Accepted Manuscript

Title: Lithium Silicate Based Membranes for High Temperature CO₂ Separation

Authors: Takeo Yamaguchia, Takuya Niitsuma, Balagopal N. Nair, Kazuaki Nakagawa

To appear in: Journal of Membrane Science

 Received date:
 2-11-2006

 Revised date:
 22-1-2007

 Accepted date:
 24-1-2007

ournal of

201

Please cite this article as: T. Yamaguchia, T. Niitsuma, B.N. Nair, K. Nakagawa, Lithium Silicate Based Membranes for High Temperature CO₂ Separation, *Journal of Membrane Science* (2007), doi:10.1016/j.memsci.2007.01.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Lithium Silicate Based Membranes for High Temperature CO₂ Separation

Takeo Yamaguchi^a*, Takuya Niitsuma ^a, Balagopal N. Nair^b and Kazuaki Nakagawa ^c

^aDepartment of Chemical System Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. ^bDepartment of Applied Chemistry, Curtin University of Technology, Perth, WA 6845, Australia ^cCorporate R&D Center, Toshiba Corporation, Saiwai-ku, Kanagawa 212-8582, Japan

Abstract

Processing and characterisation of a novel membrane system for CO_2 separation is detailed. The membrane was made of Lithium Orthosilicate (Li₄SiO₄), which has potential to react with CO₂ molecules reversibly at high temperature. Using the membrane, a separation factor of 5.5 was measured between CO₂ and N₂ gas molecules at a temperature of 525°C. The gas permeance value through the membrane at 525°C was around 10⁻⁸ mol/m².s.Pa. Ionic diffusion through the liquid phase electrolyte and solid phase skeleton, produced by the reaction between CO₂ and Li₄SiO₄, was suggested to assist the selective permeance of CO₂. This facilitation effect was experimentally identified by examining the variation in CO₂ flux with partial pressure. Oxygen ion conductivity through the skeleton material, Li₂SiO₃, is reportedly very high and therefore charge balance should have been achieved by O²⁻ transfer through the skeleton.

Keywords: CO₂ separation, membrane, absorption, lithium, facilitation

Introduction

The separation, recovery and storage/utilisation of carbon dioxide have attracted considerable attention in recent years owing to the growing problem of global warming and other health hazards [1]. High temperature processes such as the combustion of fossil fuels, especially coal and petroleum, emit a significant amount of CO_2 . However, there are currently no efficient methods available for separating CO_2 from other gases at high temperature [2, 3].

The most important CO₂ removal techniques are wet absorption, dry adsorption, membrane separation and cryogenic separation. Although the present level of membrane separation technology is immature compared with the other processes, the membrane separation process is considered to be one of the least energy-demanding processes if membranes that could withstand the process temperature and conditions are available. Although membrane separation of CO_2 is reported widely [4, 5], apart from molten salt based CO₂ concentrators as reported by Winnick et al in 1982 [6], membranes that could withstand high temperatures in the order of 500-600°C are rarely reported. Furthermore, membranes such as microporous silica membranes, even if they could be processed with high CO₂ separation factors at high temperature, will definitely allow higher permeance of lighter molecules such as hydrogen making selective separation of CO₂ practically impossible from (for e.g.) membrane reactor environment where mostly H₂ and CO₂ are the conversion products. Such high temperature in situ separation of CO₂ from membrane reactor environment will increase the overall efficiency of the process and should also help in the post-process utilisation/management of CO₂. In other words, in such applications CO₂ separation membranes could be used as add-ons together with hydrogen separation membranes or even substitute the hydrogen separation process altogether.

As mentioned, inorganic membranes for high temperature separation of CO₂ are seldom reported in the literature, though inorganic membranes, primarily based on silica, for hydrogen separation are discussed widely in the literature [7, 8]. One of the present authors has also reported the processing of Si₃N₄ based membranes for hydrogen separation [9]. Recently, our group has reported the processing of Li₂ZrO₃ based materials and membranes for CO₂ separation [10, 11], a development assisted by the selective absorption of CO₂ on the membrane materials. The CO₂ absorption properties of Li₂ZrO₃ powders depended upon their particle size as well as crystalline structure [12-17]. Particles with CO₂ take-up rate as high as 5.8 mg/g.min had been obtained in our study. The total amount of CO₂ absorbed varied depending upon the morphology and crystalline structure; Li₂ZrO₃ particles with absorption capacity more than 20 % (by wt.) could be produced by several powder-processing techniques [10]. Using Li₂ZrO₃ membrane, a separation factor of 4.9 was measured between CO₂ and CH₄ gas molecules at a temperature of 600°C [11].

In the study reported in this paper, we have used another material, Li_4SiO_4 , with enhanced ability to absorb CO_2 at high temperature [18-20]. As in the case of lithium zirconate, the absorption of CO_2 took place because of a reaction to form lithium carbonate and a solid oxide. Theoretically this reaction, if proceeds to the end, should make SiO₂ as in the reaction $Li_4SiO_4 + 2CO_2 = 2Li_2CO_3 + SiO_2$. Hence, the material should be capable of absorbing 73.5 % (by wt.) of CO₂. However, in practice the solid product Li_2SiO_3 , which is formed as the reaction product between one mole of Li_4SiO_4 and CO_2 restricts the absorption. Hence the reaction proceeds according to the equation $Li_4SiO_4 + CO_2 = Li_2CO_3 + Li_2SiO_3$. Consequently the total amount of CO_2 absorbed is limited to 36.7 % (by wt.). Still, the amount of CO_2 that could be absorbed in Li_4SiO_4 is higher than the amount absorbable in Li_2ZrO_3 , which is only 28.7% of its weight. Moreover, the rate of absorption of CO_2 by lithium orthosilicate also was found higher than that of lithium zirconate. Hence, we have studied the possibility of membrane making using lithium orthosilicate material.

In this paper we have reported the morphology and CO_2 absorption characteristics of lithium orthosilicate powders made in our laboratory. Membranes were prepared using the powders and CO_2 separation measurements were conducted. The details of the permeance and separation measurements were also reported in this paper. The mechanism of selective separation is discussed as well.

Experimental

Li₄SiO₄ was prepared by mixing Li₂CO₃ (Wako Chemicals) with SiO₂ (99.9% pure, 0.8 μ m size, High Purity Chemical Laboratory Co. LTD., Japan,) in the molar ratio 2 to 1. The mixture kept in a crucible made of 99.9% alumina was heated under air atmosphere for ten hours for sintering. Crystalline structure of the samples at heat-treatment temperatures between 700°C and 1000 °C were studied using X-ray diffraction (XRD). The morphological details of the samples were examined using Field Emission Scanning Electron Microscope (FE-SEM). Surface area values of the powder particles were determined using N₂ adsorption based BET analysis. The absorption of CO₂ was measured using Thermo Gravimetric Analysis (TGA). TGA was performed in CO₂ gas medium at a gas flow rate of 150 ml/min. For TGA

measurement, the temperature was raised from room temperature to 700 °C, at the heating rate of 100 °C/min.

Li₄SiO₄ membranes were made as follows: Porous alumina supports (thickness: 1.5 mm, pore diameter: 0.1μ m) were initially fixed on the top of dense ceramic tubes using high temperature glass seals. The surroundings, except the top surface of the alumina supports, were glass sealed. The disk was then dipped in the mixture of 700°C heat-treated lithium orthosilicate powder and poly vinyl alcohol (PVA) solution for 10 seconds and dried at 50 °C in an air-oven. These dipping and drying processes were repeated 5-10 times. The coated pellet was then heat-treated at 750 °C to sinter the membrane layer. To minimise the physical/leakage flux, we have further coated these membranes with a solution of carbonate salts (20 mol% K₂CO₃ and 80 mol% Li₂CO₃) by dipping the substrate in a carbonate solution dispersed in toluene followed by drying at room temperature.

We have measured CO_2 and N_2 separation factor and CO_2 permeance rate using CO_2/N_2 equi-molar gas mixture as feed gas. All the measurements were made at steady state conditions after prolonged exposure of the membrane to the conditions of measurements. The selectivity was calculated from the ratio of area values corresponding to feed and permeate streams of gas chromatography peaks. The permeance rate was calculated from the total gas flow rate and from the CO_2 concentration values in the feed/permeate sides obtained using the gas chromatograph.

Results and Discussions

Figure 1 show XRD charts for Li_4SiO_4 . The numbers shown in the figure correspond to heat-treatment temperatures. There are not many differences between the charts corresponding to the different heat-treatment temperatures. Peaks of the starting materials such as Li_2CO_3 and SiO_2 were not visible. The peak data confirmed the formation of lithium orthosilicate (Li_4SiO_4) crystalline phase (JCPDS 37-1472) by the processing and heat-treatment. It should be noted that the starting composition of SiO_2

and Li_2CO_3 is very important in this respect. Inadequate quantities of Li_2CO_3 will lead to the partial formation of Li_2SiO_3 -lithium metasilicate- phase.

SEM images of the powder particles are shown in Figure 2. Figures 2(a) and (b) correspond to particles sintered at 700°C and 1000 °C and indicate particle sizes of \sim 1µm and 100µm respectively. Surface area values of the corresponding powder samples were 8.36 m²/gm and 0.0024 m²/gm respectively. The surface area value of 8.36 m²/gm point to an effective primary particle size of around 100nm and indicate the aggregated structure of the powder particles. The large differences in particle size and surface area values between the two samples evidence the enhanced particle growth on sintering at higher temperatures. This result was identical to the effect of heat-treatment on Li₂ZrO₃ powders. However, no change in crystalline structure was identified in the present case unlike Li₂ZrO₃ which has undergone phase transformation from tetragonal to monoclinic phase on heat-treating at temperatures higher than 900°C.

TG curves of the samples heat-treated at 700°C and 1000°C are shown in Figure 3. It is shown that Li₄SiO₄ sintered at 700 °C absorbed CO₂ rapidly and the sample weight increased by 33 % within a duration of 1 - 2 minutes. The constant weight period in the data corresponding to this sample indicate that equilibrium was reached with a very short time. On the other hand, Li₄SiO₄ sintered at 1000 °C showed slower takeup of CO₂. This sample showed lower weight change than the 700°C-heat treated sample possibility because of under equilibrium. The results indicated that, CO₂ absorption rate of Li₄SiO₄ is affected by the particle size. The absorption and release rate of CO₂ by the sample made at 700°C is represented by TGA curve shown in Figure 4. The gas flown through the sample chamber was switched from CO₂ to Air to achieve the release of absorbed CO₂ at the temperature of absorption of 700°C. Free energy calculations have shown that at a CO₂ partial pressure of 0.0005 the reverse reaction would go ahead at a temperature of 436°C and at a CO₂ partial pressure of 0.1 the reaction would happen at a temperature of 622°C.

From figure 4 it is also clear that the rate of release of CO_2 , though lower than that of absorption, is very high. The difference between the rates of absorption and release of

 CO_2 could be linked to the state of agglomeration of the particles. For well dispersed powders the absorption rate is generally found high during the first cycle of absorption but low for the first release cycle. Phase segregation of the carbonate phase produced by CO_2 absorption is easier in such well dispersed powders. Partial phase segregation could be the main reason for the incomplete and slow release of CO_2 during the first cycle of absorption and release in the present samples (Figure 4).

We have made membranes using the 700°C heat-treated lithium orthosilicate powder samples by dip coating. The membranes were sintered at 750°C after coating. Figures 5 (a) and (b) show the SEM micrographs of the surface of the substrate and the surface of the Li₄SiO₄ layer. The membranes as shown in Figure 5 (b) were not dense and therefore were coated with carbonate salt solution prior to gas permeance study (Figure 5 (c)). Previous studies with Li₂ZrO₃ materials have shown that the presence of some amount of excess carbonate salt introduced after crystallisation of the particles tend to accelerate the kinetics of CO₂ absorption [10] and also that the ratio Li₂CO₃/K₂CO₃ determines the rate of absorption. However in the case of Li₄SiO₄, K₂CO₃ had only a weaker influence in the absorption or release rates of CO₂ (Weight change curves showing the influence of K_2CO_3 on CO_2 absorption and release rates of Li₄SiO₄ are included as supplementary information). The influence of excess carbonate salt on the gas separation behaviour of this type of membrane system is difficult to establish clearly, though reduction is gas permeance occurs due to obvious changes in porosity. It should be noted that, independent measurements performed previously with carbonate salts supported on carbon layers did not show any selective CO_2 separation [11].

The results of gas permeance and separation studies performed with CO_2/N_2 mixtures are shown in Figure 6. Gas permeance value around 10^{-8} mol/m²sPa was measured in the temperature range 525-625°C. CO_2/N_2 separation factor values between 4 and 6 were obtained. The gas permeance through the membranes showed no significant dependence on the temperature of measurement. The separation performance of the membranes seems to be similar to that of Li₂ZrO₃ membranes reported in the previous paper [11]. As in the case of Li₂ZrO₃ membranes, we have failed to prepare a membrane with low amount of physical flux and therefore the measured separation factor was much lower than theoretically possible with the dual ion conducting

mechanism illustrated in Figure 7. The pressure dependency of gas flux and permeance as shown in Figure 8 supports the illustrated mechanism of CO_2 gas transport. CO_2 flux through the membrane has two components; namely physical flux and reactive flux. Physical flux here, is the Fickian diffusive flux through the non-reactive portion of the membrane including defects without any reversible chemical reaction. The flux should be proportional to the driving force, which under the conditions employed is equivalent to, the partial pressure of CO_2 . Therefore, we have evaluated the physical flux from CO_2 partial pressure; the dotted line in Figure 8 represents its value in the range of our measurement. Measured CO_2 flux is higher than this physical flux due to the facilitation effect [21-24].

As mentioned, Figure 8 indicates that the mechanism of gas separation is assisted by facilitated transport through the electrolytes [21]. In the feed side, the large partial pressure of CO₂ supports the formation of carbonate salt. CO₂ that dissolves in the material because of the feed side reaction diffuses (as CO_3^{2-}) to the downstream side through the carbonate salt electrolyte by concentration gradient. Li₂CO₃ melt is a known conductor of CO_3^2 - ions. In the downstream side the formation of gaseous CO_2 takes place because of the reverse reaction, which produces CO_2 and O^{2-} ions. These O²⁻ ions must diffuse towards the feed side to get the necessary charge balance. The skeleton material Li₂SiO₃, though not well known, is an oxygen ionic conductor. Based on molecular simulation it is reported in literature that the mobility of oxygen ions in Li₂SiO₃ is significantly high; with diffusivity values following the order $D_{Li} \gg D_0 = D_{Si}$ [25, 26]. Hence, the skeleton of $Li_2 SiO_3$ made by the reaction between CO_2 and the membrane matrix material of Li₄SiO₄ should be able to transfer O²⁻ ions across the membrane thickness. This result supports that selective CO₂ permeance through the membrane is assisted by carrier transport mechanism. In short, results show that carrier transport through mixed ion conducting electrolytes is a viable mechanism of gas separation. Figure 8 shows that the CO₂ permeance value measured with 10:90 (CO₂:N₂) mixture gas was almost double the value measured with equimolar mixture gas. This means that higher selectivity values against inert gas molecules could be attained in the low CO₂ partial pressure region. More studies, using membranes with lesser physical flux, however, is necessary for the complete confirmation of the mechanism we have proposed. Processing of membranes with much smaller and well dispersed particles should be the key points in this respect. The

use of smaller particles should help in the processing of membranes with lower defects and hence low amount of leakage flux. More importantly, the use of nanoparticles should allow the increase in interface area between the two electrolytes and hence a better local charge balance could be achieved. Carrier transport should enhance with the increase in interface area between the electrolytes and hence the effect of physical flux in the total gas permeance should become negligible. A more extensive study based on computer simulation of the structure of these CO_2 absorbing materials and the mechanism of gas absorption on them should give a better understanding of the phenomena.

Conclusions

In this study, we have studied the separation performance of a CO_2 absorbing materials based on lithium silicate. The high temperature CO_2 absorption rate of the material was found very fast; 33 wt.% of CO_2 could be absorbed in the material in less than 2 minutes . We have also prepared a membrane based on the material for the separation of CO_2 . Using the membrane we have measured CO_2/N_2 selectivity between 4 and 6 in the temperature range of 525- 625°C. CO_2 transport mechanism through the membrane is possibly assisted by carrier transport of CO_3^{2-} and O^{2-} by the Li₂CO₃ and Li₂SiO₃ electrolytes.

Acknowledgements

 This work was supported by the New Energy Development Organisation (NEDO), Japan.

References

- T. M. L.Wigley, D. S. Schmimel, The Carbon Cycle, Cambridge Univ. Press, Cambridge, UK, 2000.
- [2] G. Gottlicher, R. Pruschek, Comparison of CO₂ removal systems for fossil-fuelled power plant processes, Energy Convers. Mgmt., 38 (1997) S173.
- [3] P. Freund, W. G. Ormerod, Progress toward storage of carbon dioxide, Energy Convers. Mgmt., 38 (1997) S199.
- [4] An extensive list of more than 500 CO₂ separating membranes is available in the final project report "Research and Development of Technology for High

Temperature CO₂ Separation Membranes". No CO₂ perm-selective membrane is reported for temperatures above 300°C. NEDO, Japan, March 2000.

- [5] R. Bredesen, K. Jordal and A. Bolland, High temperature membranes in power generation with CO₂ capture, Chemical Engineering and Processing, Chemical Engineering and Processing, 43,9 (2004) 1129.
- [6] J. Winnick , H. Toghiani, and P. D. Quattrone, Carbon dioxide concentration for manned spacecraft using a molten carbonate electrochemical cell, AIChE J. 28,1 (1982), 103.
- [7]. S. Kurungot, T. Yamaguchi and S.Nakao, Rh/gamma-Al₂O₃ catalytic layer integrated with sol-gel synthesized microporous silica membrane for compact membrane reactor applications, Catalysis letter, 86, 4 (2003) 273.
- [8] K. Yoshida, Y. Hirano, H. Fuji, T. Tsuru and M. Asaeda., Coal/CO₂ gasification system using molten carbonate salt for solar/fossil energy hybridization, J. Chem. Engg. Japan, 34, 4 (2001) 523.
- [9] K. Miyajima, Y.Ando, M.Yokoyama, B. N. Nair, H.Taguchi, S.Nagaya, K.Komura and S.Watanabe, Development of Si-N based ceramic membranes, Membrane News, 66,12 (2004) 17.
- [10] B.N. Nair, T. Yamaguchi, H. Kawamura, S.I. Nakao and K. Nakagawa, Processing of lithium zirconate for applications in CO₂ separation: Structure and properties of the powders, J. American Ceramic Soc. 87,1 (2004) 68.
- [11] H. Kawamura, T. Yamaguchi, B. N. Nair, K. Nakagawa and S.I. Nakao, 31. A Dual ion conducting membrane for high temperature CO₂ separation, J. Chem. Engg. Japan, 38,5 (2005) 322.
- [12] E. Ochoa-Fernandez et al., Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: Sorption kinetics and reactor simulation, Catalysis Today, 106, 1-4 (2005) 41.
- [13] K.B. Yi and D.O. Eriksen, Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO₂ sorbent, Separation Science and Technology, 41,2 (2006) 283.
- [14] D.J. Fauth et al., Eutectic salt promoted lithium zirconate: Novel high temperature sorbent for CO₂ capture, Fuel Processing Technology, 86, 14-15 (2005) 1503.

- [15] H. Pfeiffer and P. Bosch, Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li₆Zr₂O₇), Chemistry of Materials, 17,7 (2005) 1704.
- [16] K. Nakagawa, T. Ohashi, A novel method of CO₂ capture from high temperature gases J. Electrochem. Soc., 145,4 (1998) 1344.
- [17] K. Nakagawa, T. Ohashi, A reversible change between lithium zirconate and zirconia in molten carbonate, Electrochemistry. 67,6 (1999) 618.
- [18] T. Niitsuma, Development of a novel membrane system based on lithium ceramics for high temperature CO₂ separation, Master Thesis, University of Tokyo, March 2003.
- [19] M. Kato and K. Nakagawa, New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO₂ absorbent, Journal of Ceramic Society of Japan, 109,11 (2001) 911.
- [20] C. Gauer and W. Heschel, Doped lithium orthosilicate for absorption of carbon dioxide, Journal of Materials Science, 41,8 (2006) 2405.
- [21] C.A. Folkner and R.D. Noble, Transient-response of facilitated transport membranes, Journal of Membrane Science, 12 (1983) 289.
- [22] R.D. Noble, Analysis of facilitated transport with fixed site carrier membranes, J. Membrane Sci., 50 (1990) 207.
- [23] J.D. Way, R.D. Noble, D.L. Reed, G.M. Ginley and L.A. Jarr, Facilitated transport of CO₂ in ion exchange membranes, AIChE J., 33 (1987) 480.
- [24] J.D. Way and R.D. Noble, Competitive facilitated transport of acid gases in perfluorosulfonic acid membranes, J. Membrane Sci., 46 (1989) 309.
- [25] J. Habasaki and I. Okada, Molecular-dynamics study of Li₂SiO₃ in the liquid and glassy states, Molecular Simulation, 8 (1992) 179.
- [26] J. Habasaki, I. Okada and Y. Hiwatari, A molecular dynamics study for lithium metasilicate-liquid and quenched supercooled states, Molecular Simulation, 9 (1992) 49.

List of Figures

- Figure 1: XRD peaks corresponding to lithium orthosilicate (Li₄SiO₄) samples are shown. Temperatures of heat-treatment of the samples in °C are shown inside the figure. Main peak data are as follows (JCPDS: 37-1472) [2θ-22.61, d-3.93, hkl-011] [2θ-28.23, d-3.16, hkl- -111] [2θ-33.81, d-2.65, hkl-200], [2θ-34.7, d-2.58, hkl-002].
- Figure 2: SEM photographs of Li₄SiO₄ samples made (a) 700°C (b) 1000°C.
- Figure 3: TGA curves representing the CO_2 absorption of Li₄SiO₄ particles made at 700°C and 1000°C
- Figure 4: TGA curves representing the CO₂ absorption and release of Li₄SiO₄ particles made at 700°C. CO₂ absorption was carried out by flowing CO₂ through the TGA sample chamber. Release of absorbed CO₂ was made by changing the gas flow to air at isothermal condition
- Figure 5: SEM photographs of (a) alumina support (b)Li₄SiO₄ layer surface (c)Final membrane surface
- Figure 6: CO₂/N₂ mixed gas permeance and separation results of Li₄SiO₄ membrane system.
- Figure 7: Proposed mechanism of the selective component of CO₂ gas permeance.
- Figure 8: Pressure dependency of CO₂ flux through Li₄SiO₄ membrane measured using CO₂/N₂ mixture feed gas of varying compositions.

Figure 1: XRD peaks corresponding to lithium orthosilicate (Li₄SiO₄) samples are shown. Temperatures of heat-treatment of the samples in °C are shown inside the figure. Main peak data are as follows (JCPDS: 37-1472) [20-22.61, d-3.93, hkl-011] [20-28.23, d-3.16, hkl-111] [20-33.81, d-2.65, hkl-200], [20-34.7, d-2.58, hkl-002].

Figure 2: SEM photographs of Li₄SiO₄ samples made (a) 700°C (b) 1000°C.

Figure 3: TGA curves representing the CO_2 absorption of Li_4SiO_4 particles made at 700°C and 1000°C

Figure 4: TGA curves representing the CO_2 absorption and release of Li_4SiO_4 particles made at 700°C. CO_2 absorption was carried out by flowing CO_2 through the TGA sample chamber. Release of absorbed CO_2 was made by changing the gas flow to air at isothermal condition

Figure 5: SEM photographs of (a) alumina support (b)Li₄SiO₄ layer surface (c)Final membrane surface

Figure 7: Proposed mechanism of the selective component of CO_2 gas permeance.

Figure 8: Pressure dependency of CO_2 flux through Li_4SiO_4 membrane measured using CO_2/N_2 mixture feed gas of varying compositions.