
PHYSICAL REVIEW A 90, 012707 (2014)

Calculation of the polarization fraction and electron-impact excitation cross section
for the Cd+ (5 p) 2 P3/2 state

Christopher J. Bostock,* Dmitry V. Fursa, and Igor Bray
Australian Research Council Centre for Antimatter-Matter Studies, Curtin University, GPO Box U1987, Perth,

Western Australia 6845, Australia

Klaus Bartschat†

Australian Research Council Centre for Antimatter-Matter Studies, Curtin University, GPO Box U1987, Perth, Western Australia 6845,
Australia and Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA

(Received 16 June 2014; published 21 July 2014)

We present relativistic convergent close-coupling and Breit-Pauli R-matrix calculations for the polarization
of the light emitted after electron-impact excitation of the (5s) 2S1/2 → (5p) 2P3/2 transition in Cd+. While we
find consistency between the theoretical predictions, a discrepancy persists with the measurements of Goto et al.
[Phys. Rev. A 27, 1844 (1983)]. Cascade contributions and hyperfine depolarization effects were calculated and
found to have negligible effect on the polarization fraction. We also present angle-integrated cross sections for
the (5p) 2P3/2 state to compare with the measurements of Gomonai [Optc. Spect. 94, 488 (2003)]. Agreement
between theory and experiment is far from perfect, especially at low energies, where they disagree both in the
absolute values and the energy dependence of the cross sections.
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I. INTRODUCTION

The calculation of the light polarization emitted during
electron-impact excitation of atoms and ions provides a
sensitive test of scattering theories [1]. The fully relativistic
convergent close-coupling (RCCC) method [2,3], which is
based on the Dirac equation, has been successfully applied to
such light-polarization calculations for a range of quasi-one-
and two-electron targets [4–8]. More recently the RCCC
method has been applied to the calculation of the polarization
fraction of the light emitted after electron-impact excitation
of the (6s) 2S1/2 → (6p) 2P3/2 transition in Ba+ [9]. In that
case, a discrepancy between experiment [10] and theory [11]
was resolved. Motivated by a similar discrepancy between
theory [11] and experiment [12] for the polarization of the
light emitted after electron-impact excitation of the Cd+

(5s) 2S1/2 → (5p) 2P3/2 transition, we have applied the RCCC
method to the case of a Cd+ ion target. To serve as an
independent check of the RCCC results, the Breit-Pauli
R-matrix (BPRM) method, which is semirelativistic, was also
applied to the problem.

Besides the polarization fraction, we present RCCC and
BPRM angle-integrated cross sections for the (5s) 2S1/2 →
(5p) 2P3/2 transition and compare with the measurements of
Gomonai [13]. Comparison is also made with the relativistic
distorted-wave theory results of Sharma et al. [11] and previous
15-state R-matrix calculations of Zatsarinny and Bandurina
[14]. We study the manner in which the integrated cross
section scales in proportion to the optical oscillator strength for
the optically allowed (5s) 2S1/2 → (5p) 2P3/2 transition. This
is relevant because different values appear in the literature
for the measured optical oscillator strengths of Cd+ [15,16].
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We provide a generalization of Kim’s f -scaling idea [17] for
electron-impact excitation cross sections of charged targets.

The next section provides an overview of the RCCC and
BPRM theories, and the following section contains results for
the polarization fraction and integrated cross sections. Unless
indicated otherwise, atomic units are used throughout this
paper.

II. THEORIES

A. RCCC method

Comprehensive details of the RCCC method are given in
[3] and hence only a brief overview regarding the present
application to electron scattering from Cd+ is given here.
The Cd+ ion is modeled as one active valence electron above
a Dirac-Fock [Kr]4d10 core. The core orbitals are obtained
with the GRASP package [18]. For the Cd+ valence electron,
a set of one-electron orbitals is generated by diagonalization
of the quasi-one-electron Dirac-Coulomb Hamiltonian in a
relativistic (Sturmian) L-spinor basis [19]. A phenomenolog-
ical one-electron polarization potential is used to improve
the accuracy of the calculated Cd+ wave functions [20,21].
This allows us to account more accurately for the effect of
filled inert shells on the active electrons. The parameters of
the polarization potential are adjusted to optimize the target
state energies and optical oscillator strengths (OOS). For the
one-electron polarization potential we chose the static dipole
polarizability of the inert core as αd = 4.971 [22,23] and an
l-dependent cutoff parameter rc(l) with values 2.1, 2.1, 2.0,
and 1.9 for l = 0,1,2,and 3 respectively.

Our target model consists of 51 states altogether, 34 bound
states and 17 continuum states. The energy levels of the
first ten states used in the calculations are listed in Table I,
and the oscillator strengths for the (5s) 2S1/2 → (5p) 2P1/2

and (5s) 2S1/2 → (5p) 2P3/2 resonance transitions are listed
in Table II. Core-excited states are neglected in the RCCC
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TABLE I. Energy levels of the first ten Cd+ states calculated by
diagonalizing the target in the RCCC method. Experimental levels
listed by NIST [15] are also shown.

Configuration RCCC (eV) Experiment (eV)

4d10(5s) 2S1/2 0.00 0.000
4d10(5p) 2P ◦

1/2 5.474 5.472
4d10(5p) 2P ◦

3/2 5.790 5.780
4d10(6s) 2S1/2 10.333 10.299
4d10(5d) 2D3/2 11.139 11.120
4d10(5d) 2D5/2 11.160 11.139
4d10(6p) 2P ◦

1/2 11.767 11.743
4d10(6p) 2P ◦

3/2 11.852 11.826
4d10(7s) 2S1/2 13.323 13.303
4d10(4f ) 2F ◦

5/2 13.451 13.442
Ionization limit 16.907 16.908

target structure model for Cd+ consisting of one valence
electron above the frozen Dirac-Fock core. Therefore the states
4d9(5s2) 2D5/2 at 8.587 eV and 4d9(5s2) 2D3/2 at 9.286 eV
listed by NIST [15] are missing in Table I.

The target states are used to expand the total wave function
of the electron-Cd+ scattering system and formulate a set of
relativistic Lippmann-Schwinger equations for the T -matrix
elements. The partial-wave form of the latter equations is

T �J
f i (kf κf ,kiκi) = V �J

f i (kf κf ,kiκi) +
∑

n

∑
κ

∑∫
dk

× V �J
f n (kf κf ,kκ)T �J

ni (kκ,kiκi)

E − εN
n − εk′ + i0

. (1)

The notation in Eq. (1), the matrix elements, and the method of
solution using a hybrid OpenMP-MPI parallelization suitable
for high-performance supercomputing architectures are given
in [3].

In the scattering calculation we add a two-electron (di-
electric) polarization potential to model more accurately the
interaction of the incident electron with the target. For this
potential we again took αd = 4.971, and we set rdiel = 1.7.
This choice of parameters is the same that we used to model
the neutral Cd atom [24]. This polarization potential is used to
calculate a modified form of the oscillator strength [25,26] for
the resonance transitions. As shown in column 3 of Table I this
yields good agreement with available experimental values.

As will be seen below, including the two-electron polar-
ization potential in the e-Cd+ interaction leads to a reduction
of the predicted excitation cross sections. For dipole-allowed
transitions such a reduction can be understood from the relation
between the generalized oscillator strength (GOS) and the

differential cross section (dσ/d�):

GOS(q) = �E

2

pi

pf

q2dσ/d�. (2)

Here q is the momentum transfer; pi,f are the electron
momenta before and after the collision, respectively; and �E

is the excitation energy. At high incident electron energies in
the limit q → 0 the GOS converges to the effective optical
oscillator strength f . As indicated in the previous paragraph,
the value of the effective oscillator strength f should then be
obtained using a modified formula for the transition operator
[25,26]. It can lead to substantially lower f values that are
closer to the experimental results than without inclusion of
the dielectronic term. This is indeed the case for the resonance
transitions in Cd+, as seen from column 3 of Table II. The
RCCC effective oscillator strength values are close to the
recent experimental results (Expt. 1) of Xu et al. [16]. Smaller
effective oscillator strength values correspond via Eq. (2) to
lower angle-differential and ultimately lower angle-integrated
cross sections.

The polarization of the light emitted from the (5p) 2P3/2

state depends on the magnetic sublevel populations [27,28]
according to

P = 3(σ1/2 − σ3/2)

3σ3/2 + 5σ1/2
, (3)

where σm is the cross section for excitation to a magnetic
sublevel of the (5p) 2P3/2 state. The above formula is valid
for targets without nuclear spin. Following the procedure
outlined by Wolcke et al. [29] it should be modified to account
for hyperfine-structure depolarization due to admixtures of
isotopes with nonzero nuclear spin. We have done this for one
set of results presented below, but the effect is too small (less
than a 10% reduction in the absolute value of the polarization
fraction) to change the predicted physics qualitatively.

Cascades from the high-lying excited levels to the
(5p) 2P3/2 state can also affect the polarization of the
(5p) 2P3/2 → (5s) 2S1/2 line. We take into account the cas-
cades by using the method described in [4], but we will
demonstrate below that the correction due to this effect is
also small.

B. BPRM method

The principal reason for performing these calculations was
to provide an independent check of the RCCC predictions.
Given that we are interested in an optically allowed resonance
transition and the target is a positive ion rather than a neutral
atom, channel-coupling effects are expected to be compar-
atively small, and hence large close-coupling expansions are
probably not necessary to obtain accurate results. Furthermore,
one would expect the Breit-Pauli approach to be sufficiently

TABLE II. Oscillator strengths of the Cd+ ground state compared to experimental values listed by NIST [15] and the more recent data of
Xu et al. [16].

Transition RCCC RCCC with 2e pol. pot. NIST [15] Expt. [16]

(5s) 2S1/2 → (5p) 2P1/2 0.36 0.21 0.23 0.23
(5s) 2S1/2 → (5p) 2P3/2 0.76 0.46 0.39 0.55
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accurate for the collision problem of interest. Hence, the
accuracy of results for e-Cd+ scattering is to a large extent
determined by the accuracy of the target structure description.

In light of the above considerations, we limited the close-
coupling expansion to the lowest eight states of Cd+, once
again not counting the core-excited states. As a first step, the
core orbitals and a zero-order model potential were generated
with the SUPERSTRUCTURE package [30]. Semiempirical po-
tentials to account for core polarization and exchange with
the core electrons were then added to the core potential using
the program COREPOT [31]. Finally, the one-electron orbitals
were recalculated and the potentials were optimized to repro-
duce the fine-structure-averaged ionization potentials, follow-
ing the same general ideas as in the RCCC structure calcula-
tions described above. The collision calculation was performed
with our version of the inner-region Belfast R-matrix codes
[32] and the FARM package [33] for the outer region.

III. RESULTS

Figure 1 exhibits the linear polarization fraction of the
light emitted after electron-impact excitation of the Cd+

(5s) 2S1/2 → (5p) 2P3/2 transition. The RCCC results without
the two-electron polarization potential (i.e., αd = 0) are shown.
We found, however, that the polarization fraction results
did not change appreciably when the dielectric term was
introduced with αd = 4.971. Also shown in Fig. 1 are the
BPRM results with the two-electron polarization potential
set to zero. There is excellent agreement with the RCCC
results. Hyperfine depolarization of the emitted radiation was
then calculated for the BPRM results, and this only had a
negligible effect. Both the RCCC and the BPRM polarization
fractions are in good agreement with the previous relativistic
distorted-wave (RDW) results of Sharma et al. [11], except
for energies less than about 30 eV, where the RDW results
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FIG. 1. (Color online) Relativistic convergent close-coupling
(RCCC) and Breit-Pauli R-matrix (BPRM) calculations of the
polarization fraction with and without cascades for excitation of the
(5s) 2S1/2 → (5p) 2P3/2 transition in Cd+. The measurements are due
to Goto et al. [12]. The relativistic distorted-wave (RDW) results of
Sharma et al. [11] are also shown. “BPRM, with HFS” denotes results
with hyperfine depolarization taken into account.
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FIG. 2. (Color online) Relativistic convergent close-coupling
(RCCC) and Breit-Pauli R-matrix (BPRM) angle-integrated cross
sections for the (5s) 2S1/2 → (5p) 2P3/2 transition in Cd+. The
measurements are from Gomonai [13]. The relativistic distorted-wave
(RDW) results of Sharma et al. [11] and the 15-state R-matrix (RM15)
calculations of Zatsarinny and Bandurina [14] are also shown for
comparison.

are larger than the other predictions. Given that RDW is most
accurate at the higher energies the discrepancy at low energies
is expected.

However, there is a discrepancy between all theories and
the measurements of Goto et al. [12], particularly above 60 eV,
where the measurements indicate approximately zero for the
polarization fraction. Sharma et al. [11] suggested cascades
as the most likely reason for the disagreement between their
theory and experiment. Consequently, we calculated cascade
contributions to the RCCC polarization fraction results. As
seen from Fig. 1, however, accounting for the cascades had a
negligible effect on the light polarization as well. Upon further
analysis of this somewhat surprising result, we found that the
two apparent (including population by cascades) magnetic
sublevel cross sections, σ1/2 and σ3/2, are both affected by
cascades, but in a way that does not affect Eq. (3) very much
(see below).

The RCCC angle-integrated cross section for the Cd+

(5s) 2S1/2 → (5p) 2P3/2 transition is shown in Fig. 2. For this
figure the two-electron polarization potential was set to zero
(αd = 0). Results with and without cascade corrections are
presented, and we see that cascade effects become appreciable
at approximately 10 eV. BPRM results, without cascades,
are also illustrated, together with previously published RDW
results of Sharma et al. [11] and 15-state R-matrix calculations
of Zatsarinny and Bandurina [14]. The latter calculations
(labeled RM15) were performed in a nonrelativistic frame-
work, but with the inclusion of the core-excited states with
principal configurations 3d94s2 and 3d94s4p. In order to
obtain fine-structure-resolved results from this calculation,
we multiplied the published (5s) 2S → (5p) 2P numbers by
the statistical branching ratio of 2/3. The RDW calculations
were also multiplied by the same factor because, despite
being a relativistic calculation, the published integrated cross
section was not fine-structure resolved. The RM15 results are
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TABLE III. Magnetic sublevel σm=1/2 and σm=3/2 cross sections for the (5s) 2S1/2 → (5p) 2P3/2 transition at 190 eV. Cross sections for
the direct transition (labeled “dir”) are compared with the cascade-corrected cross sections (labeled “cas”). σdir and σcas denote the (5p) 2P3/2

integrated cross sections, while P (dir) and P (cas) are the polarization fractions.

Energy (eV) σdir σcas P (dir) P (cas) σ1/2,dir σ1/2,cas σ3/2,dir σ3/2,cas

190 6.393 7.225 −0.0919 −0.0880 1.410 1.602 1.790 2.015

also shown with and without cascade contributions. In the
RM15 calculation, the oscillator strength for the unresolved
2P level was 0.766, compared to the RCCC value of 0.36 +
0.76 = 1.12 for the unresolved level without the two-electron
polarization potential. The lower RM15 oscillator strength
leads to a lower integrated cross section. This is the reason
for the discrepancy with the RCCC results at higher energies.
However, there is also a different energy dependence seen in
the RM15 results compared to the RCCC predictions. This
is most likely an indication that coupling to the 4d95s2 and
4d95s5p states is somewhat important. For the RDW results of
Sharma et al. [11], the rapid rise toward lower energies is most
likely due to the fact that distorted-wave Born calculations are
not unitarized.

Three aspects of the cross-section results deserve attention.
First, the measurements of Gomonai [13] exhibit oscilla-
tions with intervals of the order of 1 eV. As shown in
Fig. 2, these oscillations are not reproduced in any of the
theories. Second, cascade contributions have a significant
effect, but—as mentioned above—not on the polarization
fraction determined from the magnetic sublevel populations
via Eq. (3). This indicates that the magnetic sublevel cascade
contributions are distributed unevenly (polarized) between the
σm=1/2 and σm=3/2 magnetic sublevels. Table III illustrates
a sample of explicit magnetic sublevel results at 190 eV,
with and without cascade corrections, and the corresponding
polarization fraction and integrated cross section. It is apparent
that cascades, on a percentage basis, affect the σm=1/2 more
than the σm=3/2 level. The overall effect is a negligible change
to the polarization fraction when cascade corrections are
included.

The third important aspect of the theoretical cross section
is the fact that it, unlike the polarization fraction, scales in
proportion to the optical oscillator strength of the respective
transition in the target. This is illustrated in Fig. 3, which
exhibits the RCCC results with αd = 4.971 for the two-
electron polarization potential. The predicted cross sections,
like the optical oscillator strengths in Table II, are substantially
lower when αd = 4.971 is employed. However, when the
αd = 0 results (i.e., without the polarization potential) are
rescaled by the ratio of the optical oscillator strengths,
the curves lie practically on top of each other. The same
holds for the BSRM calculations (not shown in Fig. 3).
Therefore, for target models in which the polarization potential
parameters can be adjusted to obtain improved oscillator
strengths, the adjustment scales the integrated cross section in
proportion.

Going even further, if the collision part of a calculation is
likely converged with the number of coupled states, but some
aspects of the target structure are not sufficiently accurate,
rescaling with the ratio of the preferred oscillator strength
and the theoretical value should improve the result over

the entire energy range. This is a generalization of Kim’s
f -scaling idea [17], since it does not require an ad hoc shift of
first-order Born results in the intermediate energy regime. In
Kim’s method, the relativistic Coulomb-Born cross section is
multiplied by the ratio T/(T + E), where T is the energy of
the projectile and E is the excitation energy, and then further
multiplied by the ratio of the preferred oscillator strength to
the theoretical value (0.46 to 0.76). Figure 3 illustrates results
generated with this method (denoted “Ef-scaled”); agreement
with the scaled RCCC results is quite remarkable. We note that
historically Kim’s f -scaling idea can be traced back to Van
Regemorter [34] and that modelers in astrophysics have been
rescaling dipole collision strengths based on better f -value
structure results for a long time, out of necessity to resolve
discrepancies between theory and observation for intensity
ratios. An example is Del Zanna [35], who rescaled the dipole
collision strengths (at all energies) of Griffin et al. [36]. Indeed,
Griffin et al. noted that their key diagnostic dipole collision
strengths were likely to be reduced by the same percentage
as that of their best f values (which could not be used in the
collision calculation).

Figure 3 also includes a comparison with the RM15 results
of Zatsarinny and Bandurina [14], which we scaled by the ratio
of the optical oscillator strength (present: 0.46, RM15: 0.51)
to guarantee the same high-energy behavior. The differences
between the scaled RCCC and RM15 results at low and
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FIG. 3. (Color online) Relativistic convergent close-coupling
(RCCC) and Coulomb-Born calculations of angle-integrated cross
sections for the (5s) 2S1/2 → (5p) 2P3/2 transition in Cd+. Also shown
are 15-state R-matrix (RM15) results of Zatsarinny and Bandurina
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FIG. 4. (Color online) Relativistic convergent close-coupling
(RCCC) and 15-state R-matrix (RM15) calculations of Zatsarinny
and Bandurina [14] of the angle-integrated cross section for the
(5s) 2S1/2 → (5p) 2P3/2 transition in Cd+. The measurements are
from Gomonai [13].

intermediate energies are likely an indication of the coupling
to the core-excited states that is included in the RM15 model
but is missing in RCCC model.

Any inaccuracy in the description of the target wave
functions will inadvertently lead to a corresponding inaccuracy
in the predicted excitation cross sections. For dipole-allowed
transitions the theoretical cross sections can be corrected
by scaling with the ratio of optical oscillator strengths if a
reliable value of the oscillator strength for the transition of
interest is available. In Fig. 4 we present our best estimate
for the excitation cross sections by scaling the RCCC cross
sections (with cascades, without polarization potential); i.e.,
we multiplied the RCCC cross section by the ratio of the
experimental optical oscillator strength value [16] (0.55) to
the present RCCC value (0.76). The RM15 results (with
cascades) are also presented and similarly rescaled with the

ratio of oscillator strength (0.55 to 0.51). The agreement
between theory and experiment is good at high energies,
whereas at energies below 30 eV the theoretical results are
consistently lower than experiment. While our RCCC and
BSRM calculations do show a resonance behavior at low
energies, the details disagree with the resonance behavior
observed in the experiment.

IV. CONCLUSION

RCCC and BPRM calculations for the polarization fraction
of the light emitted after electron-impact excitation of the
(5s) 2S1/2 → (5p) 2P3/2 transition in Cd+ are in agreement
with the RDW calculations of Sharma et al. [11] but in
disagreement with the measurements of Goto et al. [12],
particularly above 60 eV. Cascade contributions are found to
have a negligible affect on the polarization fraction due to
the fact that the magnetic sublevel cascade contributions are
distributed unevenly between the σm=1/2 and σm=3/2 magnetic
sublevels. We also found that hyperfine depolarization effects
are negligible. For the cross section of the (5p) 2P3/2 state we
find good agreement with the measurements of [13] only at
relatively large energies (above 30 eV). At lower energies the
theoretical results are lower than experiment and the theories
do not reproduce the oscillations in the energy dependence. We
found that cascade contributions have a significant effect on the
predicted cross section and that the latter scales in proportion
to the optical oscillator strength.
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