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Abstract

In this paper we consider the problem of internally and externally stabilising controlled in-

variant and output-nulling subspaces for two-dimensional (2-D) Fornasini-Marchesini models, via

static feedback. A numerically tractable procedure for computing a stabilising feedback matrix is

developed via linear matrix inequality techniques. This is subsequently applied to solve, for the first

time, various 2-D disturbance decoupling problems subject to a closed-loop stability constraint.

1 Introduction

The notion of controlled invariance, introduced by Basile and Marro in [1], is central to the so-called

geometric approach to linear control system analysis/synthesis with stationary state-space models,

for systems that operate between signals defined over a one-dimensional (1-D) independent variable

such as time. The most celebrated application of this concept is to the disturbance decoupling

problem, solved for the first time in [1]. Disturbance decoupling with the additional requirement

of internal stability was considered by Wonham and Morse in [24], via the introduction of (A, B)

stabilisability subspaces. An improved solution to the same problem was subsequently suggested by

Basile and Marro in [2], using the concept of self-bounded controlled invariance to avoid eigenspace

computation; this permits the maximum number of eigenvalues of the closed-loop to be freely placed,

as later shown by Malabre, Mart́ınez-Garćıa, and Del-Muro-Cuéllar [18].

Over the same period of time, a significant stream of literature emerged regarding the modelling

and analysis of two-dimensional (2-D) systems, which operate between signals defined over a 2-D
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independent variable (e.g. space and time). This includes the well-known Roesser [22] and Fornasini-

Marchesini (FM) [8, 9] models, which are inherently related as shown in [10], for example. Many

important results have been achieved in the attempt to develop a geometric theory for 2-D systems

[5, 6, 13, 14]. In particular, a definition of controlled invariance was first proposed in [5] for FM mod-

els. This definition, even though less powerful than its 1-D counterpart, enjoys feedback properties

that are very useful in synthesis problems. In [5], it is shown how to employ the notion of con-

trolled invariance to solve 2-D decoupling problems with unmeasured and/or measured disturbances,

but without stability constraints. The lack of guaranteed stability in the existing solutions of such

problems poses the biggest limitation to the application of these techniques, particularly from the

perspective of numerical implementation.

In part, the aim of this paper is to characterise a new notion of stabilisability for the invariant

subspaces defined in [5]. More precisely, we investigate the problem of internally and externally

stabilising a controlled invariant or output-nulling subspace, by means of a static feedback. The

analysis yields, via established linear matrix inequality (LMI) based analysis techniques, a tractable

procedure for computing a stabilising feedback matrix. Armed with these results, we present solutions

to the aforementioned disturbance decoupling problems, subject to a closed-loop stability constraint.

Finally, a full-information decoupling and model matching problem are also solved under a similar

stability constraint.

Notation. Throughout, we denote by Z and N the integers, and positive integers including zero

(i.e., natural numbers), respectively. The symbol 0n stands for the origin of the vector space R
n. The

image and the kernel of the linear map associated with multiplication by a matrix M ∈ R
n×m are

denoted by imM ⊆ R
n and kerM ⊆ R

m, respectively. The n × m zero matrix is denoted by 0n×m

and the n× n identity matrix is denoted by In. Given a matrix M , the symbols M> and M † denote

the transpose and the Moore-Penrose pseudoinverse of M , respectively.

2 Invariant subspaces for autonomous FM models

In this section, we begin by considering the autonomous FM model

xi+1,j+1 = A1xi+1,j + A2xi,j+1, (1)

where A1, A2 ∈ R
n×n and the vector xi,j ∈R

n is called the local state at (i, j) ∈ Z × Z. Defining, for

each k ∈ Z, the separation set

Sk ,

{
(i, j) ∈ Z × Z

∣∣ i + j = k
}

,

and the corresponding instance of the global state

Xk ,

{
xi,j

∣∣ (i, j) ∈ Sk

}
,

it follows that Xk can be uniquely expressed in terms of Xk−1 [8]. In particular, if we fix the values of

xi,j on S0 (i.e., fix X0 as a boundary condition), equation (1) uniquely determines Xk for k > 0 (i.e.,



xi,j for i+ j > 0) .1 Indeed, these are the boundary conditions usually associated with the FM model

(1). In the sequel, given a subspace W ⊆ R
n, by a W-valued boundary condition we intend xi,j ∈ W

for all (i, j) ∈ S0. Similarly, for each k > 0, the global state Xk is said to be W-valued when xi,j ∈ W

for all (i, j) ∈ Sk.

Subspaces of R
n which are invariant under multiplication by A1 and under multiplication by A2,

prove to be useful in analysing the dynamics of (1). In particular, given such a subspace J ⊆ R
n, it

follows that for any J -valued boundary condition, the global state Xk is J -valued for all k > 0. To

see this, note from (1) that, by hypothesis and for (i, j) ∈ Sk, whenever the elements xi−1,j and xi,j−1

of the global state Xk−1 are in J , the elements xi,j = A1xi,j−1 + A2xi−1,j of Xk also lie in J . That

is, the subspace J is invariant under the dynamics of the model (1). In what follows, the notion of

(A1, A2)-invariance is discussed in more detail; it is shown how the dynamics of an autonomous FM

model can be decomposed with respect to an (A1, A2)-invariant subspace, leading to definitions for

internal and external stability, in preparation for the subsequent discussion of controlled-invariance

for non-autonomous FM models in Section 3.

2.1 (A1, A2)-invariance

The theory expounded in this section parallels the one presented in [3, Section 3.2], for invariant

subspaces of 1-D systems. Given the matrices A1, A2 ∈ R
n×n associated with an autonomous 2-D FM

model of the form (1), a subspace J of R
n is said to be (A1, A2)-invariant if

[
A1

A2

]
x ∈ J ×J for all

x ∈ J . It is standard to denote this kind of invariance property by means of the following inclusion

[
A1

A2

]
J ⊆ J ×J , (2)

where the left-hand side denotes the image of the subspace J under the linear map associated with

multiplication by the matrix
[

A1

A2

]
∈ R

2n×n. It follows that J is (A1, A2)-invariant if, and only if, J

is both A1-invariant and A2-invariant in the usual 1-D sense. Moreover, we have the following result.

Lemma 2.1 Let J be an r-dimensional subspace of R
n and let J ∈ R

n×r be a basis matrix for J ;

i.e., im J = J and ker J = 0n. The subspace J is (A1, A2)-invariant if, and only if, there exist two

matrices X1, X2 ∈ R
r×r such that

[
A1

A2

]
J =

[
J 0n×r

0n×r J

] [
X1

X2

]
. (3)

Proof: The proof follows directly on noting that (3) is simply a matrix expression for the subspace

inclusion (2).

1As shown in [9], other separation sets can be defined so that boundary conditions specified over them uniquely

determine a local-state trajectory solution of (1) over a region of Z × Z. An interesting and useful example is the

separation set Sk ,

{
(i, j) ∈ {0}× [1,∞) ∪ [1,∞)×{0}

}
, which with corresponding boundary conditions uniquely

determines xi,j for (i, j) ∈ N × N. Most of the considerations in this paper can be adapted to such separations sets.



Remark 2.1 Note that (3) can also be expressed as

[
A1 A2

] [
J 0n×r

0n×r J

]
= J

[
X1 X2

]
,

which is equivalent to the subspace inclusion
[

A1 A2

]
(J ×J ) ⊆ J .

The following theorem is the 2-D counterpart of a well-known result [3, Theorem 3.2.1] concerning

the decomposition of a 1-D system matrix A with respect to an invariant subspace.

Theorem 2.1 The following are equivalent:

(i) There exists an r-dimensional subspace J ⊆ R
n that is (A1, A2)-invariant;

(ii) There exists a similarity transformation T ∈ R
n×n such that

Â1 , T−1A1 T =

[
Â1,11 Â1,12

0(n−r)×r Â1,22

]
and Â2 , T−1A2 T =

[
Â2,11 Â2,12

0(n−r)×r Â2,22

]
. (4)

Proof: (i) =⇒ (ii) Let J ∈ R
n×r be a basis matrix for J . Then, by Lemma 2.1, two matrices

X1, X2 ∈ R
r×r exist such that (3) holds. Since J is of full column-rank, a non-singular matrix

T ∈ R
n×n exists such that T−1 J =

[
Ir

0(n−r)×r

]
. As such, with Â1 = T−1 A1 T =

[
Â1,11 Â1,12

Â1,21 Â1,22

]
and

Â2 = T−1 A2 T =
[

Â2,11 Â2,12

Â2,21 Â2,22

]
, it follows from (3) that

[
Âi,11

Âi,21

]
=

[
Âi,11 Âi,12

Âi,21 Âi,22

] [
Ir

0(n−r)×r

]
= Âi T

−1 J = T−1 Ai J = T−1JXi =

[
Xi

0(n−r)×r

]
, (5)

for i = 1, 2. That is, Â1,21 = Â2,21 = 0, as required in (ii).

(ii) =⇒ (i) Let T be such that (4) holds. Then,

Â1

[
Ir

0(n−r)×r

]
=

[
X1

0(n−r)×r

]
and Â2

[
Ir

0(n−r)×r

]
=

[
X2

0(n−r)×r

]
(6)

hold for X1 = Â1,11 and X2 = Â1,11. Pre-multiplying (6) by T yields

A1 T

[
Ir

0(n−r)×r

]
= T

[
Ir

0(n−r)×r

]
X1 and A2 T

[
Ir

0(n−r)×r

]
= T

[
Ir

0(n−r)×r

]
X2.

As such, T
[

Ir

0(n−r)×r

]
is an r-dimensional (A1, A2)-invariant subspace, by Lemma 2.1.

Remark 2.2 Consider the matrix T =
[

T1 T2

]
∈ R

n×n, where T1 ∈ R
n×r is a basis matrix for

an r-dimensional (A1, A2)-invariant subspace J and T2 ∈ R
n×(n−r) is any matrix that makes T non-

singular (such as, but not necessarily, a basis matrix for J ⊥). Then in terms of the new coordinates[
x′

i,j

x′′
i,j

]
, T−1xi,j , it follows from the proof of Theorem 2.1, that the model (1) is equivalent to

[
x′

i+1,j+1

x′′
i+1,j+1

]
=

[
Â1,11 Â1,12

0 Â1,22

] [
x′

i+1,j

x′′
i+1,j

]
+

[
Â2,11 Â2,12

0 Â2,22

] [
x′

i,j+1

x′′
i,j+1

]
. (7)



Note that any J -valued boundary condition for the model (1) is such that the corresponding boundary

conditions for the equivalent model (7) satisfy x′′
i,j = 0 for all (i, j) ∈ S0. Moreover, in this case, it

follows by the lower block part of (7) that x′′
i,j = 0 for (i, j) ∈ Sk and k > 0. As such, in the original

coordinates, the local state xi,j = T
[

x′
i,j

x′′
i,j

]
= T1 x′

i,j , must lie in J for all (i, j) ∈ Sk and k > 0.

In light of Remark 2.2, it can be seen that x′
i,j , in the coordinates of the equivalent model (7),

represents a projection of the local state vector onto an r-dimensional (A1, A2)-invariant subspace J .

On the other hand, the component x′′
i,j represents the canonical projection of the local state onto the

(n − r)-dimensional quotient space R
n/J . Therefore, we refer to x′

i,j as the internal (with respect

to J ) component of the local state and to x′′
i,j as the external (with respect to J ) component of the

local state. Similarly,

x′
i+1,j+1 = Â1,11 x′

i+1,j + Â1,12 x′′
i+1,j + Â2,11 x′

i,j+1 + Â2,12 x′′
i,j+1, (8)

is said to govern the internal dynamics on J and

x′′
i+1,j+1 Â1,22 x′′

i+1,j + Â2,22 x′′
i,j+1, (9)

is said to govern the external dynamics of J .

2.2 Internal and external stability of invariant subspaces

With ‖Xk‖ , supn∈Z ‖xk−n,n‖, the system model (1) is said to be asymptotically stable if for any

boundary condition satisfying ‖X0‖ < ∞, the corresponding sequence {‖Xi‖}
∞
i=0 converges to zero [8].

This is clearly invariant under coordinate transformation and with a slight abuse of nomenclature,

the system matrix pair (A1, A2) is called asymptotically stable, in this case. It is well-known that the

pair (A1, A2) is asymptotically stable if, and only if,

det(In − A1 z2 − A2 z1) 6= 0 ∀ (z1, z2) ∈ P (10)

where P =
{

(ζ1, ζ2) ∈ C × C
∣∣ |ζ1| ≤ 1 and |ζ2| ≤ 1

}
is the unit bidisc [8, Proposition 3].

Various, more computationally tractable, sufficient stability conditions have been proposed over the

last two decades, expressed in terms of Lyapunov equations and/or spectral radius conditions of

certain matrices, see e.g. [11, 12, 4]. In the very recent literature, new necessary and sufficient

criteria have appeared for asymptotic stability in terms of conditions that can be checked in finite

terms, see [25, 7]. For the sake of argument and clarity, however, the following simple sufficient

condition for asymptotic stability, expressed in terms of an linear matrix inequality (LMI), will be

used herein:

Lemma 2.2 ([12]) The pair (A1, A2) is asymptotically stable if there exist two symmetric positive

definite matrices P1 and P2 such that
[

P1 0

0 P2

]
−

[
A>

1

A>
2

]
(P1 + P2)

[
A1 A2

]
> 0. (11)



The LMI condition in Lemma 2.2 is one of the most utilised for analysis and synthesis problems

involving FM models. Here it forms the foundation of a procedure developed for computing the

static feedback matrices that stabilise the internal and external dynamics of controlled invariant and

output-nulling subspaces, which are defined shortly.

Our aim for the moment is to show that, as in the 1-D case, the stability of (1) can be studied

in terms of two parts, with respect to a given (A1, A2)-invariant subspace J . In particular, using the

fact that the determinant of a block upper triangular matrix is the product of the determinants of

the blocks on the diagonal, by (10) it follows that the equivalent model (7) is asymptotically stable

if, and only if, the two matrix pairs (Â1,11, Â2,11) and (Â1,22, Â2,22) are each asymptotically stable.

Moreover, when a J -valued boundary condition is imposed (see Remark 2.2), so that for all k ≥ 0

the global state X ′′
k associated with the external dynamics (9) satisfies ‖X ′′

k ‖ = 0 and the internal

dynamics on J satisfy

x′
i+1,j+1 = Â1,11 x′

i+1,j + Â2,11 x′
i,j+1, (12)

if (Â1,11, Â2,11) alone is also asymptotically stable, then the global state X ′
k associated with (12)

satisfies ‖X ′
k‖ → 0. Indeed, since in this case the global state Xk associated with (1) satisfies

‖Xk‖ ≤ σ̄(T1)‖X
′
k‖ + σ̄(T2)‖X

′′
k ‖ = σ̄(T1)‖X

′
k‖,

where σ̄(·) denotes maximum singular value and T =
[

T1 T2

]
denotes the similarity transformation

for the coordinate change used to obtain the equivalent model (7), we also have that ‖Xk‖ → 0.

Definition 2.1 The (A1, A2)-invariant subspace J is said to be internally stable if the corresponding

internal dynamics governed by (12) are asymptotically stable; i.e., the corresponding pair (Â1,11, Â2,11)

is asymptotically stable.

The following lemma, which follows directly from (5), will be useful in the sequel.

Lemma 2.3 Let J be an r-dimensional (A1, A2)-invariant subspace, J be a basis matrix for J , and

X1, X2 ∈ R
r×r be such that (3) holds. Then J is internally stable if, and only if, the pair (X1, X2) is

asymptotically stable.

Consider now a boundary condition that is not J -valued, so that ‖X ′′
0 ‖ 6= 0. It follows from (9)

that ‖X ′′
k ‖ → 0 if, and only if, the pair (Â1,22, Â2,22) is asymptotically stable, and in this case, the

elements of the global state Xk associated with (1) approach the invariant subspace J , as k → ∞.

Definition 2.2 The r-dimensional (A1, A2)-invariant subspace J is said to be externally stable if

the corresponding external dynamics governed by (9) are asymptotically stable; i.e., the corresponding

pair (Â1,22, Â2,22) is asymptotically stable.

Finally, in view of the discussion above, note that the model (1) is asymptotically stable if, and only

if, any (A1, A2)-invariant subspace is both internally and externally stable.



3 Controlled invariant subspaces for non-autonomous FM models

Consider the non-autonomous FM model

xi+1,j+1 = A1 xi+1,j +A2 xi,j+1+B1 ui+1,j+B2 ui,j+1, (13)

where A1, A2 ∈ R
n×n, B1, B2 ∈ R

n×m and, for i, j ∈ Z, let xi,j ∈ R
n and ui,j ∈ R

m denote the local

state and input, respectively. Given a k > 0, the instance Xk of the global state associated with

the FM model (13), defined as before in the autonomous case, is uniquely determined given X0 and

the inputs on
⋃ k−1

i=0 Si ⊂ Z × Z. As such, the boundary conditions typically associated with (13)

correspond to fixing the local state over S0.

Definition 3.1 ([5]) The subspace V ⊆ R
n is controlled invariant for (13) if it satisfies the subspace

inclusion
[

A1

A2

]
V ⊆ (V × V) + im

[
B1

B2

]
. (14)

A direct consequence of this definition is that the subspaces 0n and R
n are controlled invariant

subspaces for (13). Moreover, if V is controlled invariant then it is both (A1, B1) and (A2, B2)-

controlled invariant in the usual 1-D sense [1]. The converse, however, is not true in general, as

observed in [14]. A controlled invariant subspace V implies the existence of a set of inputs {ui,j | i+j ≥

0} for which the corresponding local state solution of (13) lies in V, for all i+ j > 0 and any V-valued

boundary condition. While in the 1-D case the converse is true as well, with the above definition of

controlled invariance for 2-D FM models, the subspace of minimal dimension which contains a given

sequence satisfying (13) is not necessarily controlled invariant. Nonetheless, the definition enjoys good

feedback properties, as shown for the first time in [5], and briefly recalled in Lemma 3.1.

Remark 3.1 It is worth mentioning that an alternative definition of controlled invariance was pro-

posed in [14] for a different class of FM models described by

xi+1,j+1 = A1 xi+1,j + A2 xi,j+1 + B ui,j . (15)

According to the definition used therein, controlled invariant subspaces are indeed loci of controlled

local state, but they cannot be associated with local-state feedback control, since the structure of the

model described by (15) is not preserved under local-state feedback.

Lemma 3.1 Let V be an r-dimensional subspace of R
n and let V ∈ R

n×r be a basis matrix for V.

The following are equivalent:

i) The subspace V is controlled invariant for (13);

ii) There exist matrices X ∈ R
2 r×r and Ω ∈ R

m×r such that
[

A1

A2

]
V =

[
V 0

0 V

]
X +

[
B1

B2

]
Ω; (16)



iii) There exists a matrix F ∈ R
m×n such that V is (A1 + B1 F, A2 + B2 F )-invariant, i.e.,

[
A1 + B1 F

A2 + B2 F

]
V ⊆ V × V; (17)

iv) There exist matrices F ∈ R
m×n and X ∈ R

2 r×r such that

[
A1 + B1 F

A2 + B2 F

]
V =

[
V 0

0 V

]
X. (18)

Proof: The implication i) =⇒ ii) follows from Definition 3.1 on noting that (16) is simply a

matrix representation of the subspace inclusion (14). To prove ii) =⇒ iii) it suffices to take

F = −Ω (V >V )−1V >. It follows that Ω = −F V , that can be replaced in (16) to get (17). The

implication iii) =⇒ iv) follows directly from the fact that (18) is a matrix representation of the

inclusion (17). Finally, the implication iv) =⇒ i) follows by re-writing (18) as

[
A1

A2

]
V =

[
V 0

0 V

]
X −

[
B1

B2

]
F V. (19)

This completes the proof.

Remark 3.2 The pairs of matrices X and Ω which satisfy the linear equation (16) can be parame-

terised by

[
X

Ω

]
= W †

[
A1

A2

]
V + H K, (20)

where W ,

[
V 0 B1

0 V B2

]
, H is a basis matrix for kerW and K is an arbitrary matrix of suitable size.

Let F be such that (17) holds true. Applying a static local-state feedback ui,j = F xi,j in (13) we

find that

xi+1,j+1 = (A1 + B1 F )xi+1,j + (A2 + B2 F )xi,j+1. (21)

Moreover, under such control action and given a V-valued boundary condition, it follows as in the

autonomous case discussed above, that the global state Xk is V-valued for k > 0. Given a controlled

invariant subspace J , the set of matrices F such that (17) holds is denoted by F(V); when F ∈ F(V)

it is said to be a friend of the controlled invariant subspace V. As in the 1-D case, and since V is

(A1 +B1 F, A2 +B2 F )-invariant for all F ∈ F(V), the definitions for internal and external stability of

invariant subspaces introduced in Section 2.2 can be used to define notions of internal and external

stabilisability with respect to a 2-D controlled invariant subspace.

Definition 3.2 The controlled invariant subspace V is said to be internally (resp. externally) stabilis-

able if there exists an F ∈ F(V) such that V is an internally (resp. externally) stable (A1 +B1 F, A2 +

B2 F )-invariant subspace.



To see how to choose a friend F of a controlled invariant subspace V to achieve internally (resp.

externally) stability, a more explicit characterisation of the set F(V) is required.

Lemma 3.2 Let V be an r-dimensional controlled invariant subspace and let V ∈ R
n×r be a basis

matrix for V. Each matrix F ∈ F(V) is a solution of the linear equation Ω = −F V , where Ω ∈ R
m×r

is a solution of (16) for some X ∈ R
2 r×r. In particular,

F(V) =
{

F = −Ω (V >V )−1V >+Λ
∣∣ Ω satisfies (16) for some X and Λ V = 0

}
. (22)

Proof: The statement follows on noting that any F ∈ F(V) satisfies (18) for some X ∈ R
2 r×r. Hence,

(18) can be written as (19). It follows that (16) is satisfied with this X and Ω = −F V . To complete

the proof, note that since V is full column-rank, all solutions of the linear equation Ω = −F V can

be written as

F = FΩ + Λ, (23)

where FΩ = −Ω (V >V )−1V > and Λ is any matrix of suitable size such that ΛV = 0.

Since all F ∈ F(V) are such that V is (A1 + B1 F, A2 + B2 F )-invariant, it follows as discussed in

Remark 2.2 that the similarity transformation T =
[

T1 T2

]
, with T1 set to be a basis matrix for

V, is such that

T−1(Ai + Bi F )T =

[
Ĝi,11(Ω, Λ) Ĝi,12(Ω, Λ)

0 Ĝi,22(Ω, Λ)

]
for i = 1, 2. (24)

Equation (24) emphasises that for different values of Ω and Λ satisfying the conditions in (22), we

obtain different matrices Ĝi,∗(Ω, Λ). Importantly, it is shown in Lemma 3.3 below that the matri-

ces Ĝ1,11(Ω, Λ) and Ĝ2,11(Ω, Λ) do not depend on Λ, and similarly, the matrices Ĝ1,22(Ω, Λ) and

Ĝ2,22(Ω, Λ) do not depend on Ω. In this way, the two matrices Ω and Λ can be chosen independently

to build a friend of V, so that the former does not affect (Ĝ1,22, Ĝ2,22) and the latter does not affect

(Ĝ1,11, Ĝ2,11). In other words, when V is internally stabilisable, Ω can be chosen first so that FΩ

stabilises (Ĝ1,11, Ĝ2,11), and then Λ can be chosen to stabilise (Ĝ1,22, Ĝ2,22), if V is also externally

stabilisable, without affecting the internal stabilisation achieved with FΩ. These two independent

stabilisation procedures are examined in the following sections.

Lemma 3.3 The matrices Ĝi,11(Ω, Λ) in (24) do not depend on Λ. The matrices Ĝi,22(Ω, Λ) in (24)

do not depend on Ω.

Proof: First, we prove that the matrices Ĝi,11(Ω, Λ) in (24) do not depend on Λ. Let Fk = FΩ + Λk

for k = 1, 2, where Λ1 and Λ2 are such that Λ1 V = 0 and Λ2 V = 0, and FΩ = −Ω (V > V )−1 V >,

where Ω is such that (16) holds for some X. Then, (24) can be written as

T−1(Ai + Bi Fk)T =

[
Ĝi,11(Ω, Λk) Ĝi,12(Ω, Λk)

0 Ĝi,22(Ω, Λk)

]
. (25)



Our aim is to show that Ĝi,11(Ω, Λ1) = Ĝi,11(Ω, Λ2) for i = 1, 2. From (25) we find

[
Ĝi,11(Ω, Λ1) − Ĝi,11(Ω, Λ2) Ĝi,12(Ω, Λ1) − Ĝi,12(Ω, Λ2)

0 Ĝi,22(Ω, Λ1) − Ĝi,22(Ω, Λ2)

]

= T−1 (Ai + Bi FΩ + Bi Λ1)T − T−1 (Ai + Bi FΩ + Bi Λ2)T

= T−1 Bi(Λ1 − Λ2)
[

T1 T2

]
=

[
0 T−1 Bi (Λ1 − Λ2)T2

]
,

since Λ1 T1 = Λ2 T1 = 0. Thus, Ĝi,11(Ω, Λ1) − Ĝi,11(Ω, Λ2) = 0.

Now we show that the matrices Ĝi,22(Ω, Λ) in (24) do not depend on Ω. To this end, let Ω1 and

Ω2 be such that (16) holds for some X1 and X2, respectively. By difference,

[
V 0

0 V

]
(X1 − X2) +

[
B1

B2

]
(Ω1 − Ω2) = 0. (26)

With Fk = −Ωk (V > V )−1 V > + Λ, for k = 1, 2, where Λ is any matrix such that ΛV = 0, it follows

that (24) can be written as

T−1(Ai + Bi Fk)T =

[
Ĝi,11(Ωk, Λ) Ĝi,12(Ωk, Λ)

0 Ĝi,22(Ωk, Λ)

]
. (27)

For the sake of conciseness, let Li,∗ , Ĝi,∗(Ω1, Λ) − Ĝi,∗(Ω2, Λ). Subtracting (27), with k = 2, from

(27), with k = 1, gives

Bi (Ω2 − Ω1) (V >V )−1V >
[

T1 T2

]
=

[
T1 T2

] [
Li,11 Li,12

0 Li,22

]
,

which in particular, yields Bi (Ω2 − Ω1) (V >V )−1V >T2 = T1 Li,12 + T2 Li,22. Since no generality is

lost by assuming T1 = V , we find that

[
B1

B2

]
(Ω2 − Ω1)(V

>V )−1V >T2 =

[
V L1,12 + T2 L1,22

V L2,12 + T2 L2,22

]
.

Then using (26) to obtain

[
V 0

0 V

]
(X1 − X2)(V

>V )−1V >T2 =

[
V 0

0 V

] [
L1,12

L2,12

]
+

[
T2 0

0 T2

] [
L1,22

L2,22

]
,

it follows that

[
T2 0

0 T2

] [
L1,22

L2,22

]
= 0,

since V and T2 have linearly independent columns. This in turns implies that L1,22 = L2,22 = 0 since

T2 has linearly independent columns. This means that Ĝi,22(Ω1, Λ) = Ĝi,22(Ω2, Λ) for i = 1, 2.



3.1 Internal stabilisation

By Lemma 2.3, finding a matrix FΩ to internally stabilise V is equivalent to finding an FΩ for which

the solution X =
[

X1

X2

]
to (18) is such that the pair (X1, X2) is asymptotically stable. Since the only

degree of freedom here lies in the choice of Ω, which in turn is given by (20), we find that

• when the nullspace of W ,

[
V 0 B1

0 V B2

]
is zero, i.e., when

(V × V) ∩ im

[
B1

B2

]
= 02n, (28)

there is only one solution to the linear equation (20), and this either achieves internal stabilisa-

tion or it does not.

• when W has non-trivial kernel, we can write (20) as





X1

X2

Ω



 =





L1

L2

L3



 +





H1

H2

H3



K, (29)

where

[
L1

L2

L3

]
, W †

[
A1

A2

]
V , im

[
H1

H2

H3

]
= ker W and K is an arbitrary matrix of suitable size.

The problem now considered is one of finding a K such that the pair (X1, X2) is asymptotically

stable. If such a K exists, we can exploit it in order to compute Ω from (29) along with

the corresponding asymptotically stable pair (X1, X2), to yield the required solution of (16).

Moreover, with F = −Ω (V >V )−1V >, we find that (18) is also satisfied. This in turn implies

that F stabilises V internally by Lemma 2.3.

The following result provides a computationally tractable sufficient condition for the internal stabil-

isability of a controlled invariant subspace.

Theorem 3.1 The controlled invariant subspace V is internally stabilisable if there exist matrices

M = M> > 0, N = N> > 0 and Q of suitable dimensions such that





−M 0 NL>
1 + Q>H>

1

0 −(N − M) NL>
2 + Q>H>

2

L1 N + H1 Q L2 N + H2 Q −N



 < 0. (30)

Given a (M, N, Q) in the convex set defined by (30), a matrix K such that (X1, X2) in (29) is

asymptotically stable is given by K = QN−1.

Proof: The controlled invariant subspace V is internally stabilisable if, and only if, there exist

symmetric positive definite matrices P1 and P2 such that (X1, X2) satisfies (11) in Lemma 2.2. Since



Xi = Li + Hi K (i = 1, 2), this is equivalent to the existence of two symmetric and positive definite

matrices Φ and Ψ such that




−Φ 0 (L1 + H1K)>Ψ

0 −(Ψ − Φ) (L2 + H2K)>Ψ

Ψ(L1 + H1 K) Ψ(L2 + H2 K) −Ψ



 < 0.

Pre- and post-multiplying this matrix inequality by diag{Ψ−1, Ψ−1, Ψ−1} and defining M = Ψ−1Φ Ψ−1,

N = Ψ−1, and Q = K Ψ−1, yields (30). Finally, note that K = QN−1.

When (28) holds, the matrices Hi in (29) can be considered void. In this case, condition (30) in

Theorem 3.1 reduces to the existence M = M> > 0 and N = N> > 0 satisfying the LMI




−M 0 N X>
1

0 −(N − M) N X>
2

X1 N X2 N −N



 < 0,

which is obviously another way of saying that the pair (X1, X2) satisfies the sufficient condition for

stability (11). As mentioned above, in this case there is only one solution (X, Ω) of equation (20), so

that there are no degrees of freedom in the choice of FΩ. Indeed, FΩ = −Ω (V >V )−1V > is uniquely

determined in this case, and either the pair (A1 + B1 FΩ, A2 + B2 FΩ) is asymptotically stable – and

this happens if and only if (X1, X2) is asymptotically stable – or the controlled invariant V cannot

be internally stabilised.

3.2 External stabilisation

Given a controlled invariant subspace V and a corresponding basis matrix V , let (X, Ω) be any solution

of (20) and let FΩ = −Ω (V >V )−1V > be a friend of V that is internally stabilising. We now consider

the possibility of choosing a suitable Λ in order to stabilise V externally. Applying the static feedback

control action ui,j = (FΩ + Λ)xi,j in (13) yields

xi+1,j+1 = (G1,Ω + B1 Λ) xi+1,j + (G2,Ω + B2 Λ) xi,j+1,

where Gi,Ω , Ai + Bi FΩ. The problem can now be considered as one of finding Λ such that

{
The pair (G1,Ω + B1 Λ, G2,Ω + B2 Λ) is asymptotically stable

Λ V = 0

Theorem 3.2 Let V be a controlled-invariant subspace for (13), which is internally stabilised by the

static feedback matrix FΩ; i.e., (G1,Ω, G2,Ω) is internally stable with respect to V. Then V is also

externally stabilisable if there exist matrices M = M> > 0, N = N> > 0, R = R> > 0 and S of

suitable dimensions such that




−M 0 (G1,Ω + B1 S>Q>)>

0 −(N − M) (G2,Ω + B2 S>Q>)>

G1,Ω + B1 S>Q> G2,Ω + B2 S>Q> −R



 < 0 (31)



with

NR = I. (32)

Proof: First note that the condition ΛV = 0 can also be written as im Λ> ⊆ ker V >. Then, consider

a basis matrix Q of kerV >, so that im Λ> ⊆ im Q. Then it follows that Λ> = QS for some matrix S so

that Λ = S>Q>. Now by Lemma 2.2, the pair (G1,Ω +B1 S> Q>, G2,Ω +B2 S> Q>) is asymptotically

stable if there exist two symmetric positive definite matrices M and N and a matrix S of suitable

dimension such that




−M 0 (G1,Ω + B1 S> Q>)>

0 −(N − M) (G2,Ω + B2 S> Q>)>

G1,Ω + B1 S> Q> G2,Ω + B2 S> Q> −N−1



 < 0

which is equivalent to (31) when combined with (32).

The set defined by the inequality (31) with the constraint (32) is not convex. However, various

established numerical techniques are available for finding feasible points. Here we consider the so-

called sequential linear programming matrix method (SLPMM) developed in [15]. To this end, we first

notice that condition (32) is satisfied if and only if Trace(NR) = n and

[
N I

I R

]
≥ 0. (33)

The problem of finding (M, N, R, S) that satisfy (31-32) can then be tackled with the following

algorithm.2

Algorithm 3.1 (Leibfritz, 2001, [15])

Step 1: Check the existence of a pair (N, R) satisfying (31) and (33). If such pair exists, denote it

with (N0, R0).

Step 2: Given (N k, R k), k ≥ 0, obtain a solution (N, R) together with S, to the convex optimization

problem

min Trace(N R k + N kR)

subject to (31), (33).

Denote this solution with (N k
T , R k

T ).

Step 3: If
∣∣Trace(N k

T R k + N kR k
T ) − 2 · Trace(N kR k)

∣∣ ≤ ν

then stop, where ν is a pre-defined sufficiently small positive scalar.

2This may not always yield a feasible point, even if the non-convex set defined by (31-32) is non-empty.



Step 4: Compute α ∈ [0, 1] by solving

min
α∈[0,1]

Trace

(
[ N k + α(N k

T − N k) ] [R k + α(R k
T − R k) ]

)
.

Step 5: Set N k+1 = (1 − α)N k + αN k
T and R k+1 = (1 − α)R k + αR k

T , then go to Step 2.

The optimisation problems described in Steps 2 and 4 are standard and easy to solve computationally,

see e.g. the MATLABR© routines mincx.m and fminbnd.m, in the LMI and Optimization Toolboxes,

respectively.

Example 3.1 Consider (13) with

A1=





0.05 −0.3 0 0

0 0.1 0 0

0 0 0.1 −3

0 0.8 0 0




, A2 =





1.5 −5 0 0

−3.5 3 0 −0.5

0 2.5 0.02 0

0 0 0 0.05




, B1 =





0 0

0 0

−3 0

1 −7




, B2 =





0 −1

−5 0

0 0.5

−3 0




.

This system does not satisfy the sufficient condition (11) for stability. It is easily seen that the

subspace

V = im





1 0 0

0 0 0

0 −1 0

0 0 1





is controlled invariant. In this case W =
[

V 0 B1

0 V B2

]
is singular and H =

[
0 0 0.7 0.1 −0.05 0 0 0.1

]>

is a basis matrix of ker W . Let
[

X

Ω

]
= W †

[
A1

A2

]
V , so that

X1 =





0.05 0 0

−2.1 0.1 2.7

−0.2356 −0.0014 −0.0044



, X2 =





1.5663 −0.0002 0.0137

0.0332 0.0199 0.0068

2.1 0 0.35



,

Ω =

[
0.7 0 0.1

0.0663 −0.0002 0.0137

]
.

It is easy to check that the pair (X1, X2) does not satisfy condition (11) for stability. As such, by

taking

FΩ = −Ω (V >V )−1V > =

[
−0.7 0 0 −0.1

−0.0663 0 −0.0002 −0.0137

]
,

we find that the pair (A1 + B1 FΩ, A2 + B2 FΩ) is not necessarily asymptotically stable. By changing

coordinates according to the similarity transformation

T =





1 0 1 0

0 0 0 1

2 1 0 0

0 −1 1 2







which is adapted to V in the sense that the first three columns span it, we find

T−1(A1 + B1 FΩ)T =





2.0171 2.8058 −0.8900 −4.5088

−1.7342 −2.8115 1.1800 3.6176

−1.9671 −2.8058 0.9400 4.2088

0 0 0 0.1




,

T−1(A2 + B2 FΩ)T =





0.5399 −0.3098 0.8300 2.1590

−1.0732 0.6463 −1.7000 −1.8317

1.0268 0.2963 0.7500 −7.1317

0 0 0 3




.

These structures clearly display the (A1 +B1 FΩ, A2 +B2 FΩ)-invariance of V. In order to find an FΩ

which internally stabilises the controlled invariant subspace V, let us consider

[
X

Ω

]
=

[
V 0 B1

0 V B2

]† [
A1

A2

]
V + HK,

where H =
[

0 0 0.7 0.1 −0.05 0 0 0.1
]>

. In this case, the LMI (30) is feasible, which im-

plies internal stabilisability of V. One such feasible point yields K =
[
−12.5979 0.0018 −0.1506

]
.

Using (20) we get

X1 =





0.05 0 0

−2.1 0.1 2.7

−12.5539 0.0004 −0.1517



, X2 =





−0.1934 0.0001 −0.0074

−0.8467 0.0200 −0.0037

2.1 0 0.35



,

and

Ω =

[
0.7 0 0.1

−1.6934 0.0001 −0.0074

]
.

Now the pair (X1, X2) is asymptotically stable, as it satisfies the stability condition (11). With this

choice

FΩ = −Ω (V >V )−1V > =

[
−0.7 0 0 −0.1

1.6934 0 0.0001 0.0074

]
.

Now

T−1(A1 + B1 FΩ)T =





−10.3046 2.9513 −13.3556 −4.8034

22.9093 −3.1027 26.1112 4.2068

10.3546 −2.9513 13.4056 4.5034

0 0 0 0.1




,

T−1(A2 + B2 FΩ)T =





3.1803 −0.3410 3.5012 2.2222

−5.4738 0.6983 −6.1520 −1.9369

−3.3738 0.3483 −3.7020 −7.2369

0 0 0 3




.



This shows that the pair (0.1, 3) accounting for the external dynamics of V has not changed by

modifying the feedback FΩ to internally stabilise the controlled invariant subspace V. Since the pair

(0.1, 3) is unstable, our goal now is to stabilise V externally, by means of a feedback matrix F = FΩ+Λ,

where ΛV = 0. In this case, Algorithm 3.1 provides a feasible solution to the external stabilisation

problem. By choosing ν = 10−4, after 16 iterations of Steps 1-3, the matrices Nk and Rk for which

the condition in Step 3 is satisfied are found. Their values yield

NkRk =





1.000003 0.000008 0.000015 0.000101

0.000000 1.000001 −0.000006 0.000035

0.000000 −0.000000 1.000004 0.000000

0.000000 0.000000 0.000000 1.000003





and

Trace(NkRk) ' 4.000012,

and the corresponding solution is given by S =
[
−0.633 1.305

]
, so that Λ =

[
0 0.6332 0 0

0 −1.3051 0 0

]
satisfies

ΛV = 0m. It turns out that

F = FΩ + Λ =

[
−0.7 0.6332 0 −0.1

1.6934 −1.3051 0.0001 0.0074

]

and

T−1(A1 + B1 F )T =





−10.3046 2.9513 −13.3556 3.0662

22.9093 −3.1027 26.1112 −13.4320

10.3546 −2.9513 13.4056 −3.3662

0 0 0 0.1




,

T−1(A2 + B2 F )T =





3.1803 −0.3410 3.5012 4.6967

−5.4738 0.6983 −6.1520 −7.5386

−3.3738 0.3483 −3.7020 −8.4063

0 0 0 −0.1659




.

Note that internal dynamics with respect to V has not changed by adding Λ to the static feedback;

that is, the internal stabilisation previously performed has not been affected. On the other hand, V

has been externally stabilised since the pair (0.1,−0.1659) is now asymptotically stable.

4 Output-nulling controlled invariance

In this section we turn our attention to output-nulling subspaces. These are a particular type of

controlled invariant subspaces for the FM model

xi+1,j+1 = A1 xi+1,j + A2 xi,j+1 + B1 ui+1,j + B2 ui,j+1,
(34)

yi,j = C xi,j + D ui,j ,



where yi,j ∈ R
p is the output vector and the matrices C and D are of suitable dimensions.

The subspace V ⊆ R
n is an output-nulling subspace for (34) if





A1

A2

C



V ⊆
(
V × V × 0p

)
+ im





B1

B2

D



 . (35)

An output-nulling subspace V is such that for any V-valued boundary condition, there exists an input

function such that the corresponding local state trajectory of (34) lies in V and the corresponding

output is zero for all (i, j) such that i + j ≥ 0. Such an input can always be expressed as a static

state feedback. The following lemma summarizes the most important properties of output-nulling

subspaces.

Lemma 4.1 Let V be a basis matrix for an r-dimensional subspace V ⊆ R
n. The following statements

are equivalent:

(i) The subspace V is output-nulling for (34).

(ii) There exist two matrices X ∈ R
2 r×r and Ω ∈ R

m×r such that





A1

A2

C



 V =





V 0

0 V

0 0



 X +





B1

B2

D



 Ω. (36)

(iii) There exists a matrix F ∈R
m×n such that





A1 + B1 F

A2 + B2 F

C + D F



 V ⊆
(
V × V × 0p

)
. (37)

Proof: The implication (i) =⇒ (ii) follows immediately from (35) on noting that (36) is simply

a matrix representation of (35). In order to show (ii) =⇒ (iii), let F = −Ω (V > V )−1 V >, so that

Ω = −F V can be replaced in (35) to yield (37). The implication (iii) =⇒ (i) is immediate.

The set of output-nulling controlled invariant subspaces of (34) is denoted with the symbol V0.

Given a V ∈ V0, any matrix F such that (37) holds is called an output-nulling friend. It is not

difficult to see that, as in the 1-D case, the set V0 is closed under subspace addition. Thus, the sum

of all the output-nulling subspaces of (34) is the largest output-nulling subspace and this is denoted

by V?. The following algorithm enables computation of V? in finite terms, as the (n − 1)-th term of

a monotonically non-increasing sequence of subspaces. It is the 2-D counterpart of Algorithm 4.1.2

in [3].



Algorithm 4.1 The sequence of subspaces (V i)i∈N described by the recurrence

V i =





A1

A2

C





−1

(
(V i−1 × V i−1 × 0p) + im





B1

B2

D




)
, V 0 = R

n,

is monotonically non-increasing. Moreover, there exists an integer k≤n− 1 such that V k + 1 =V k.

For such k the identity V? =Vk holds.

Algorithm 4.1 is a generalisation of a corresponding result in [5, Proposition 2.7], to the case of

‘non-strictly proper’ systems. Due to the invariance property (37) of the set of all output-nulling

friends associated with the elements of the output-nulling controlled invariant subspaces V0 for (34),

we can introduce the notions of internal stabilisability and external stabilisability for output-nulling

subspaces: An output-nulling subspace V ∈ V0 is said to be internally stabilisable (resp. exter-

nally stabilisable) if there exists an output-nulling friend F such that V is an internally stable (resp.

externally stable) (A1 + B1 F, A2 + B2 F )-invariant.

Given a V-valued boundary condition for (34) with V ∈ V0, any control action ui,j = F xi,j with

F satisfying (37) – i.e., F is an output-nulling friend of V – is such that xi,j ∈ V and yi,j = 0 for all

i, j such that i + j ≥ 0. To see this, it suffices to substitute ui,j = F xi,j in (34) to get

xi+1,j+1 = (A1 + B1 F )xi+1,j + (A2 + B2 F )xi,j+1

yi,j = (C + D F )xi,j ,
(38)

and to observe that when xi+1,j and xi,j+1 belong to V, so does xi+1,j+1 because of (37). As a result,

for any V-valued boundary condition it is found that xi,j ∈ V and yi,j = 0 since V ⊆ ker (C + D F ).

This shows that the control input required to maintain the output at zero and the local state on V can

always be expressed as a static local state feeback. As such, all of the material developed in Section 3

for controlled invariant subspaces can be adapted straightforwardly to output-nulling subspaces with

few modifications. Indeed, by replacing (16) with (36) and (28) with

(V × V) ∩

[
B1

B2

]
ker D = 02n,

the internal and external stabilisation of output-nulling subspaces via output-nulling static feedback

can be carried out along the same lines as the internal and external stabilisation of arbitrary controlled

invariant subspaces.

5 Disturbance decoupling problems

The theoretical and computational tools developed here for the stabilisation of controlled invariant and

output-nulling subspaces can be used for the solution of the disturbance decoupling problem, which



is a prototype problem for a large class of control and estimation problems amenable to geometric

techniques, with the requirement that the closed-loop be asymptotically stable. Consider a FM model

xi+1,j+1 = A1 xi+1,j + A2 xi,j+1 + B1 ui+1,j + B2 ui,j+1 + H1 wi+1,j + H2 wi,j+1,

yi,j = C xi,j + D ui,j + G wi,j ,
(39)

where for all i, j ∈ Z, xi,j ∈R
n is the local state, ui,j ∈R

m is the control input, wi,j ∈ R
d is a

disturbance to be decoupled from the output yi,j ∈R
p, Ak ∈ R

n×n, Bk ∈ R
n×m, Hk ∈ R

n×d for

k = 1, 2, C ∈ R
p×n, D ∈ R

p×m and G ∈ R
p×d. The corresponding 2-D counterpart of the disturbance

decoupling problem (DDP) first considered in [1], was studied and solved for FM models by Conte

and Perdon in [5] without requiring stability. Their approach consists of finding conditions which

ensure that a static local state feedback input ui,j = F xi,j exists such that the output function is not

affected by the disturbance w. A sufficient condition for the solution of this problem is

im





H1

H2

G



 ⊆ V? × V? × 0p, (40)

where V? is the largest output-nulling controlled invariant subspace of the undisturbed system (13).

A necessary condition for (40) to be satisfied is that the feedthrough matrix G be zero, and this is

equivalent to condition (i) of Proposition 3.1 in [5]. When condition (40) is satisfied, a feedback-

state solution of this problem is given by any output-nulling friend F of V?. The presence of the

feedthrough matrices D and G appears to be more interesting in the second decoupling problem

considered in [5]; i.e., the measurable signal decoupling problem (MSDP), in which the disturbance

w is available for measurement. In this case, a decoupling control input can take advantage of

the additional information provided by the direct measurement of the disturbance w, to take form

ui,j = F xi,j +S wi,j . A sufficient condition for the solution of the MSDP problem is characterised by

the inclusion

im





H1

H2

G



 ⊆ (V? × V? × 0p) + im





B1

B2

D



 , (41)

which is the natural extension of condition (ii) of Proposition 3.1 in [5], to accommodate non-strictly

proper systems. Notice that in this case G can be different from the zero matrix when (41) holds.

Hence, this condition indeed encompasses condition (ii) of Proposition 3.1 in [5]. If the condition (41)

holds true, there exist matrices Φ1, Φ2 and Ψ of suitable sizes such that




H1

H2

G



 =





V 0

0 V

0 0





[
Φ1

Φ2

]
+





B1

B2

D



 Ψ, (42)

where V is a basis matrix for V?. Notice that the solutions Φ1, Φ2 and Ψ of the linear equation (42)

are parameterised in the null-space of

[
V 0 B1

0 V B2

0 0 D

]
. If we take an output-nulling friend F of V? and



S = −Ψ, it is can be seen that the control input ui,j = F xi,j + S wi,j achieves exact decoupling.

Indeed, by substituting this control input in (34) we obtain

xi+1,j+1 = (A1 + B1F )xi+1,j + (A2 + B2F )xi,j+1 + V Φ1 wi+1,j + V Φ2 wi,j+1,

yi,j = (C + DF )xi,j ,

which is clearly disturbance decoupled, since given any V-valued boundary condition over the sepa-

ration set S0, we get xi,j ∈ V and yi,j = 0 for all i, j such that i + j ≥ 0. The limitation of these

sufficient conditions and of the corresponding solutions is that they are only structural, and they do

not take into account stability requirements of the closed-loop. Hence, here we are concerned with

the solution of the following two decoupling problems.

Problem 5.1 (DDP with stability) Find F ∈ R
m×n such that ui,j = F xi,j decouples the distur-

bance w from the output y and such that the closed-loop pair (A1 +B1 F, A2 +B2 F ) is asymptotically

stable.

Problem 5.2 (MSDP with stability) Find F ∈ R
m×n and S ∈ R

m×d such that ui,j = F xi,j +

S wi,j decouples the disturbance w from the output y and such that the closed-loop pair (A1+B1 F, A2+

B2 F ) is asymptotically stable.

Theorem 5.1 Problem 5.1 is solvable if

(i) im

[
H1

H2

G

]
⊆ V? × V? × 0p;

(ii) V? is internally and externally stabilisable.

When these conditions hold, any output-nulling friend F of V? which both internally and externally

stabilises V? solves the problem. Similarly, Problem 5.2 is solvable if

(i) im

[
H1

H2

G

]
⊆ (V? × V? × 0p) + im

[
B1

B2

D

]
;

(ii) V? is internally and externally stabilisable.

When these conditions hold, any output-nulling friend F of V? that both internally and externally

stabilises V?, together with S = −Ψ, where Ψ satisfies (42) for some Phi1 and Φ2, is a solution to

Problem 5.2.

Proof: This result follows by direct application of the results characterising the internal and external

stabilisabilty of controlled invariant subspaces developed in preceding sections.

5.1 Full information decoupling

We now consider a different version of the measurable signal decoupling problem, in which a control

action ensuring perfect decoupling is sought within the class of those generated by a dynamic feed-

forward compensator which exploits measurement of the disturbance w to be decoupled. We show



that under condition (41), the explicit structure of a feedforward decoupling compensator ΣC can be

derived. In the next section, it is shown how to employ the solution of this problem to solve the

so-called model matching problem.

We begin by presenting the formulation of the problem. First, let the global output Yk on Sk

associated with (39) be defined as

Yk ,

{
yi,j

∣∣ (i, j) ∈ Sk

}
.

Problem 5.3 Design a 2-D feedforward compensator ΣC ruled by

zi+1,j+1 = K1 zi+1,j + K2 zi,j+1 + L1 wi+1,j + L2 wi,j+1,

ui,j = M zi,j + N wi,j

(43)

such that, for all admissible inputs w and all boundary conditions of Σ and ΣC, the sequence {‖Yi‖}
∞
i=0

converges to zero.

Clearly, Problem 5.3 admits solutions only if a compensator ΣC can be found so that the overall

system is asymptotically stable. Since the decoupling scheme is feedforward, this is equivalent to

requiring that Σ is asymptotically stable and that the compensator ΣC is sought within the class

of asymptotically stable 2-D systems ruled by (43). In the following theorem a sufficient solvability













ΣΣ

ΣC

w

Σ̂

y

u

Figure 1: Block diagram of the feedforward compensation scheme.

condition for Problem 5.3 is presented, as well as the explicit structure of the feedforward compensator

achieving perfect decoupling.

Theorem 5.2 Let Σ be asymptotically stable. Problem 5.3 admits solutions if

(i) im

[
H1

H2

G

]
⊆ (V? × V? × 0p) + im

[
B1

B2

D

]
;

(ii) V? is internally stabilisable.

If these conditions hold, a solution to Problem 5.3 is given as follows. If dimV? > 0, let Φ1, Φ2 and

Ψ be such that (42) holds, where V is a basis matrix of V?. Let F be any output-nulling friend of V?

that internally stabilises V?, so that there exists an asymptotically stable pair (X1, X2) such that





A1 + B1 F

A2 + B2 F

C + D F



 V =





V 0

0 V

0 0





[
X1

X2

]
. (44)



The compensator ΣC ruled by (43) with

(K1, K2, L1, L2, M, N) = (X1, X2, Φ1, Φ2,−Ω,−Ψ) (45)

solves Problem 5.3. If V? = 0n, the compensator ΣC solving Problem 5.3 reduces to the static unit

N = −Ψ.

Proof: We first associate the sequence si,j defined for all i+ j ≥ 0 with the following Laurent formal

power series

s(λh, λv) =
∑

i+j≥0

si,j λi
h λj

v,

in the indeterminates λh and λv. Let w(λh, λv) and y(λh, λv) be the formal power series associated

with the input and the output of the overall system Σ̂ depicted in Figure 1. Moreover, let

X0(λh, λv) ,
∑

i ∈ Z

[
xi,−i

zi,−i

]
λi

h λ−i
v .

Then, from (39) with (43) one gets

y(λh, λv) =
(
Ĉ(In − Â1λv − Â2λh)−1(B̂1λv + B̂2λh) + D̂

)
w(λh, λv)

(46)

+Ĉ (In − Â1λv − Â2λh)−1X0(λh, λv)

where Âi =

[
Ai BiM

0 Ki

]
and B̂i =

[
BiN + Hi

Li

]
for i = 1, 2, Ĉ =

[
C DM

]
and D̂ = DN +G.

Below it is shown that when dimV? > 0, the compensator given by (43) with (45) solves Problem 5.3.

In other words, we show that with (45) the transfer matrix

G(λh, λv) , Ĉ(In − Â1λv − Â2λh)−1(B̂1λv + B̂2λh) + D̂

in (46) is zero. In fact, if this is the case, the asymptotic stability of the overall system guarantees

that for any given X0(λh, λv) the scalar sequence {‖Yi‖}
∞
i=0 converges to zero. In order to show that

G(λh, λv) is zero, we consider zero boundary conditions for Σ and ΣC – i.e., xi,−i and zi,−i are zero for

all i ∈ Z – and prove that any w(λh, λv) leads to y(λh, λv) being the zero polynomial. To this end,

it is first shown that the identities xi,j = V zi,j and yi,j = 0 hold for all i + j ≥ 0. By substitution of

the control action (39) we get

xi+1,j+1 = A1 xi+1,j + A2 xi,j+1 + B1 F V zi+1,j + B2 F V zi,j+1

+(H1 − B1 Ψ)wi+1,j + (H2 − B2 Ψ)wi,j+1,

yi,j = C xi,j + D F V zi,j + (G − D Ψ)wi,j .

Then by taking (42) into account we find

xi+1,j+1 = A1 xi+1,j + A2 xi,j+1 + B1 F V zi+1,j + B2 F V zi,j+1 + V Φ1 wi+1,j + V Φ2 wi,j+1,

yi,j = C xi,j + D F V zi,j .



Now, if for any (i, j) ∈ S0 the identity xi,j = V zi,j holds, in view of (44) it follows that

xi+1,j+1 = (A1 + B1 F )V zi+1,j + (A2 + B2 F )V zi,j+1 + V Φ1 wi+1,j + V Φ2 wi,j+1

= V X1 zi+1,j + V X2 zi,j+1 + V Φ1 wi+1,j + V Φ2 wi,j+1 = V zi+1,j+1,

yi,j = (C + D F )V zi,j

As a result, for all (i, j) such that i + j ≥ 0 we get xi,j = V zi,j and yi,j = 0 for any input sequence

w. It follows that G(λh, λv) = 0. Moreover, since the overall system is asymptotically stable, if the

boundary conditions of Σ and ΣC are not at zero, the norm of the global state ‖Xk‖, and hence of

the output ‖Yk‖, converges to zero as k goes to infinity, so that ΣC solves Problem 5.3.

Example 5.1 Let (13) be defined over N × N with

A1 =





0 1.2 −1.6

0 0.03 0

0 0.4 0



, A2 =





0.01 0 0.02

0 0 0

−0.3 0.6 0.04



, B1 =





7 −9

0 0

0 −9



, B2 =





1 3

4 0

5 0



,

H1 =





−3.5

0

−1



, H2 =





0.1

−1.6

−1.3



, C =

[
0 −1 0

0 9 0

]
, D =

[
−6 0

0 0

]
, G =

[
2.4

0

]
.

The associated boundary conditions are random assignments of the local state over the region
(
{0}×

[1,∞)
)
∪

(
[1,∞)×{0}

)
. The boundary conditions on each component of the local state are depicted

in Figure 2. This system is asymptotically stable, since it satisfies the stability condition (11). By
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Figure 2: Boundary conditions.

using Algorithm 4.1 it is also readily seen that

V? = imV, where V =





1 0

0 0

0 1



 .

In this case W =

[
V 0 B1

0 V B2

0 0 D

]
is singular and H =

[
9 9 −3 0 0 1

]>
is a basis matrix for its

kernel. It is easy to check that the pair (X1, X2) computed from

[
X1

X2

Ω

]
= W †

[
A1

A2

C

]
V does not



satisfy condition (11) for stability. As such, by taking FΩ = −Ω (V >V )−1V > we find that the pair

(A1 + B1 FΩ, A2 + B2 FΩ) does not satisfy (11). In order to find an FΩ which internally stabilises the

controlled invariant subspace V, let us condider

[
X

Ω

]
=





V 0 B1

0 V B2

0 0 D





† 



A1

A2

C



V + HK (47)

where H =
[

9 9 −3 0 0 1
]>

. In this case, the LMI (30) is feasible, which implies internal

stabilisability of V?. One such feasible point yields K =
[

0.0003 −0.0436
]
. By using this value of

K in (47) we find

X1 =

[
0.0018 −0.8733

0.0018 0.7267

]
, X2 =

[
0.0094 −0.2222

−0.3 0.04

]
, Ω =

[
0 0

0.0002 0.0807

]
.

Now the pair (X1, X2) is asymptotically stable, as it satisfies the stability condition (11). With this

choice we find

FΩ = −Ω (V >V )−1V > =

[
0 0 0

−0.0002 0 −0.0807

]
.

Note from

T−1(A1 + B1 FΩ)T =





0.0018 −0.8733 −1.2282

0.0018 0.7267 −0.3982

0 0 0.03





and

T−1(A2 + B2 FΩ)T =





0.0094 −0.2222 0.0094

−0.3 0.04 −0.9

0 0 3



,

that the pair (0.03, 3) accounting for the external dynamics of V? has not changed by selecting the

feedback FΩ in order to stabilise the controlled invariant subspace V? internally.

Now since V? is internally stabilisable and the structural condition im

[
H1

H2

G

]
⊆ (V? × V? × 0p) +

im

[
B1

B2

D

]
is satisfied, the result of Theorem 5.2 can be applied. It is found that





Φ1

Φ2

Ψ



 =





V 0 B1

0 V B2

0 0 D





† 



H1

H2

G



 =





0.1791

−0.1209

0.207

0.7

−0.4

0.0977







is a solution of (42). As such, the compensator ΣC ruled by

K1 =

[
0.0018 −0.8733

0.0018 0.7267

]
, K2 =

[
0.0094 −0.2222

−0.3 0.04

]
, L1 =

[
0.1791

−0.1209

]
, L2 =

[
0.207

0.7

]

M =

[
0 0

0.0002 0.0807

]
, N =

[
−0.4

0.0977

]

solves the full information problem. Let the overall system be subject to the randomly generated

input depicted in Figure 3.
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Figure 3: Disturbance w in the bounded frame [0, 20] × [0, 20].

The asymptotic stability of the overall system guarantees that the two outputs go to zero as the

double index (i, j) moves away from the axes, as shown in Figure 4. In order to see that as the index
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Figure 4: Controlled outputs y1 and y2 in the bounded frame [0, 20] × [0, 20].

(i, j) moves away from the axis the two controlled outputs y1
i,j and y2

i,j decrease in an exponential

fashion, Figure 5 shows the base 10 logarithms of the two outputs |y1
i,i| and |y2

i,i| against the variable

i in the interval [0, 20].
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Figure 5: Logarithms of |y1
i,i| and |y2

i,i| for i ∈ [0, 20].

5.2 Model Matching with Stability

The material presented in the previous sections is now exploited for the solution of another well-known

and deeply investigated (both in a 1-D and in a 2-D setting) control problem: The so-called model

matching problem. Different approaches have been proposed for the solution of this problem in the

two-dimensional framework, see e.g. [21, 23] and [5], where the model matching problem is solved via

polynomial and geometric approaches, respectively. In this paper, we propose a different perspective

for the solution of this problem, where stability is also taken into account. In particular, we show

how the solution of the full information decoupling can be employed to tackle the model matching

problem, following a well-known procedure for 1-D systems [20, 16, 17, 19]. Given a system Σ along

with a model ΣM governed respectively by (34) and

xM
i+1,j+1 = AM

1 xM
i+1,j + AM

2 xM
i,j+1 + BM

1 ri+1,j + BM
2 ri,j+1,

yM
i,j = CM xM

i,j + DM ri,j ,

and having the same output spaces, the exact model matching consists of finding a compensator

ΣC ruled by (43) such that the input/output behaviour of the series connection between Σ and ΣC

equals that of the given model ΣM. In other words, if we denote by e the difference between the

output of the original system Σ and that of the model ΣM, see Figure 6, and Ek , {ei,j | (i, j) ∈ Sk},

the aim is to determine the inner structure of the compensator ΣC connected in series of the plant

Σ such that the sequence {‖Ei‖}
∞
i=0 converges to zero for all reference input functions r and for all

boundary conditions for Σ and ΣM. As shown in Figure 6, the model matching problem can be

easily turned into a full information decoupling problem, where now Σ̄ is the system with input
[ u

r

]
,

output e and local state
[

x

xM

]
; this system is completely characterised by the collection of matrices
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Figure 6: Block diagram for model matching.

(Ā1, Ā2, [ B̄1 H̄1 ], [ B̄2 H̄2 ], C̄, [ D̄ Ḡ ]), where

Āk =

[
Ak 0

0 AM
k

]
, B̄k =

[
Bk

0

]
, H̄k =

[
0

BM
k

]
, k ∈ {1, 2},

C̄ =
[

C −CM

]
, D̄ = D, Ḡ = −DM.

The reference input r can be thought of as a signal to be decoupled from the output e by means of

a feedforward compensator ΣC. Hence, the model matching problem with stability can be solved if,

given the largest output-nulling V̄? of the system (Ā1, Ā2, B̄1, B̄2, C̄, D̄), the following two conditions

hold:

(i) im

[
H̄1

H̄2

Ḡ

]
⊆ (V̄? × V̄? × 0p) + im

[
B̄1

B̄2

D̄

]
;

(ii) V̄? is internally stabilisable.

In this case, a compensator ΣC solving the model matching problem can be devised from Theorem

5.2 with the due substitutions.

Concluding remarks

The problem of internally and externally stabilising, via static feedback, controlled invariant and

output-nulling subspaces for 2-D systems is here considered for the first time. The main results permit

various standard compensator synthesis problems (e.g. disturbance decoupling with and without full

information) to be solved subject to a closed-loop stability constraint, via geometric techniques. By

contrast, existing geometric treatments of such problems omit the stability requirement and only focus

on achieving controlled and output-nulling invariance. Being able to handle a stability constraint is

important, particularly from the perspective of numerical implementation of the compensator schemes.

In fact, even when the signals are only of interest over a bounded index set [0, N ] × [0, M ], say,

numerical problems arise for large N or M if the controlled (i.e., the closed-loop under static feedback)

system is unstable. The techniques developed here can be adapted to characterisations of stability

other than Lemma 2.2, which is used here for the sake of argument and clarity in view of its simple

form.



It is also worth noting that due to the equivalence between FM and Roesser latent variable models,

clearly a geometric setting similar to the one developed in this paper can be established within the

context of Roesser models, as well.
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