was measured (when testing the D
2
H predictor variable), or that only included 312 

individuals for which both H and ρ were measured (when testing the D2
Hρ predictor variable). 313 

 314 

Testing inclusion of site-factor predictor variables  315 

General linear model analyses were used to assess whether accounting for site factors 316 

improved the performance of Eq. 2, as indicated by an improvement in the fit statistics of RSME, 317 

R
2 and AIC. The site factors tested included: (i) stand age (<20 yrs, or >20 yrs), (ii) management 318 

(natural or managed vegetation), (iii) ecoregion (Fig. 1), (iv) MAT, and (v) MAP. Interactions of 319 

these site-factors with ln(D) were included in the model only where they were significant.  320 

 321 
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Testing levels of generalisation   322 

Three approaches were used to determine the impact of the level of generalisation of 323 

allometric models (Eq. 2) on accuracy of AGBIndiv prediction. First, using the entire dataset, 324 

general linear model analysis was used to assess whether the fit statistics (RSME, R2 and AIC) of 325 

ln(AGBIndiv) prediction from ln(D) could be enhanced by accounting for the supplementary 326 

categorical variable of plant functional type in the AllUniversal model. Second, using each dataset 327 

of the five plant functional types, increases in such fit statistics were assessed when using the 328 

less generalised plant functional type model rather than the AllUniversal model. Third, the 53 329 

species that had N > 50 (and which thus provided reasonable prediction of AGBIndiv given 330 

population level variability, Roxburgh et al., 2015) were used to examine improvement in 331 

accuracy with decreasing level of generalisation in allometric models. We calculated for each 332 

species dataset, the change in fit statistics (RSME, R2 and AIC) between the Alluniversal model and 333 

each of the two levels of generalisations, i.e.: functional types model, and species-specific 334 

model. For example, for a species of eucalypt such as E. wandoo, changes in fit statistics were 335 

assessed for (FEuc) – (Alluniversal), and for (Species-specific model for E. wandoo) – (Alluniversal).  336 

 337 

Model performance 338 

One concern with the application of generalised (multi-species) allometric models, such 339 

as those based on plant functional type, is that not all species are well represented by the model. 340 

In some cases, this may lead to significant bias. To test bias frequency, predicted AGBIndiv (and 341 

its associated 95% confidence interval) was attained at D10 values of 10, 50 and 100 cm using 342 

both species-specific models and the more generalised plant functional type or universal models. 343 

If the 95% confidence interval of prediction using a generalised model largely overlapped with 344 

that from the most accurate model (species-specific) for that species, then it was assumed that 345 

significant bias had not been introduced.  346 
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As a final test of accuracy of allometric models, results were collated from 17 stands of 347 

contrasting structure and environment where whole plots of vegetation were harvested to obtain 348 

‘true’ and direct measurements of stand-based AGBStand (Table 2). Inventories of species and D 349 

from each of these 17 stands were used to apply the models of best fit identified in this study, 350 

and to sum the predicted AGBIndiv to facilitate a comparison of observed and predicted AGBStand. 351 

The relationship between observed and predicted AGBStand was used to determine the overall 352 

accuracy and bias of generalised predictions at the stand-scale. These predictions were made 353 

using three scenarios where the level of generalisation of the applied models differed. In the first 354 

scenario, we used species identity of each individual to apply the relevant species-specific model 355 

and then sum individual tree biomass to estimate AGBStand. For species where no species-specific 356 

model was available, the appropriate plant functional type model was applied. Second, species 357 

identification and/or species-specific models were assumed to be unavailable, and so only plant 358 

functional type models were applied. Third, species identification, and models based on species 359 

or plant functional type models were assumed to be unavailable, and so the universal model 360 

(Alluniversal) was applied. Using plots of observed versus predicted AGBStand, the 1:1 line was used 361 

to indicate the distribution of residuals, and display any bias. Model efficiencies (EF, Soares et 362 

al. 1995, expressed as a percentage) were used to assess whether the prediction performance 363 

differed among the three scenarios. In addition, we calculated slope and intercept of the line of 364 

best fit between observed and predicted AGBStand, and the resulting prediction quality statistics 365 

RMSE and MAPE, for each of the three scenarios.  366 

 367 

Results  368 

Allometric models 369 

Even when based on D-alone, the model (Eq. 2) precisely predicted AGBIndiv across the 370 

entire database using either AllUniversal, or any of the five categories of plant functional types: 371 

FShrub, FMulti, FEuc, FOther-H and FOther-L (Fig. 3). The amount of variation in ln(AGBIndiv) explained 372 
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by these simple generalised models was 94-98%, with errors (RMSE) of 0.19-0.49 (Table 3). 373 

Back-transformation of ln(AGBIndiv) predictions (using the MM correction factor) indicated 374 

relatively high uncertainty in the prediction of AGBIndiv for any given tree or shrub of a given D 375 

(see 95% confidence intervals of prediction, Fig. 4). However, these individual errors largely 376 

cancel out when predictions are made across a wide range of data. Thus, these generalised 377 

models provided reasonable accuracy across the datasets, explaining 84-96% of variation in 378 

AGBIndiv (Fig. 4), with a MAPE range of 15-41% (Table 3).  379 

There was some evidence that the simple power-law allometric model was not 380 

appropriate for FOther-L plant functional types, with under-prediction of AGBIndiv in larger trees 381 

and over-prediction of AGBIndiv in smaller trees. However, if small saplings (D130<10 cm) were 382 

excluded, the performance of the power-law model was satisfactory, with the RMSE of 383 

ln(AGBIndiv) prediction decreasing from 0.273 (data not shown) to 0.189 (Fig. 3). 384 

 385 

Compound predictor variables including height and wood density  386 

Addition of H and/or ρ in a compound predictor variable in Eq. 2 did not markedly 387 

influence model performance compared with the D-based model in predicting ln(AGBIndiv), with 388 

changes in RMSE and R2 less than ±0.06 and ±0.02, respectively  (Table 4). Similar results were 389 

obtained for a sub-set of the data for which H or ρ were measured rather than estimated (see 390 

values in parentheses, Table 4), noting that tests of ρ inclusion were based on limited data 391 

because only 12% of the dataset had measured or estimated ρ values. 392 

 393 

Inclusion of site-factor predictor variables 394 

Since the addition of H and/or ρ in a compound predictor did not markedly influence 395 

performance of the D-based model in predicting ln(AGBIndiv), only models based on D were used 396 

to test the benefits of including site-factor predictor variables. When compared to using D-alone, 397 
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accounting for site-factors resulted in negligible model improvements, with the increase in 398 

explained variation of ln(AGBIndiv) being consistently < 0.4% (Table 5). For example, 399 

accounting for whether or not the individual was from a young (< 20 years old) stand, or whether 400 

or not the individual was from a stand that was managed, resulted in RMSE and AIC decreases of 401 

< 0.03 and < 5%, respectively. Furthermore, these site factors had negligible influence across all 402 

models based on plant functional types where a majority of the individuals were from young 403 

planted stands (e.g. FMulti, FOther-H, FOther-L). Accounting for ecoregion reduced RMSE by < 0.03% 404 

and AIC by < 8%. If ecoregion was added as supplementary variable, Cp was sometimes greater 405 

than the number of explanatory variables used, suggesting a poor model fit. Inclusion of 406 

numerical variables of MAT or MAP led to even less improvement in predictions, with RMSE 407 

reduced by < 0.01%, AIC reduced by < 3%.  408 

 409 

Levels of generalisation  410 

Addition of plant functional type as a categorical explanatory variable improved 411 

performance of the AllUniversal model (RMSE reduced by 0.04, R
2 increased by 0.01%, and 412 

negative changes in AIC, Table 6). As further evidence of improvements in prediction accuracy 413 

by reducing level of generalisation, there was a consistent increase in fit statistics when, for each 414 

plant functional type, the relevant plant functional type model was applied in place of the 415 

AllUniversal model. When generalising at the level of plant functional type there was a decrease in 416 

the RMSE of 0.01-0.25, with R
2 increasing by 0.00-0.05% (Table 6). Gains in accuracy when 417 

generalising at the plant functional type level were particularly pronounced for FOther-L (or FMulti) 418 

where increases in RMSE were 0.25 (or 0.05), compared to < 0.02 for the other categories of 419 

plant functional type. When considering the reduced dataset for FOther-L (i.e. excluding saplings 420 

with D130<10 cm, N=455), gains in accuracy were similarly larger when using a model specific 421 

for that dataset than when applying the AllUniversal model (i.e. ∆RMSE of -0.162, ∆R
2 of 0.150, 422 

data not shown). 423 
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Although results are not shown here, generalising at the level of sub-categories of plant 424 

functional type (Fig. S1) showed little or no improvement in accuracy of ln(AGBIndiv) predictions 425 

when compared to those obtained when using models generalised at the level of plant functional 426 

type. 427 

As expected, when applied to datasets restricted to focal species, the greatest accuracy of 428 

prediction in ln(AGBIndiv) was attained using the least generalised model – i.e. models specific to 429 

a given species. Compared to the AllUniversal model, plant functional type models yielded some 430 

modest improvements, but were still not as good as species-specific models (Table 7). Gains in 431 

accuracy of ln(AGBIndiv) predictions could be made by reducing the level of generalisation from 432 

functional type to species, especially for FShrub and FEuc.  433 

 434 

Model performance  435 

Fig. 5 illustrates the overlap of the 95% confidence interval of generalised model 436 

prediction with that attained using the species-specific model for predicting ln(AGBIndiv) under 437 

the scenarios of assuming an observed D10 of 10, 50 and 100 cm. On average, 74% (SD 14%) of 438 

the confidence interval of prediction obtained using the models generalised at the level of plant 439 

functional type overlapped with that attained using the species-specific model. Tested against the 440 

AllUniversal model, this figure decreased to 67% (SD 13%), largely because two key species of 441 

FOther-L were relatively poorly represented by the AllUniversal model. However for most tested 442 

species, results were similar (with mean ±8%, SD 5%) when comparisons were made between 443 

the confidence intervals of species-specific models and two alternative, more generalised 444 

models.   445 

Of the 53 species tested, only four (or 8%) had < 55% overlap in confidence intervals of 446 

prediction obtained using generalised and species-specific models. These four species were 447 

Eucalyptus vegrandis, Acacia calamifolia, E. pilularis and E. muelleriana. For Acacia 448 

calamifolia, this was partly attributable to the relatively low RMSE of prediction of the species-449 
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specific model resulting in relatively small confidence intervals of prediction relative to the more 450 

generalised models. However, generalised multi-species models poorly represented the allometry 451 

of all four of these species, indicating potential for significant bias in up to 8% of the tested 452 

species generalised models were applied. 453 

When allometry-predicted AGBStand was compared to that observed by direct whole-plot 454 

harvesting across 17 contrasting stands (Table 2), prediction quality was not affected by 455 

increasing the level of generalisation of models. Differences in efficiency of prediction of 456 

AGBStand were < 1% between scenarios, while differences in MAPE were < 5.61% between 457 

scenarios (Fig. 6).   458 

Despite good overall prediction quality, allometry-predicted AGBStand introduced 459 

significant bias, even when applying species-specific models. However, this bias was largely 460 

independent of the level of generalisation of allometry applied. For example, for the Leos site, 461 

where measured AGBStand was 113.6 Mg ha-1 (Table 2), the absolute prediction error (or bias) 462 

was 24-36% regardless of the model applied. 463 

 464 

Discussion 465 

Allometric models 466 

Results obtained here confirmed that a simple power-law model largely encapsulated 467 

scaling laws common to most woody plants (e.g. Niklas, 2004). There may be bias in AGBIndiv 468 

prediction for any given individual tree or shrub. But across a wide range of individuals, 469 

AGBIndiv may be predicted using generalised allometric models with reasonable accuracy (i.e. 470 

MAPE of 15-41% (Table 3), and RMSE of 16-391 kg and R2
= 0.84-0.96 (Fig. 4)) using D as an 471 

explanatory variable. Despite these models being based on AGBIndiv datasets that were larger, 472 

and from a broader range of vegetation types than previously collated for Australia, the fit 473 

statistics obtained were comparable to generalised allometric models for AGBIndiv previously 474 

developed for much smaller datasets (e.g. Williams et al., 2005; Montagu et al., 2005; Jonson & 475 
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Freudenberger 2011; Paul et al., 2013a,b).  476 

Our results suggest that increasing the domain of application of generalised allometric 477 

models for AGBIndiv (i.e. being based on datasets from a wider range of ecoregions and from a 478 

range of plant types etc.) does not substantially jeopardise their accuracy of prediction. Our 479 

results provide further evidence of the effectiveness of generic AGBIndiv allometric models 480 

developed from large, compiled datasets, consistent with comparable studies in tropical forests 481 

(Chave et al., 2005, 2014, Vieilledent et al., 2012); for different forest types in the U.S.A 482 

(Chojnacky et al., 2014); and for different forest types in China (Ali et al., 2015). Development 483 

of such generalised models is an appropriate approach to extending the geographical application 484 

range of otherwise limited, and often localised, species-specific models. Collation of datasets to 485 

develop such generalised allometric models seems preferable to either: (i) making parameters of 486 

existing localised species-specific models available in a database to facilitate the selection of the 487 

most appropriate models for new specific areas of interest (e.g. Ter-Mikaelian & Korzukhin, 488 

1997; Zianis et al., 2005; Henry et al., 2013), or (ii) applying existing localised species-specific 489 

models to generate pseudo-observations to develop more generalised models (e.g. Pastor et al., 490 

1984; Zianis & Mencuccini, 2004; Muukkonen 2007; Chojnacky et al., 2014).  491 

In the present study, allometry-predicted AGBIndiv tended to be least accurate for the 492 

multi-stemmed plant functional types of FShrub and FMulti (Table 3). Many others (e.g. Buech & 493 

Rugg, 1995; Chojnacky & Milton, 2008; Paul et al., 2013a,b; Berner et al., 2015) found D to be 494 

the strongest predictor of AGBIndiv in such multi-stemmed individuals. However in allometric 495 

models of AGBIndiv for multi-stemmed trees, some workers (e.g. Mosseler et al., 2014; Matula et 496 

al., 2015) used D of only a given number (e.g. 3 or 5 stems) of the largest stems, yet did not test 497 

whether it resulted in an increased accuracy of prediction above that obtained if an equivalent D 498 

was calculated and applied. Hence further work is required to assess alternative methods for 499 

calculating D in multi-stemmed individuals, and determining the method that provides the 500 

highest accuracy of prediction of AGBIndiv. There is also a need to have clear and consistent 501 
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protocols for measurement of D.  502 

Another aspect of these results that requires further investigation is whether there may be 503 

improvement on the simple power-law model for tree species of relatively low wood density. For 504 

the FOther-L category of species, a single simple power-law model did not accurately predict 505 

AGBIndiv across the full range of tree sizes. For these species, options for weighted non-linear 506 

modelling should be investigated as an alternative to the power-law model provided here (i.e. for 507 

FOther-L trees of D130 > 10 cm).   508 

 509 

Compound predictor variables including height and wood density  510 

We found including H and ρ in addition to D in a compound predictor variable did not 511 

markedly improve ln(AGBIndiv) predictions, even when using only measured values (Table 4). 512 

This finding supports the conclusions of others (e.g. Molto et al., 2013; Sileshi, 2014; Kuyah & 513 

Rosenstock, 2015) that using D alone is an appropriate predictor of AGBIndiv as it minimises 514 

costs associated with these additional biometric measurements, and also the uncertainty resulting 515 

from measurement and prediction errors of H and/or ρ.  516 

The fact that H is often correlated with D (e.g. Pérez-Cruzado & Rodríguez-Soalleiro, 517 

2011; Mugasha et al., 2013; Ishihara et al., 2015) may largely explain why inclusion of H as an 518 

additional predictor did not markedly influence the performance of the D-based models. Indeed 519 

scaling theory of larger woody plants predicts that H scales with diameter to the 2/3 power 520 

(Niklas & Spatz, 2004). Nonetheless, although the inclusion of H may not be necessary to 521 

accurately predict AGBIndiv, there is evidence that it may be beneficial to include in allometric 522 

models of foliage biomass, which tends to be influenced by plant architecture (e.g. Picard et al., 523 

2015).  524 

We make two suggestions as to why inclusion of ρ did not improve the predictive ability 525 

of the D-based model. The first is possible measurement errors. For example, ρ varies with 526 

height (e.g. Pérez-Cruzado & Rodríguez-Soalleiro, 2011; Wiemann & Williamson, 2014), and 527 
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with stand age or rates of growth (e.g. Ilic et al., 2000). Hence database-derived ρ values may 528 

have been erroneous due to the height and/or age at which ρ was measured (e.g. Molto et al., 529 

2013). Second, most of our dataset was obtained from temperate regions, where ρ is typically 530 

less variable than, for example, among tropical trees (Swenson & Enquist, 2007). This is 531 

consistent with ρ having greater predictive potential in AGBIndiv models for tropical trees (Chave 532 

et al., 2014) than was found in this study.  533 

 534 

 Inclusion of site-factor predictor variables 535 

Our study indicated that including site-related factors such as characteristics of the stand 536 

(stand age and management), and climatic characteristics (e.g. MAP, MAT), did not markedly 537 

improve the predictive ability of D-based models (increased R2 of <1%, Table 5). These results 538 

provided support to findings that while the allocation of AGBIndiv and plant architecture (i.e. the 539 

D-H relationship) may vary with site factors as individuals optimize their growth strategies, the 540 

impact on total AGBIndiv allometry appears to be negligible (e.g., António et al., 2007; Peichl & 541 

Arain, 2007; Feldpausch et al., 2011, 2012; Banin et al., 2012; de Miguel et al., 2014; Gonzalez-542 

Benecke et al., 2014; Moncrieff et al., 2014; Hulshof et al., 2015). This may be due to the 543 

compensatory relationship between stem and canopy mass resulting in similar AGBIndiv for trees 544 

of the same D, but different partitioning to leaves, branches and stems (e.g. Kuyah et al., 2013). 545 

Hence, results obtained here support the claim that generalised models can be based on plant 546 

functional types rather than site factors such as climatic zones (Ngomanda et al., 2014). 547 

These findings contrast with previous research showing that the inclusion of additional 548 

stand-related variables such as stand age, density and/or productivity in allometric models may 549 

provide more accurate AGBIndiv predictions (Callaway et al., 1994; De Lucia et al., 2000; Genet 550 

et al., 2011; Alvarez et al., 2012; Lopez-Serrano et al., 2015). Such improvements are often 551 

interpreted as climatic impacts influencing predicted AGBIndiv via changes in the tree architecture 552 

(H-D relationship, e.g. Chave et al., 2014), and have led to recent debates over potential trade-553 
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offs between practical application and loss of accuracy when simple power-law models are used 554 

in preference to more complex models of AGBIndiv (e.g. Sileshi, 2014; Picard et al., 2015). 555 

Results obtained here indicate that this trade-off of loss of accuracy with the application of 556 

simple power-law models was relatively minor.  557 

 558 

Levels of generalisation 559 

Compared to the most generalized model (AllUniversal), the largest gains in predictive 560 

ability were attained when categorising the dataset at the level of species, but with little loss of 561 

accuracy when generalised to the level of plant functional type (Tables 6 & 7). These results 562 

were therefore consistent with previous work showing that generic multi-species models perform 563 

almost as well as the species-specific ones developed for that region (e.g. Feller 1992; Williams 564 

et al., 2005; Montagu et al., 2005; Mugasha et al., 2013; Paul et al., 2013a,b; Mbow et al., 2014; 565 

Ali et al., 2015).  566 

It is often suggested that plant functional attributes (e.g. ρ, apical dominance, and canopy 567 

architecture) may be genetically constrained as a result of adaption to environmental factors (e.g. 568 

Onoda et al., 2010; van Gelder et al., 2006; Banin et al., 2012). Such phylogenesis may account 569 

for differences in the AGBIndiv allometry between trees and shrubs found here, and by others (e.g. 570 

Paul et al., 2013a). Species of FShrub of relatively large size (e.g. D10 ca. 30-90 cm) had slightly 571 

lesser AGBIndiv than trees of the same D (Fig. 3). In contrast, multi-stemmed species (FMulti) 572 

tended to have relatively high AGBIndiv for a given D (Fig. 3). This may be attributable to their 573 

typical architecture of a large proportion of relatively heavy branches/small stems (e.g. Paul et 574 

al., 2013b) of relatively high ρ (Table 1).  575 

Although including ρ in compound predictor variables offered no measurable 576 

improvement to D-based models (Table 4), phylogenesis resulting in divergent stem anatomy 577 

and ρ may also largely account for the differences in AGBIndiv allometry between angiosperms 578 

and gymnosperms found here (i.e. FOther-L departing strongly from the AllUniversal model, Tables 6 579 
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& 7) and by others (e.g. Chojnacky et al., 2014; Hulshof et al., 2015). Lower average values of ρ 580 

for species of FOther-L (Table 1) explain why, for a given D, the AGBIndiv was relatively low when 581 

compared to most other tree species, particularly FEuc (Fig. 3). Although less evident from ρ 582 

measurement and estimates collated due to the high uncertainties in these datasets, such 583 

differences in stem anatomy may also be one of the reasons why species of FEuc (average ρ 0.77 584 

g cm-3, Table 1) of large size (e.g. D10 > 50 cm) had relatively high AGBIndiv for a given D when 585 

compared to species of FOther-H (average ρ 0.67 g cm-3, Table 1) (Fig. 3).  586 

There is evidence that ρ varies greatly among species in Australia (e.g. Onoda et al., 587 

2010). Further refinement and consistency in protocols used to measure ρ is required to confirm 588 

whether, as observed by others (e.g. van Breugel et al., 2011; Fayolle et al., 2013; Chojnacky et 589 

al., 2014), ρ may be more similar within than between different plant functional types, resulting 590 

in each having a unique AGBIndiv allometry. Hence, although ρ was found not to impact the 591 

model directly via a compound predictor variable, it may nonetheless have an indirect impact via 592 

influencing categories (i.e. groups of species, or plant functional types) upon which generalised 593 

models are developed. 594 

 595 

Model performance 596 

Species datasets for which we had confidence in prediction of AGBIndiv using species-597 

specific models (i.e. 53 species where N > 50) provided a test for bias in predictions with the 598 

application of more generalised models. Most (92%) demonstrated no significant bias, with the 599 

95% confidence interval of prediction obtained using generalised allometry overlapping with that 600 

attained using the species-specific model in 55-85% of the cases (Fig. 5). In contrast, species-601 

specific models appeared to avoid risks of significant bias in AGBIndiv in about 8% of the species 602 

studied. Thus, to minimise the potential for significant bias when accurate predictions are 603 

required at the individual level, representative species-specific models (i.e. N > 50, Roxburgh et 604 

al., 2015) should be used when these are available (e.g. Table S3). However because allometry-605 
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predicted AGBIndiv are generally used to derive AGBStand, user decision on whether the additional 606 

costs associated with developing new species-specific models is justified should be based on the 607 

extent to which these more specific models improve accuracy (and particularly, reduce bias) at 608 

the stand level.  609 

Stand-level validation of allometric models showed that there was relatively little added 610 

benefit (EF of AGBStand prediction increasing by <1%, and RMSE and MAPE decreasing by < 611 

3.2 Mg ha-1 and < 5.6%, respectively) of using species-specific models when compared to more 612 

generalised models (Fig. 6). The stand of Leos (observed AGBStand of 113.6 Mg ha-1) remained 613 

an outlier regardless of which level of generalisation was used in the allometric models applied 614 

to individuals in this stand. These results indicate that a good individual-level model does not 615 

necessarily translate into much improved stand-level predictions. Hence, when allometry-616 

predicted AGBStand estimates are required for new stands, added field-measurement costs and 617 

model uncertainty associated with obtaining species-specific data and calibrating model 618 

coefficients for each new species-specific model are generally unwarranted. Costs and possible 619 

uncertainties in stand-based estimates can be minimised through the application of more 620 

generalised models that are based on a much smaller number of parameters (e.g. only two when 621 

applying the most generalised model), irrespective of the number of species within the stand.  622 

This study has advanced the development and testing of generalised allometric models 623 

for prediction of total AGBIndiv for a wide range of plant functional types found across a diversity 624 

of ecoregions in Australia. Simple power-law generic models were precise, even when based on 625 

trunk diameter as the sole predictive varaible. Given the insubstantial influence of site factors 626 

(e.g. whether the stand was relatively young or managed, ecoregion, MAP and MAT) on 627 

AGBIndiv allometry, a next line of enquiry is to rigorously evaluate this finding by extending the 628 

replication of individuals from some of the relatively under-sampled combinations of plant 629 

functional type and ecoregion (e.g. individuals of FOther-H from tropical and subtropical regions, 630 

Fig. 2) or stand-types (e.g. individuals of FMulti from relatively mature and unmanaged stands).  631 
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Although species-specific models significantly reduced bias in AGBIndiv in about 8% of 632 

the species tested, results obtained from validation of allometric models against 17 stands that 633 

had AGBStand directly measured showed that a good individual-level model does not necessarily 634 

translate into much improved stand-level predictions. Across these contrasting sites where direct 635 

measurement (destructive stand harvest), the application of more generalised allometric models 636 

resulted in predictions of stand-level AGB that were almost as accurate as species-specific 637 

models. Furthermore, it is possible that for stands of mixed species, due to the smaller sample 638 

size and larger overall number of model coefficients to parameterise, uncertainties associated 639 

with the propagation of errors (including measurement, model-fitting and prediction errors) may 640 

be larger with the application of multiple species-specific models compared to a single 641 

generalised multi-species model. This hypothesis is being tested in a forthcoming paper. 642 

Additionally, sample sizes of > 50 are required for constructing each species-specific model 643 

(Roxburgh et al., 2015), resulting in significant costs associated with development of models for 644 

each new species. For such mixed species stands, likely higher uncertainties and costs negate the 645 

slight gain in average accuracy of AGBStand prediction when applying multiple species-specific 646 

models when compared to a generalised multi-species model.  647 

It is therefore recommended that generalised multi-species models be applied when cost-648 

effective predictions of AGBStand are required across multiple mixed species stands. The most 649 

generalised model (AllUniversal) tested here was based on D10 by necessity, and yet D 650 

measurement at this height is known to be sub-optimal for many single-stemmed tree species. 651 

Hence for practical reasons, models generalised at the level of plant functional groups (Eq. 4a-e, 652 

reported here using the Baskerville CF) are recommended for application in both Australia, and 653 

for validation in similar ecoregions in other continents.  654 

AGBIndiv (kg) of FShrub = exp [-3.007 + 2.428 ln(D10)] × 1.128, (4a) 655 

AGBIndiv (kg) of FMulti = exp [-2.757 + 2.474 ln(D10)] × 1.079, (4b) 656 

AGBIndiv (kg) of FEuc = exp [-2.016 + 2.375 ln(D130)] × 1.067,  (4c) 657 
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AGBIndiv (kg) of FOther-H = exp [-1.693 + 2.220 ln(D130)] × 1.044,  (4d) 658 

AGBIndiv (kg) of FOther-L = exp [-2.573 + 2.460 ln(D130)] × 1.018,  (4e) 659 

There are two exceptions to the recommendation of application of Eq. 4. First, where the 660 

trade-off between accuracy and cost effectiveness is relatively high, such as when estimating 661 

AGBStand for a given high carbon stand comprising only one or two dominant species. In such 662 

circumstances, additional costs associated with obtaining species-specific models may warrant 663 

the improved accuracy of AGBStand prediction. Second, where AGBStand is required for stands 664 

dominated by species suspected of not conforming to the generalised plant functional groups 665 

models. Another line of enquiry to pursue is to build improved species-specific models to expand 666 

the testing done here that found 8% of species did not conform to generalised plant functional 667 

type models.  668 

As with all allometric models, to avoid bias in AGBIndiv predictions, recommended 669 

models in this study should only be applied within their valid diameter range as indicated by the 670 

maximum D sampled (e.g. Table 3, Table S3). Further sampling is required to extend the D 671 

range of allometric models to both increase the replication (and confidence) of prediction of 672 

larger sized trees (D130 >50 cm), and to account for some of the variation in AGBIndiv due to 673 

hollows or piping of larger over-mature trees or trees affected by termites (e.g. Rayner et al., 674 

2014; Monda et al., 2015). 675 
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across Australia (DSWPC, 2015).  978 
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Fig 2 Number of individuals (N) of each of the five plant functional types by ecoregion (Fig. 1).  980 
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Fig 3 Generic allometric equations for prediction of total above-ground biomass (ln(AGBIndiv)) 982 

from stem diameter (ln(D), at 10 cm, D10, or at 130 cm, D130) of: (a) all individuals AllUniversal; (b) 983 

shrubs and small trees (FShrub); (c) multi-stemmed trees (FMulti); (d) single-stemmed eucalypt 984 

trees (FEuc); (e) single-stemmed other hardwood trees (FOther-H); and (f) softwood trees (FOther-L). 985 

Black solid lines represent the model of best fit, and dotted lines the 95% prediction interval. 986 

Different symbols for the scatter points represent the different categories of plant functional 987 

types (in (a)) or sub-categories of plant functional types (b-g) as defined in Fig. S1. Grey dashed 988 

lines in plots b-g represent predictions obtained using the AllUniversal model based on D10. 989 

Datasets with D130<10 cm were not used in the FOther-L model. 990 

 991 

Fig 4 Generic allometric equations for prediction of total above-ground biomass (AGBIndiv) from 992 

stem diameter (D at 10 cm, D10, or at 130 cm, D130) of: (a) all individuals AllUniversal; (b) shrubs 993 

and small trees (FShrub); (c) multi-stemmed trees (FMulti); (d) single-stemmed eucalypt trees (FEuc); 994 

(e) single-stemmed other hardwood trees (FOther-H); and (f) softwood trees (FOther-L). Back-995 

transformed predictions were derived by applying the MM correction factor (CF), with 996 

superscripts a, b, c, d, e and f indicating CF ranges of 1.1042-1.1046, 1.268-1.1279, 1.0775-997 

1.078, 1.0664-1.0668, 1.0407-1.0433, 1.0366-1.0378, respectively. Black solid lines represent 998 

the model of best fit, dotted lines represent the 95% confidence interval of fitting the model, and 999 

dashed lines represent the 95% confidence interval of prediction when applying the model. 1000 
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Different symbols for the scatter points represent the different categories of plant functional 1001 

types (in (a)) or sub-categories of plant functional types (b-f) as defined in Fig. S1. Datasets with 1002 

D130<10 cm were not used in the FOther-L model. R2 and RMSE refer to the linear regression of 1003 

predicted vs. observed AGB.  1004 

 1005 

Fig 5 Box plots describing the Proportion of the 95% confidence interval (CI) of generalised 1006 

allometry prediction overlapped by the 95% CI of species-specific allometry prediction when the 1007 

level of generalisation was; (a) plant functional type, or (b) universal, AllUniversal. These results 1008 

are for prediction of ln(AGBIndiv) using models (Eq. 2) across 53 species and a total of 92 1009 

scenarios where D10 was assumed to be 10 cm (N = 53), 50 cm (N = 28), or 100 cm (N = 11). 1010 

Note, species presented here are those reported in Table S3, each of which had an N > 50. Only 1011 

species sampled to these larger sizes were represented in scenario of D10 of 50 and 100 cm. 1012 

 1013 

Fig 6 Relationship between total above-ground biomass (AGBStand) from whole-plot harvesting 1014 

at 17 contrasting stands (Table 2) and that predicted for those stands through the application of 1015 

three scenarios of increasing generalisation of allometric models applied: (a) information on 1016 

species identity of each individual at each of the test sites was utilised, and for species that were 1017 

represented by the 53 available species-specific models, these were applied (Eq. 2 using 1018 

parameters given in Table S3), while for all other species, the appropriate plant functional type 1019 

model was applied (Eq. 2 using parameters given for FShrub, FMulti, FEuc, FOther-H and FOther-L in 1020 

Table 3), (b) species identification and/or species-specific models were assumed to be 1021 

unavailable, and so plant functional type models were applied (Eq. 2 using parameters given for 1022 

FShrub, FMulti, FEuc, FOther-H and FOther-L in Table 3), and (c) species identification, species-specific 1023 

models and plant functional type models were assumed to be unavailable, and so the universal 1024 

model (AllUniversal) was applied (Eq. 2 using parameters given for AllUniversal in Table 3). In all 1025 

scenarios, the MM correction factor was applied when back-transforming predictions. Grey 1026 
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dashed line represents the 1:1 line. EF indicates model efficiency. Black solid line represents the 1027 

line of best fit, with slope, intercept and fit statistics as shown. Values in parentheses are the 95% 1028 

prediction interval of the slope and intercept. 1029 
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Supplementary material 1030 

Table S1 Number of individuals obtained for each plant functional type from various sources. 1031 

*Indicates sources where data were sourced directly from the publication. References for 1032 

published data sources are listed below.   1033 

Sources FShrub FMulti FEuc FOther-H FOther-L Total N 

Paul et al., (2013a) 600 973 1760 155 9 3,497 

Peck et al., (2012) ~ 994 ~ ~ ~ 994 

Spencer B, pers. com. ~ 647 201 74 ~ 922 

Paul KI, pers. com. 41 191 560 6 ~ 798 

McAuthur G, pers. com. 229 469 ~ 4 ~ 702 

Bastin, (2014) 617 6 ~ ~ ~ 623 

Sinclair J, pers. com. 312 64 69 119 ~ 564 

Waterworth et al., (2016); Ximenes et al., (2006) ~ 24 482 ~ ~ 506 

Hobbs et al., (2013) 35 231 115 18 ~ 399 

Wildy D, pers. com. ~ 372 ~ ~ ~ 372 

Falster et al., (2015) 330 ~ ~ ~ ~ 330 

Sochacki et al., (2007) ~ ~ 208 ~ 115 323 

Rance et al., (2012) ~ ~ 302 ~ ~ 302 

Huxtable D., pers. com. ~ 297 ~ ~ ~ 297 

O'Connell et al., (1999) ~ ~ 263 ~ ~ 263 

Snowdon P., pers. com. ~ ~ ~ ~ 213 213 

Green, (2013) 73 62 37 26 ~ 198 

Williams et al., (2005) ~ ~ 171 21 ~ 192 

Ritson et al., (2015) ~ 78 97 10 ~ 185 

Brooksbank & Goodwin, (2012) ~ 181 1 ~ ~ 182 

O'Brien N., pers. com. ~ ~ 86 ~ 74 160 

Bi et al., (2015)* ~ ~ 150 ~ ~ 150 

Ritson P, pers. com. ~ 150 ~ ~ ~ 150 

Barton & Parekh, (2006) ~ ~ 145 ~ ~ 145 

Cromer & Williams, (1982) ~ ~ 141 ~ ~ 141 

Grove et al., (2007) ~ 139 ~ ~ ~ 139 

Bartle et al., (2012) ~ 124 ~ ~ ~ 124 

Paul et al., (2010) 42 24 41 14 ~ 121 

Ritson & Sochacki, (2003) ~ ~ ~ ~ 114 114 

Paul et al., (2013b) ~ 107 ~ ~ ~ 107 

Forrest, (1969) ~ ~ ~ ~ 99 99 

Hawkins et al., (2010) 60 29 ~ 4 ~ 93 

Montagu et al., (2005) ~ ~ 88 ~ ~ 88 

England et al., (2007) 12 35 35 ~ ~ 82 

Jonson & Freudenberger, (2011) ~ 58 14 10 ~ 82 

Forrester et al., (2012) ~ ~ 59 ~ ~ 59 

Turner & Lambert, (1986); Turner et al., (1992) ~ ~ 57 ~ ~ 57 

Lambert, (1979); Turner & Lambert, pers. com. ~ ~ 56 ~ ~ 56 

Brand (1999) ~ ~ 55 ~ ~ 55 

Attiwill P, pers. com. ~ ~ 32 ~ 16 48 

Turner & Lambert, (1986, 2014) ~ ~ 46 ~ ~ 46 
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Ximenes (2014) ~ ~ 44 ~ ~ 44 

Sudmeyer et al., (2008) ~ 20 20 ~ ~ 40 

Turner & Lambert, (1983, 2008); Turner, (1986) ~ ~ 39 ~ ~ 39 

O'Grady et al., (2000) ~ ~ 31 6 ~ 37 

Forrest & Ovington (1970) ~ ~ ~ ~ 36 36 

Theiveyanathan S, pers. com. ~ ~ 36 ~ ~ 36 

O'Grady et al., (2006) ~ ~ 33 ~ ~ 33 

Jonson, (2010) ~ 10 22 ~ ~ 32 

Stewart et al., (1979) ~ ~ 31 ~ ~ 31 

Zerihun, et al., (2006) ~ ~ 31 ~ ~ 31 

Groves, (1987)* 15 ~ 17 ~ ~ 32 

Snowdon et al., (2000) ~ ~ 29 ~ ~ 29 

Birk & Turner, (1992) ~ 4 24 ~ ~ 28 

Hingston & Galbraith, (1998) ~ ~ 26 ~ ~ 26 

Bennett et al., (2014) ~ 25 ~ ~ ~ 25 

Bi et al., (2001) * ~ 11 14 ~ ~ 25 

Dargavel, (1970) ~ ~ ~ ~ 25 25 

Feller, (1980) ~ 3 22 ~ ~ 25 

Bennett et al., (1997)*  ~ ~ 24 ~ ~ 24 

Paul et al., (2008) ~ ~ 24 ~ ~ 24 

Specht & West, (2003) ~ ~ 12 6 6 24 

Hingston et al. (1990) ~ ~ 22 ~ ~ 22 

Lewis T, pers. com.  ~ ~ 12 ~ 10 22 

Montagu K, pers. com. 14 ~ 8 ~ ~ 22 

Pinkard L, pers. com. ~ ~ 22 ~ ~ 22 

Applegate, (1982) ~ ~ 21 ~ ~ 21 

Sudmeyer & Daniels, (2010) ~ 21 ~ ~ ~ 21 

Cromer et al., (1993) ~ ~ 20 ~ ~ 20 

Turner et al., (1989) ~ ~ ~ 19 ~ 19 

Holland, (1969)* ~ 19 ~ ~ ~ 19 

Zerihun & Montagu, (2004) ~ ~ ~ ~ 19 19 

Carter & White, (2009) ~ 18 ~ ~ ~ 18 

Hamilton et al., (2005) ~ ~ 18 ~ ~ 18 

Barton & Montagu, (2006) ~ ~ 16 ~ ~ 16 

Resh et al., (2003) ~ ~ 16 ~ ~ 16 

Birk & Turner, pers. com. ~ ~ 15 ~ ~ 15 

Adams & Attiwill, (1988) ~ ~ 13 ~ ~ 13 

Bradford M, pers. com. ~ 2 ~ 10 ~ 12 

Adams M, pers. com. ~ ~ 11 ~ ~ 11 

Ashton, (1976)* ~ ~ 11 ~ ~ 11 

Baker, (1982)  ~ ~ 11 ~ ~ 11 

Baker et al., (1984) ~ ~ ~ ~ 11 11 

Specht, (2000) ~ ~ 11 ~ ~ 11 

Guo et al., (2008) ~ ~ ~ ~ 10 10 

Stewart et al., (1981) ~ ~ ~ ~ 10 10 

Forrester et al., (2004) ~ 8 ~ ~ ~ 8 

Turner et al., (1986); Turner & Lambert, (2014) ~ ~ 6 ~ ~ 6 

Grove, (1988) ~ ~ 6 ~ ~ 6 

Rose B, pers. com. 3 1 2 ~ ~ 6 
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Lewis, (1978) ~ ~ 5 ~ ~ 5 

Keith et al., (2003)* ~ ~ 5 ~ ~ 5 

Westman & Rogers, (1977) ~ ~ 2 1 ~ 3 

Baldwin & Stewart, (1987) ~ ~ 1 ~ ~ 1 

Total 2,383 5,397 6,004 503 767 15,054 
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Table S2 Empirical relationships used to ‘gap fill’ missing D and H measurements using the 1235 

equation Y = c + d X, where X may be D (cm) or H (m). All relationships were highly 1236 

significant (P<0.0001), with no log-transformations required.  1237 

Y X c d RMSE R2 N 

D10 D0 0.445 (0.081) 0.879 (0.004) 2.584 0.973 1,540 

 D30 0.155 (0.047) 1.077 (0.003) 1.663 0.984 2,918 

 D50 0.395 (0.050) 1.122 (0.003) 2.007 0.972 4,353 

 D130 1.488 (0.074) 1.195 (0.004) 2.690 0.953 3,760 

 H 1.201 (0.121) 2.099 (0.020) 6.671 0.574 8,283 

D130 D0 0.414 (0.181) 0.683 (0.006) 3.577 0.930 991 

 D10 -0.577 (0.061) 0.798 (0.003) 2.198 0.953 3,760 

 D30 -0.397 (0.050) 0.854 (0.003) 1.849 0.970 3,366 

 D50 -0.494 (0.036) 0.912 (0.002) 1.516 0.976 4,686 

 H -2.834 (0.208) 1.924 (0.016) 11.297 0.683 7,003 
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Table S3 The fitted coefficient (and their standard errors) and fit statistics of each of the 53 species in the dataset that had N > 50, and thus, for 1 

which species-specific allometric models for AGBIndiv of the form given in Eq. 2 could be developed. Here RMSE, R2, CF, MAPE, and N refer to 2 

the standard error of the linear regression, adjusted coefficient of determination, bias correction factor, mean absolute percentage error (based on 3 

back-transformed AGBIndiv predictions), and sample size, respectively. All equations fitted were highly significant (P<0.001). The diameter range 4 

relevant to each model is indicated in brackets (assuming a minimum diameter (D10) of 0.3 cm). Note: All species-specific models tested in Table 8 5 

were based on D10 (out of necessity to allow comparison with the AllUniversal model), but coefficients and provided here for species of FEuc, EOther-H 6 

and EOther-L were based on the recommended (for single-stemmed trees) D130.  7 

Form Species ln(a) b RMSE R2 CF MAPE N 

FShrub Acacia calamifolia (D10 < 16 cm) -2.228 (0.094) 2.398 (0.055) 0.353 0.939 1.0520-1.0618 30.6 127 

 Acacia hakeoides (D10 < 21 cm) -2.255 (0.095) 2.181 (0.051) 0.341 0.944 1.0463-1.0572 28.4 111 

 Acacia hemiteles (D10 < 9 cm) -2.920 (0.107) 2.393 (0.077) 0.293 0.948 1.0273-1.0398 22.8 55 

 Acacia kempeana (D10 < 26 cm) -3.169 (0.042) 2.492 (0.025) 0.376 0.960 1.0689-1.0723 32.8 419 

 Eremophila mitchellii (D10 < 37cm) -2.716 (0.143) 2.261 (0.056) 0.370 0.933 1.0580-1.0679 32.6 119 

 Eremophila sturtii (D10 < 35cm) -2.848 (0.153) 2.194 (0.063) 0.482 0.926 1.0946-1.1165 46.0 98 

 Geijera parviflora (D10 < 50 cm) -2.515 (0.192) 2.312 (0.069) 0.452 0.917 1.0743-1.1028 43.4 105 

 Senna artemisioides (D10 < 14 cm) -2.790 (0.057) 2.144 (0.053) 0.495 0.908 1.1124-1.1262 50.4 167 

FMulti Acacia acuminata (D10 < 34 cm) -3.003 (0.073) 2.516 (0.037) 0.373 0.960 1.0636-1.0701 33.8 193 

 Acacia aneura (D10 < 49 cm) -2.561 (0.126) 2.402 (0.045) 0.373 0.954 1.0577-1.0693 33.7 138 

 Acacia harpophylla (D10 < 47 cm) -2.789 (0.102) 2.570 (0.035) 0.262 0.982 1.0281-1.0332 21.3 102 

 Acacia mearnsii (D10 <38 cm) -2.381 (0.152) 2.348 (0.056) 0.296 0.964 1.0268-1.0416 25.0 67 

 Acacia melanoxylon (D10 < 27 cm) -2.928 (0.112) 2.478 (0.051) 0.245 0.979 1.0205-1.0277 21.2 53 

 Acacia pycnantha (D10 < 26 cm) -2.502 (0.118) 2.394 (0.063) 0.433 0.925 1.0781-1.0939 41.6 121 

 Acacia saligna (D10 < 46 cm) -3.075 (0.145) 2.424 (0.065) 0.420 0.899 1.0746-1.0891 41.0 159 

 Eucalyptus incrassata (D10 < 27 cm) -3.123 (0.203) 2.488 (0.088) 0.409 0.933 1.0686-1.0796 39.0 59 

 Eucalyptus kochii (D10 < 28 cm) -2.887 (0.049) 2.439 (0.021) 0.345 0.955 1.0553-1.0609 30.5 631 
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 Eucalyptus loxophleba (D10 < 37 cm) -2.760 (0.037) 2.526 (0.017) 0.361 0.920 1.0651-1.0672 32.3 1,873 

 Eucalyptus platypus (D10 < 31 cm) -1.851 (0.193) 2.194 (0.079) 0.301 0.942 1.0327-1.0416 23.6 49* 

 Eucalyptus polybractea (D10 < 35 cm) -2.736 (0.042) 2.483 (0.018) 0.340 0.941 1.0570-1.0593 29.3 1,140 

FEuc Corymbia citriodora  (D130 < 34 cm) -2.863 (0.053) 2.687 (0.053) 0.214 0.979 1.0169-1.0212 17.8 58 

 Corymbia maculata (D130 < 140 cm) -2.118 (0.033) 2.433 (0.020) 0.235 0.977 1.0255-1.0275 18.1 353 

 Eucalyptus astringens  (D130 < 29 cm) -1.509 (0.251) 2.346 (0.094) 0.345 0.907 1.0429-1.0564 29.2 65 

 Eucalyptus blakelyi (D130 < 71 cm) -1.982 (0.091) 2.235 (0.046) 0.265 0.979 1.0210-1.0323 20.4 53 

 Eucalyptus camaldulensis (D130 < 63 cm) -2.147 (0.087) 2.371 (0.037) 0.332 0.966 1.0477-1.0545 28.7 144 

 Eucalyptus cladocalyx (D130 < 52 cm) -1.859 (0.144) 2.434 (0.065) 0.339 0.956 1.0405-1.0548 30.3 67 

 Eucalyptus crebra (D130 < 50 cm) -2.659 (0.090) 2.638 (0.033) 0.301 0.980 1.0376-1.0446 23.8 130 

 Eucalyptus globulus (D130 < 64 cm) -1.878 (0.024) 2.295 (0.013) 0.308 0.979 1.0466-1.0482 25.5 712 

 Eucalyptus grandis (D130 <40 cm) -1.576 (0.036) 2.181 (0.018) 0.318 0.969 1.0485-1.0512 26.4 477 

 Eucalyptus largiflorens (D130 <54 cm) -1.474 (0.123) 2.119 (0.052) 0.215 0.964 1.0142-1.0216 17.5 66 

 Eucalyptus leucoxylon (D130 < 55 cm) -2.394 (0.142) 2.526 (0.049) 0.276 0.981 1.0281-1.0353 23.4 55 

 Eucalyptus melanophloia (D130 < 97 cm) -3.004 (0.128) 2.699 (0.045) 0.276 0.982 1.0291-1.0362 23.3 71 

 Eucalyptus melliodora (D130 < 92 cm) -2.139 (0.051) 2.361 (0.020) 0.323 0.978 1.0490-1.0526 26.6 307 

 Eucalyptus muelleriana (D130 < 100 cm) -2.316 (0.121) 2.457 (0.036) 0.208 0.983 1.0177-1.0205 16.9 80 

 Eucalyptus nitens (D130 < 30 cm) -1.952 (0.157) 2.240 (0.056) 0.224 0.955 1.0130-1.0239 16.3 78 

 Eucalyptus obliqua (D130 < 167 cm) -2.866 (0.157) 2.609 (0.042) 0.325 0.968 1.0432-1.0520 28.9 131 

 Eucalyptus occidentalis (D130 < 79 cm) -2.203 (0.068) 2.517 (0.032) 0.385 0.951 1.0680-1.0757 34.5 329 

 Eucalyptus pilularis (D130 < 129 cm) -2.633 (0.071) 2.570 (0.023) 0.231 0.988 1.0237-1.0262 17.9 156 

 Eucalyptus polyanthemos (D130 < 125 cm) -1.907 (0.106) 2.298 (0.040) 0.365 0.980 1.0524-1.0637 32.0 69 

 Eucalyptus populnea (D130 < 117 cm) -1.799 (0.053) 2.304 (0.017) 0.262 0.986 1.0311-1.0342 22.4 242 

 Eucalyptus regnans (D130 < 70 cm) -2.576 (0.102) 2.559 (0.040) 0.259 0.987 1.0251-1.0310 22.0 55 

 Eucalyptus saligna (D130 < 169 cm) -2.131 (0.158) 2.425 (0.051) 0.255 0.975 1.0198-1.0302 21.9 60 

 Eucalyptus sideroxylon (D130 < 72 cm) -2.167 (0.183) 2.341 (0.064) 0.312 0.951 1.0362-1.0465 26.7 71 

 Eucalyptus spathulata (D130 < 42 cm) -1.347 (0.048) 2.231 (0.020) 0.209 0.979 1.0207-1.0217 16.7 279 

 Eucalyptus tereticornis (D130 < 47 cm) -2.368 (0.079) 2.428 (0.033) 0.237 0.975 1.0234-1.0274 18.6 145 

 Eucalyptus vegrandis (D130 < 15 cm) -1.179 (0.212) 2.189 (0.094) 0.216 0.908 1.0144-1.0216 18.0 57 

 Eucalyptus viminalis (D130 < 30 cm) -2.225 (0.053) 2.316 (0.024) 0.228 0.992 1.0240-1.0259 18.3 373 

 Eucalyptus wandoo (D130 < 27 cm) -1.807 (0.117) 2.202 (0.055) 0.365 0.957 1.0523-1.0640 29.8 73 

FOther-H Allocasuarina huegeliana (D130 < 29 cm) -1.545 (0.114) 2.193 (0.050) 0.256 0.974 1.0242-1.0303 20.5 55 
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 Callitris glaucophylla (D130 < 69 cm) -1.638 (0.066) 2.176 (0.025) 0.276 0.983 1.0333-1.0374 21.4 131 

 Casuarina obese (D130 < 13 cm) -1.526 (0.135) 2.181 (0.057) 0.212 0.947 1.0096-1.0214 17.7 84 

FOther-L Pinus radiata (10 < D130 < 49 cm) -2.435 (0.087) 2.407 (0.031) 0.189 0.942 1.0162-1.0178 15.3 376 

 Pinus pinaster (10 < D130 < 47 cm) -2.664 (0.134) 2.484 (0.043) 0.139 0.983 1.0054-1.0121 11.5 61 

*Included here as N ~ 50. 1 
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 1 

Fig S1 Diagram depicting the categorisation of vegetation into five categories of functional type, and how these were further sub-2 

divided into sub-categories and species in order to assess four levels of generalisation of allometric models of AGB; (i) universal 3 

(AllUniversal), (ii) functional type (FShrub, FMulti, FEuc, FOther-H and FOther-L), (iii) functional type sub-category (FShrub_A, FShrub_B, 4 

FMulti_A, FMulti_B, FEuc_A, FEuc_B, FOther-H_A, FOther-H_B, FOther-H_C, FOther-L_A, FOther-L_B, and FOther-L_C), and (iv) species, of which only 5 

53 species of the 274 studied were adequately sampled (i.e. N > 50). Definition of functional type sub-categories were as follows; 6 

FShrub_A (61%): 40 different genera of shrubs or small trees, with the three most common genera of shrubs being Eremophila, 7 

Melaleuca and Senna; FShrub_B (39%): Shrubs or small trees from the genus Acacia; FMulti_A (76%): Mallee eucalypts. There were 8 

32 species of mallee eucalypts, although the three most common species were E. loxophleba, E. polybractea and E.kochii; FMulti_B 9 

(24%): Acacia trees; FEuc_A (91%): Eucalyptus genus; FEuc_B (9%): Genera of Corymbia or Angophora; FOther-H_A (68%): pine-like 10 

(in that they have foliage that resembles pine needles) genera of trees, including Casuarina, Allocasuarina, Callitris and 11 

Grevillea. [Note: Callitris is a gymnosperm (softwood), but was included in this category given its very dense wood which is 12 
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similar to hardwood species]; FOther-H_B (23%): 20 different rainforest tree genera of angiosperms; FOther-H_C (9%): genera of 1 

Abrophyllum, Banksia, Erythrophleum, Lophostemon, Pittosporum and Terminalia; FOther-L_A (83%): Pinus radiata (the most 2 

commonly established softwood plantation species in high rainfall regions of temperate Australia); FOther-L_B (15%): Pinus 3 

pinaster (the most commonly established softwood plantation species in low rainfall regions of Mediterranean Western 4 

Australia); FOther-L_C (2%): other species of softwood trees (e.g. species from the genera of either Araucaria, Agathis or Pinus). 5 

 6 
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Table 1 Characteristics of the entire dataset (AllUniversal), or for each of the five plant functional types. Abbreviations as follows: 'N', total number of individuals; 'D10' or ‘D130’, mean stem diameter 1 

measured over bark at 10 cm or 130 cm height above the ground, respectively; 'H', mean height of the tallest part of a tree or shrub, irrespective of branch architecture; 'ρ', mean stem wood density 2 

(based on limited direct measures with 88% derived from a global wood density database, see text); 'N sites', number of field sites from which the trees or shrubs were harvested; ‘N spp.’, number of 3 

species that were harvested; ‘%Age<20 yrs’, percentage of individuals from stands where age was known to be < 20 years old; ‘%Managed’, percentage of individuals from stands that were 4 

managed rather than naturally regenerated without human intervention; ‘MAT’, long-term mean annual temperature, averaged across sites from which individuals were harvested; and ‘MAP’, long-5 

term mean annual precipitation, averaged across sites from which individuals were harvested. Where relevant, standard deviations (and for D10 and D130, the range in values) are provided in 6 

parentheses.  7 

Type N              D10  

             (cm) 

             D130  

             (cm) 

H  

(m) 

ρρρρ  

(g cm-3) 

N  

sites 

N  

spp. 

%Age  

< 20 yrs 

%Managed MAT  

(oC) 

MAP  

(mm yr-1) 

AllUniversal 15,054 15.2 (15.9; 0.3-203.4)               NA 7.0 (6.5) 0.77 (0.15) 826 274 64.4 71.6 16.8 (2.9) 619 (341) 

FShrub 2,383 7.2   (6.7; 0.3-50.0)               NA 2.4 (1.7) 0.74 (0.10) 144 77 51.0 41.4 18.2 (2.6) 539 (343) 

FMulti 5,397 10.7 (6.8; 0.5-61.5)               NA 4.6 (2.5) 0.86 (0.11) 363 64 81.9 92.1 17.1 (1.9) 432 (158) 

FEuc 6,004 21.7 (21.0; 0.9-203.4) 16.9 (17.5; 0.5-169.0) 10.5 (8.0) 0.77 (0.11) 225 95 53.2 62.7 16.1 (3.3) 791 (344) 

FOther-H 503 20.2 (17.2; 1.6-123.4) 16.0 (14.0; 0.9-102.0) 8.8 (5.7) 0.67 (0.17) 59 33 39.6 57.6 19.0 (3.3) 779 (572) 

FOther-L 767 17.1 (10.4; 2.3-60.4) 13.0 (  9.1; 0.7-49.3) 9.2 (6.2) 0.40 (0.02) 35 5 90.0 100.0 14.2 (2.3) 733 (281) 

 8 

 9 
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Table 2 Summary of the main characteristics of 17 contrasting stands where whole plot AGBStand harvesting was used to test the accuracy of generalised allometric models. Abbreviations included: 10 

Location, latitude and longitude; AGBStand, measured stand-based above-ground biomass; MAP, mean annual precipitation; Plot N, plot area and number; Area, total area harvested across all plots 11 

within the stand; Stand density, number of individuals per hectare of the stand, often based on measurements taken from a larger number of plots than those used for direct measurement of biomass; 12 

BA, site average basal area; Tree N, number of live trees measured, often relatively small shrubs that were measured in bulk; Age, age of the stand, where ‘MA’ refers to mixed aged stands. 13 

Regardless of whether stands were established in belts or block configuration, plot area calculations (ha) were based on the assumption that the outer edge of the plot was ½ the between-row distance 14 

out from the outer row of trees.  15 

Site Location 

(decimal 

degrees) 

 

AGBStand 

(Mg ha-1) 

 

MAP 

(mm) 

 

Plot 

N 

 

Area 

(ha) 

Stand density 

(individuals 

ha-1) 

 

BA 

(m2 ha-1) 

 

Tree 

N 

 

Age 

(yr) 

 

 

Type of stand  

Pepal1 -33.4865 S, 117.7912 E 20.87 406 3 0.04 1,863 8.71 77 11 Belt monoculture planting of E. loxophleba 

Bird1 -32.8515 S, 117.5892 E 37.68 376 3 0.03 1,356 11.92 38 11 Belt monoculture planting of E. loxophleba 

Quicke1 -32.6736 S, 118.2361 E 77.63 339 3 0.02 1,894 25.55 29 14 Belt monoculture planting of E. loxophleba 

Temby1 -33.1457 S, 117.7187 E 22.61 353 3 0.03 1,433 6.92 44 16 Block monoculture planting of E. loxophleba   

Angel1 -30.1970 S, 117.1160 E 9.93 297 3 0.03 1,100 3.45 34 16 Block monoculture planting of E. loxophleba   

Brotherony1 -33.1368 S, 146.6380 E 20.60 378 6 0.09 1,233 4.92 107 7 Block monoculture planting of E. polybractea 

Gumbinnen2 -36.2447 S, 141.8148 E 19.13 347 6 0.22 2,282 4.38 523 10 Block planting of mixed species 

Moorland B2 -35.3377 S, 139.6317 E 18.63 370 4 0.25 244 2.88 88 15 Block planting of mixed species 

Moorland A2 -35.3377 S, 139.6317 E 19.95 370 4 0.25 139 2.52 50 20 Block planting of mixed species 

Strathearn2 -35.0485 S, 149.2325 E 38.88 637 12 0.48 2,827 11.37 1,499 15 Block planting of mixed species 

Moir2 -34.2809 S, 118.1820 E 42.38 439 12 0.48 2,708 4.72 1,449 20 Block planting of mixed species 

Jenharwill2 -36.3958 S, 144.4304 E 69.12 406 6 0.05 6,456 16.92 304 12 Belt planting of mixed species 

Leos2 -37.8381 S, 147.7582 E 113.60 626 10 0.11 845 26.61 96 16 Belt planting of mixed species 

McFall2 -33.7290 S, 117.3217 E 189.55 438 3 0.03 2,440 30.50 111 22 Belt planting of mixed species 

Mogo3 -35.7333 S, 150.0667 E 212.87 1,090 1 0.51 410 29.70 209 MA Block native forest of mixed species 

Clyde3 -35.4500 S, 150.2000 E 270.48 1,173 1 0.63 248 32.10 156 MA Block native forest of mixed species 

Flat Rock3 -35.4167 S, 150.3000 E 355.53 1,226 1 0.45 360 42.91 162 MA Block native forest of mixed species 
3Paul et al., (2013b); 2Paul et al., (2013a); 3Ximene et al., (2006) and Waterworth et al., (2016) 16 

Page 60 of 72Global Change Biology



 Generic allometrics 3 

 

Table 3 Fitted coefficients (and standard errors) and fit statistics of three levels of generalised allometric models for AGBIndiv of the form given in Eq. 2, and using a predictor of D measured at 17 

either 10 or 130 cm height. Here RMSE, R2, CF, MAPE, and N refer to the standard error of the linear regression, adjusted coefficient of determination, bias correction factor, mean absolute 18 

percentage error (based on back-transformed AGBIndiv predictions), and sample size, respectively. All equations fitted were highly significant (P<0.001). The diameter range relevant to each model 19 

is indicated in brackets (assuming a D10 of 0.3 cm). Parameters and performance of the species-specific allometric models are provided in the Table S3.  20 

Model D ln(a) b RMSE R2 CF2 CF1 MAPE N 

AllUniversal (D10 < 203 cm) D10 -3.024 (0.010) 2.503 (0.004) 0.446 0.964 1.1042-1.1046 1.1013 40.7 15,054 

FShrub (D10 < 50 cm)  D10 -3.007 (0.017) 2.428 (0.009) 0.491 0.968 1.1268-1.1279 1.1281 39.3 2,383 

FMulti (D10 < 62 cm) D10 -2.757 (0.020) 2.474 (0.009) 0.389 0.937 1.0775-1.0785 1.0787 33.5 5,397 

FEuc (D130 < 169 cm) D130 -2.016 (0.013) 2.375 (0.005) 0.360 0.974 1.0664-1.0668 1.0668 34.5 6,004 

FOther-H (D130 < 102 cm) D130 -1.693 (0.043) 2.220 (0.016) 0.293 0.973 1.0407-1.0433 1.0436 25.3 503 

FOther-L (D130 < 49 cm) D130 -2.573 (0.073) 2.460 (0.025) 0.189 0.954 1.0169-1.0179 1.0180 15.4 4553 

1 Recommended MM CF 21 

2 Simpler Baskerville CF for reference 22 

3 312 datasets with D130<10 cm excluded in this model  23 
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Table 4 Difference in fit statistics (RMSE, R2 and change in AIC) when models based on D-alone were compared with models that used compound predictor variables. Values in parentheses are 24 

results obtained when only a sub-set of the data were used: those for which H was measured (for application in the models based on D2H), or for which both H and ρ were measured (for application 25 

in the models based on D2Hρ); these comparisons were based on relatively low N, particularly in relation to ρ (12% of all data). A negative change in AIC (∆AIC) indicates that the first model is 26 

better than the second, and vice versa for positve ∆AIC values. 27 

Model Comparison of models made ∆RMSE ∆R2 ∆AIC N 

AllUniversal (AllUniversal using D10-alone) – (AllUniversal using D10
2H) -0.056 (-0.053) 0.010 (0.008) -3,539 (-2,831) 15,054 

 (AllUniversal using D10-alone) – (AllUniversal using D10
2Hρ) -0.027 (-0.062) 0.004 (0.003) -1,753 (-519) 15,054 

FShrub (FShrub using D10-alone) – (FShrub using D10
2H) -0.007 (0.003) 0.001 (0.000) -72 (26) 2,383 (2,191) 

 (FShrub using D10-alone) – (FShrub using D10
2Hρ) -0.013 (-0.044) 0.002 (0.005) -121 (-73) 2,383 (405) 

FMulti (FMulti using D10-alone) – (FMulti using D10
2H) 0.013 (0.016) -0.004 (-0.005) 370 (352) 5,397 (4,102) 

 (FMulti using D10-alone) – (FMulti using D10
2Hρ) 0.013 (-0.062) -0.004 (0.003) 364 (-519) 5,397 (1,723) 

FEuc (FEuc using D130-alone) – (FEuc using D130
2H) -0.048 (-0.048) 0.008 (0.007) -1,518 (-1,306) 6,004 (5,326) 

 (FEuc using D130-alone) – (FEuc using D130
2Hρ) -0.042 (-0.004) 0.007 (0.001) -1,327 (-26) 6,004 (947) 

FOther-H (FOther-H using D130-alone) – (FOther-H using D130
2H) -0.080 (-0.095) 0.017 (0.020) -244 (-249) 503 (440) 

 (FOther-H using D130-alone) – (FOther-H using D130
2Hρ) -0.056 (-0.158) 0.011 (0.050) -176 (-43) 503 (55) 

FOther-L (FOther_L using D130-alone) – (FOther-L using D130
2H) -0.022 (-0.014) 0.003 (0.002) -117 (-68) 767 (687) 

 (FOther-L using D130-alone) – (FOther-L using D130
2Hρ) -0.013 (0.036) 0.002 (-0.012) -71 (9) 767 (26) 

 28 

 29 
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Table 5 Fit statistics from general linear model analysis for assessing whether the allometric model represented by Eq. 2 was 30 

improved by the inclusion of individual site-factors (and their interactions with ln(D)) as supplementary predictor variables. 31 

Factors tested included: (i) binary categorical variable {0,1} of stand age (Age<20[1,0]: relatively young at <20 yrs, or older), (ii) 32 

binary categorical variable {0,1} of stand management (Managed[1,0]: managed or ‘natural’), (iii) categorical variable ecoregion 33 

(see Fig. 1), (iv) numerical variable of mean annual temperature (MAT), and (v) numerical variable of mean annual precipitation 34 

(MAP). Interactions of these site-factors with ln(D) were included in the model only where they were significant. Numbers in 35 

parentheses are the number of parameters in the model (Cp values greater than this number indicate models of poor fit). ‘n.s’ 36 

indicates the variable effects were not statistically significant (P>0.05). Note; AIC can only be compared across categories where 37 

N is the same. 38 

Model Variables RMSE R2 Cp AIC N  

AllUniversal ln(D10) alone 0.446 0.964 2.00 (2) -24,334 15,054 

 + Age<20[1,0] 0.444 0.965 4.00 (3) -24,490 15,054 

 + Managed[1,0] 0.444 0.965 4.00 (3) -24,492 15,054 

 + Ecoregion 0.421 0.968 6.93 (9) -26,097 15,054 

 + MAT 0.446 0.964 4.00 (3) -24,385 15,054 

 + MAP 0.443 0.965 4.00 (3) -24,573 15,054 

FShrub ln(D10) alone 0.492 0.968 2.00 (2) -3,383 2,383 

 + Age<20[1,0] 0.480 0.970 2.05 (3) -3,495 2,383 

 + Managed[1,0] 0.473 0.971 4.00 (4) -3,564 2,383 

 + Ecoregion 0.465 0.972 6.77 (7) -3,644 2,383 

 + MAT 0.483 0.969 4.00 (4) -3,470 2,383 

 + MAP 0.486 0.969 4.00 (4) -3,441 2,383 

FMulti ln(D10) alone 0.389 0.937 2.00 (2) -10,177 5,397 

 + Age<20[1,0] n.s     

 + Managed[1,0] n.s     

 + Ecoregion 0.386 0.938 3.49 (6) -10,263 5,397 

 + MAT 0.384 0.939 4.00 (4) -10,317 5,397 

 + MAP 0.388 0.938 4.00 (4) -10,211 5,397 

FEuc ln(D130) alone 0.360 0.974 2.00 (2) -12,275 6,004 

 + Age<20[1,0] 0.331 0.978 2.61 (3) -13,291 6,004 

 + Managed[1,0] 0.352 0.975 4.00 (4) -12,532 6,004 

 + Ecoregion 0.350 0.975 11.6 (7) -12,591 6,004 

 + MAT 0.359 0.974 4.00 (4) -12,291 6,004 

 + MAP 0.359 0.974 4.00 (4) -12,312 6,004 

FOther-H ln(D130) alone 0.293 0.973 2.00 (2) -1,234 503 

 + Age<20[1,0] n.s     

 + Managed[1,0] n.s     

 + Ecoregion 0.290 0.974 5.92 (3) -1,244 503 

 + MAT 0.289 0.974 4.00 (4) -1,244 503 

 + MAP 0.290 0.974 4.00 (4) -1,241 503 

FOther-L ln(D130) alone 0.273 0.979 2.00 (2) -1,987 767 

 + Age<20[1,0] 0.257 0.982 4.00 (4) -2,078 767 

 + Managed[1,0] n.s     

 + Ecoregion 0.272 0.980 6.12 (3) -1,996 767 

 + MAT 0.272 0.980 4.00 (4) -1,992 767 
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 + MAP 0.264 0.981 4.00 (4) -2,038 767 

  39 
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Table 6 Change in fit statistics (RMSE, R2 and AIC) when the AllUniversal model was compared with either: (i) AllUniversal model 40 

with the inclusion of a categorical variables for the five categories of plant functional type, using the entire dataset (first row), or 41 

(ii) less generalised models of plant functional type model (FShrub, FMulti, FEuc, FOther-H or FOther-L) when applied against each of the 42 

plant functional type datasets. By necessity, all models here were based on D10. A negative change in AIC (∆AIC) indicates that 43 

the first model is better than the AllUniversa model. 44 

Dataset Model comparison ∆RMSE ∆R2 ∆AIC N 

AllUniversal (AllUniversal + Types) – (AllUniversal)   -0.040 0.006 -2,836 15,054 

FShrub (FShrub) – (AllUniversal) -0.016 0.002 -155 2,383 

FMulti (FMulti) – (AllUniversal) -0.050 0.017 -1,311 5,397 

FEuc (FEuc) – (AllUniversal) -0.020 0.004 -602 6,004 

FOther-H  (FOther-H) – (AllUniversal) -0.008 0.002 -25 503 

FOther-L  (FOther-L) – (AllUniversal) -0.252 0.054 -1,019 767 

 45 
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Table 7 Median changes in fit statistics (RMSE, R2 and AIC) when the AllUniversal model was compared with less generalised 47 

models of either the relevant: (i) plant functional type model (FShrub, FMulti, FEuc, FOther-H or FOther-L), or (iii) model specific to the 48 

species level. These models relate to data from 53 species having sufficient data for species-specific allometric models (‘N 49 

Species’), and by necessity, were based on D10. Values in parentheses are standard deviations. N indicates the median number of 50 

individuals represented by each species within each grouping of the dataset. A negative change in AIC (∆AIC) indicates that the 51 

first model is better than the AllUniversal model, and vice versa for positve ∆AIC values. 52 

Dataset Model comparison 

N  

Species 

∆RMSE ∆R2 ∆AIC N 

AllUniversal (Types) – (AllUniversal) 53 -0.026 (0.072) 0.006 (0.052) -12 (146) 111 

 (Species) – (AllUniversal)  53 -0.080 (0.095) 0.027 (0.049) -43 (184) 111 

FShrub (FShrub) – (AllUniversal) 8 -0.015 (0.066) 0.004 (0.036) -9 (30) 115 

 (Species) – (AllUniversal)  8 -0.088 (0.122) 0.039 (0.059) -65 (52) 115 

FMulti (FMulti) – (AllUniversal) 12 -0.062 (0.091) 0.019 (0.043) -31 (277) 130 

 (Species) – (AllUniversal) 12 -0.068 (0.085) 0.028 (0.039) -40 (294) 130 

FEuc (FEuc) – (AllUniversal) 28 -0.025 (0.057) 0.006 (0.022) -12 (74) 81 

 (Species) – (AllUniversal) 28 -0.101 (0.090) 0.019 (0.042) -42 (144) 81 

FOther-H (FOther-H) – (AllUniversal) 3 0.005 (0.016) -0.003 (0.003) 4 (12) 84 

 (Species) – (AllUniversal) 3 -0.014 (0.013) 0.003 (0.002) -5 (12) 84 

FOther-L (FOther-L) – (AllUniversal) 2 -0.168 (0.018) 0.127 (0.044) -49 (6) 219 

 (Species) – (AllUniversal) 2 -0.182 (0.008) 0.133 (0.040) -55 (2) 219 

 53 

Page 66 of 72Global Change Biology



  

 

 

Figure 1  

168x75mm (300 x 300 DPI)  

 

 

Page 67 of 72 Global Change Biology



  

 

 

Figure 2  

168x100mm (300 x 300 DPI)  

 

 

Page 68 of 72Global Change Biology



  

 

 

Figure 3  

168x101mm (300 x 300 DPI)  

 

 

Page 69 of 72 Global Change Biology



  

 

 

Figure 4  

168x96mm (300 x 300 DPI)  

 

 

Page 70 of 72Global Change Biology



  

 

 

Figure 5  

80x46mm (300 x 300 DPI)  

 

 

Page 71 of 72 Global Change Biology



  

 

 

Figure 6  

168x57mm (300 x 300 DPI)  

 

 

Page 72 of 72Global Change Biology


