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Abstract— With the rapid growth of the wind energy systems in the past years and their 

interconnection with the existing power system network, it has become very significant to analyze and 

enhance the transient stability of the wind energy conversion systems connected to the grid. This paper 

investigates the transient stability enhancement of a grid-connected wind farm using doubly-fed 

induction machine (DFIM) based flywheel energy storage system (FESS). A cascaded adaptive neuro-

fuzzy based controlling technique is introduced to control the insulated gate bipolar transistor (IGBT) 

based frequency converter to enhance the transient stability of the wind farm connected to the grid. 

The performance of the presented control strategy is analyzed under a severe symmetrical fault 

condition on a single machine infinite bus model and on the IEEE 39-bus New England test system. 

The transient performance of the system is investigated by comparing the performance of the system 

using classical PI-controllers and the adaptive neuro fuzzy controllers. The validity of the system is 

verified by the simulation results which are carried out using PSCAD/EMTDC. 

Index Terms—Adaptive neuro-fuzzy controller, doubly fed induction machine, flywheel energy 

storage system, frequency converter, wind farm. 
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I. INTRODUCTION 

 
LONG with the conventional energy sources, the penetration of renewable energy is increasing day by 

day. There are several renewable energy sources like solar, wind, biogas and tidal which are getting 

popular and more investment is now being done in the renewable energy sector. Among these resources, 

wind energy is considered as one of the most important means of renewable power generation and has an 

enormous potential to play a vital role in the energy market. The wind energy generated across the world has 

grown at a rate of more than 30% over the past decade. As per recent statistics cumulative global capacity 

has reached to a total of 318 GW, which shows an increase of nearly 200 GW in the past five years. It is 

expected that the wind energy will reach to 600GW by 2018 [1]-[2]. Due to the rapidly increasing wind 

energy integration into the power system networks, one of the major problems related to transient stability of 

wind farms is a major concern for the researchers [3]. Nowadays, the integration of different types of energy 

storage systems (ESS) is used to improve the stability of electrical power systems such as energy capacitor 

storage (ECS) systems, superconducting magnetic energy storage systems (SMES), battery energy storage 

systems (BESS), and flywheel energy storage systems (FESS) [4]-[7].  

Every ESS has some advantages and disadvantages associated with it. The ECS has some great advantages 

like extensive operating temperature range, less cost and environmental benefits [8]. Moreover, its low 

storage capacity and depletion of stored energy over a span of time is a huge disadvantage as compared to 

the other ESS. On the other hand, fast response and ample storage capacity [9] are some of the advantages of 

SMES. The major disadvantage of SMES is its high cost. BESS has slow response, since fast charging and 

discharging capability is required for an ESS; hence, BESS is not an appropriate choice [10]. Also, smaller 

life time and limited voltage and current are some of the other drawbacks of BESS [11]. Comparing FESS 

with ECS, SMES and BESS, the FESS has many advantages over other ESS. Its high power density, no 

harmful chemicals, robustness, longer life span and low maintenance cost are important advantages over 

other energy storage systems [12-16]. Recent trend of using HTS material is making the FESS system more 

efficient. Because of these advantages, FESS is increasingly used to improve the stability of the electrical 

power systems.  

The FESS stores the energy in the flywheel (rotor) of the DFIM. The rotational energy is supplied during the 

fault conditions by continuous exchange of power from the grid. The DFIM is connected to back-to-back 
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voltage source converters (VSC). First one is the grid side converter (GSC) and the other is rotor side 

converter (RSC). The VSC consists of 6 back to back insulated gate bipolar transistors (IGBTs) [17]. The 

gate signals of the IGBTs controls the power flow of the FESS. Moreover, another advantage of the DFIM 

based FESS is that it can also works as a reactive power compensator [18]. Also, the DFIM requires a small 

capacity power converter. 

The DFIM based FESS can improve the power system stability of wind generator systems [19]. In many 

studies, the proportional-integral (PI) controllers are considered as a great choice for being used to control 

the power flow of the FESS between the wind farm and the DFIM during fault conditions efficiently [20]. 

The PI controller is the most commonly used in the industry due to its robustness and offering wide stability 

margins. But its major drawback is that the PI controller is highly sensitivity to the parameter variations and 

nonlinearity of the systems. 

This paper presents the transient stability enhancement of a grid connected wind farm using a DFIM based 

FESS. A novel cascaded adaptive neuro-fuzzy control based FESS model is proposed in this study to enhance 

the transient stability of the grid connected wind farm. The adaptive controller is applied to two different 

systems. Firstly, a simple model system is considered in which the wind power generator is connected to an 

infinite bus through transmission lines. Secondly, the proposed model of the FESS is applied to the IEEE-39 

Bus New England Test System. The results of the adaptive neuro-fuzzy controller are compared with that of 

the PI controller. Simulation results are investigated thoroughly. The validity of the proposed model is 

verified through simulation using the standard dynamic power system simulator PSCAD/EMTDC [21]. 

The organization of the paper is given as follows. In Section II, the wind turbine modeling is explained. 

Section III describes the FESS configuration. In Section IV, proposed control scheme is presented along with 

the description of the adaptive neuro-fuzzy controller. Simulation results for single machine system are 

explained in Section V. Section VI describes the IEEE-39 Bus New England test system in detail. Simulation 

results for the IEEE-39 bus system are presented in Section VII. Section VIII concludes the paper. Section 

IX is the Appendix.  

II. MODEL SYSTEM (SINGLE MACHINE) 

 The wind farm consists of an aggregated model having five induction generators (IG) each of 

2MVA. The wind farm produces 10 MVA. It is connected to the grid through transformers and transmission 



lines. The FESS based on DFIM is connected to the wind farm at the point of common coupling (PCC). The 

single machine infinite bus model system is shown in Fig.1. Table I represents the parameters of the IG and 

the FESS respectively. 

A. Wind Turbine Modelling 

The mechanical power produced by the wind turbine is expressed as [22]-[24]; 
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where, Pw is the extracted power from the wind, ρ is the air density [kg/m3], R is the blade radius [m], Vw is 

the wind speed [m/s], and Cp is the power coefficient which is a function of tip speed ratio, λ, and blade pitch 
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where, ωm is the blade angular velocity [rad/s]. Fig. 2 shows the Cp-λ characteristics for different values of 

angle β.  

B. Modelling of Doubly Fed Induction Machine 

The DFIM can be modelled by the following equations [26] in the direct (d) and quadrature (q) axis reference 

frame, which is rotating at synchronous speed.  

Stator voltage and rotor voltage: 
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Stator and rotor flux are represented as; 
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The stator power is; 
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Rotor swing equation is; 
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where, U is the voltage, R is the resistance, i is the current, L is reactance, ψ is the flux linkage. d and q 

represents the direct and quadrature axes components, D is the damping torque, Tm is mechanical torque, nP 

and J are considered as number of pole pairs and rotor inertia respectively. And s, r and m indicate stator, 

rotor and mutual quantities respectively. Fig. 3 represents the DFIM based FESS and its control strategy. 

III. FESS CONFIGURATION 

The stator windings of the DFIM is coupled with the grid directly while the rotor windings is connected with 

the VSC. Fig. 3 shows the connection of FESS, it can be seen that the RSC is connected with the rotor side. 

Both the GSC and RSC are interconnected via high voltage dc link capacitor. The GSC controls the dc link 

voltage (Edc) and the reactive power (Qgen) while the active power (Pgen) of the generator and the wind farm 

voltage (Vwf) are controlled by the RSC. DC link capacitor is interconnecting both GSC and RSC and also 

ensures the stability of dc link. The GSC converts the DC to AC and supplies the power to the grid. 

The carrier frequency of the reference triangular wave is chosen to be 2 kHz. The dc-link voltage across the 

2000 µF dc-link capacitor is to be maintained at 4 kV. 

IV. PROPOSED CONTROL SCHEME 

 The control of both GSC and RSC is performed through cascaded adaptive neuro-fuzzy controllers. 

The reactive power supplied to the grid is controlled through the GSC. It also keeps the dc-link voltage at 4 

kV. There are two set of cascaded adaptive neuro-fuzzy controllers for GSC to control the desired variables. 



Every controller is segmented into two parts the adaptive neural networks and the fuzzy logic system. A total 

of 4 cascaded adaptive neuro fuzzy controllers are used to control the FESS. The input of the first cascaded 

controller is the reference dc-link voltage (4 kV) and the actual value across the dc-link capacitor. The 

previous output signal from the ANN acts as the third input for the controller. The output of adaptive neural 

network is fed into the FLC. Now, the signal generated by FLC and the d-axis current (Id) are fed into the 

next stage of the cascaded adaptive neuro-fuzzy controller. Similarly, the controlling of the reactive power 

supplied to the grid works on the same technique. First, the reference and actual reactive power is sent to the 

adaptive neuro-fuzzy controller which generates an output. The output along with the q-axis current (Iq) are 

fed to the 2nd stage of the cascaded controller respectively. Also, the active power of the grid and voltage of 

the wind farm for the RSC are controlled through the adaptive neuro-fuzzy controller in this manner. The 

RSC is designed to keep the active power and voltage of the wind farm at 1 p.u. The controlling strategy is 

based on two set of cascaded adaptive neuro-fuzzy controllers each for active power of the wind farm and 

voltage of the wind farm. The first set of the cascaded controllers is fed by the reference active power along 

with the actual active power. The signal is fed to the adaptive neural network whose output acts as an input 

for the fuzzy controller. 

The output of the fuzzy controller and the direct-axis current of rotor side (Idr) are sent to the next controller 

connected in series. Similarly, the cascaded adaptive neuro-fuzzy controller for the voltage of the wind farm 

works on the same topology described previously. Moreover, the output of the 4 sets of cascaded adaptive 

neuro fuzzy controllers Vd , Vq, Vdr and Vqr are transformed from dq0 to abc frame. Fig. 4(a) shows the block 

diagram representation of the cascaded control for GSC and RSC. The transformed voltages are compared 

with a triangular waveform with a frequency of 2 kHz. The signals generated from the comparison act as 

controlling signals for the IGBTs. ANN and FLC details are given in the following sections. 

A. ADAPTIVE NEURAL NETWORKS (ANN) 

Traditional control theory has some limitations. The assumptions such as linearity and time-

invariance has confined the application of classical control theory on non-linear systems [27]. Usually, the 

conventional PI controller have been used in the control systems because of their wide stability margins and 

robustness. However, the PI controllers have some limitations, they are highly sensitive to parameters 



variation and non-linearity of dynamic systems [27]. Especially for modern non-linear power system 

applications, tuning the parameters of PI controllers is time consuming and taxing. 

Therefore, the problems associated with the conventional PI and PID controllers can be solved by using 

controllers based on advanced artificial intelligence control techniques. Moreover, the benefit of using these 

controllers is that they can be applied to the non-linear systems. Also, these controllers are less sensitive to 

parameter variation as compared to the conventional controllers based on classical control theory [28]. 

Among many advanced controllers, adaptive neural network (ANN) methods are being used on non-linear 

electrical power systems. ANN controllers are based on codes inspired from the behavior of neural systems 

of living beings.  

ANNs are based on neurons. There are many topologies for interconnecting of neurons. In this study, the 

feed forward strategy is used for the interconnection of neurons. There are three inputs of the ANN controller 

which consist of reference ref(t), actual measured value actval(t) and the earlier output signal of the ANN 

controller y(t-1).  

An ANN structure with three neurons in input layer, three neurons in hidden layer, and one neuron in output 

layer i.e. 3×3×1 structure is shown in Fig. 4(b). The output of a single neuron can be represented by the 

following equation [3]; 
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where, fi is the activation function, wij is the weighting factor, 

xj is the input signal, and bi is the bias. 

An activation function is applied on the hidden and output layers of the ANN controller. Nonlinear 

continuously varying types between two asymptotic values, namely, -1 and +1 are the most commonly 

utilized activation functions. These functions are known as tansigmoid functions. 

The adaptive ANN controller that is implemented in this study is based on the WidrowHoff adaptation 

algorithm. The Widrow-Hoff delta rule can be used to adapt the Adaline’s weight vector [29]-[31]. The 

weight update equation for the original form of the algorithm can be written as [3]:  
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where, W(t+1)is the next value of the weight vector, W(t) is the present value of the weight vector, and x(t) 

is the present input vector.  

It can seen from eq. 16 as the weights are changing, the error is reduced by the factor α. The process 

continuous until the error is reduced to the minimum bounds or becomes zero.  

B. FUZZY LOGIC CONTROLLER (FLC) 

FLCs are advanced controllers and has number of applications. FLC have been applied to many 

modern control systems which includes the controlling of wind power generators and motors [32]-[34]. FLC 

has number of design parameters which gives great flexibility for the designer to make an effective controller 

for the required system. The parameters includes, number of membership functions for each fuzzy input 

which can be decided as per the complexity of the system, the number of rules, the antecedents and 

consequents of each rule and the output defuzzification method [35]. 

The fuzzy system structure has three basic blocks which includes fuzzification, fuzzy interference engine, 

and the defuzzification. First the fuzzy inputs (crisp inputs) are sent to the fuzzification block where they are 

fuzzified using the membership functions of the input. Then, the fuzzy interference engine gives a fuzzy sets 

utilizing the rule base defined by the designer according to the needs of the system to be controlled. Lastly, 

the defuzzification is applied on the fuzzy sets produced by the fuzzy interference engine. The defuzzification 

block converts the fuzzy set into a numerical value. 

In the system under study, the FLC is used with an ANN. The ANN is connected in series with the FLC 

making an adaptive neuro fuzzy controller.  

The FLC, has two inputs that is the error and change in the input error respectively. In this paper, a 7x7 FLC 

is implemented. Each input variable has 7 fuzzy sets or membership functions. Similarly, the output is 

defuzzified using 7 membership functions. The membership functions can be written as;  

[NL, NM, NS, Z, PS, PM, PL] 

where, NL= negative large, NM=negative medium, NS= negative small, Z=zero, PS= positive small, PM= 

positive medium, PL= positive large [35].  



The membership functions are equally distributed for positive and negative values. Table II contains the 49 

rules for the 7x7 FLC. 

V. SIMULATION RESULTS FOR SINGLE MACHINE SYSTEM 

Modeling of the system and its control strategies are presented in detail. The simulation of the model under 

study and its transient stability analysis is performed through PSCAD/EMTDC [21]. The wind speed is 

constant at the rated value of 11.8m/s. The simulation time is 15 s and the solution time step is 20 µs. To 

study the transient stability of the system, a severe three-line to ground (3LG) fault is applied to point F as 

shown in Fig. 1. The fault duration is 0.1 s. The results of the system without the FESS is shown in Fig. 5(a) 

to (e). The system under study is analyzed through PI controlled FESS whose parameters are selected by 

Black-box optimization technique [36]. The comparison of transient response of the system with adaptive 

neuro fuzzy controller and PI controller is presented in Fig. 6(a) to (g). It can be noted that the results obtained 

from the adaptive neuro-fuzzy controller are better than results using the conventional PI-controller. During 

the fault period, the FESS compensates the active power of the wind farm immediately. The active and 

reactive power returns back to the reference value as shown in Fig. 6(a) and (b). It can be noted that the 

response for active and reactive power of the wind farm with adaptive neuro fuzzy controlled FESS is better 

and have less oscillations than the PI controller controlled FESS. As the fault happens, the IG and turbine 

speed keep on increasing and becomes unstable when the system is analyzed without FESS as shown in Fig. 

5(c) and (d). Moreover, the IG speed and turbine speed has less oscillations and lower settling time with the 

adaptive neuro fuzzy controlled FESS as shown in Fig 6(c) and (d). The voltage of the wind farm also regains 

the reference value effectively in the case of adaptive neuro fuzzy controller as shown in Fig. 6(e). Fig 6(f) 

shows the DC-link voltage. The power of the FESS in Fig. 6(g) shows the continuous exchange of active 

power between the system and the FESS during the fault and post-fault period. The power of the FESS is 

zero during the pre-fault period and it again goes back to zero as the system gets stable. 

The simulation results prove that the wind turbine IG system become stable using both adaptive neuro-fuzzy 

controlled and PI-controlled FESS. Moreover, all the system responses using adaptive neuro-fuzzy controlled 

FESS are better than that of using PI-controlled FESS. Therefore, adaptive neuro-fuzzy controlled FESS is 

considered to be an effective means for enhancing the transient stability of the wind turbine IG systems. 



VI. IEEE 39 BUS NEW ENGLAND TEST SYSTEM 

The IEEE 39 bus system also known as 10-machine New England Power System is the compact version of 

the original New England System. The purpose of this reduced system is to study and analyze new research 

and advancements on a large and practical electrical power system. Single line diagram of the system is 

shown in Fig. 7 [37]. The IEEE 39 bus system contains 39 buses out of which 19 are load buses. There are 

10 generators in the system. Bus 31 which has generator 2 is defined to be slack bus. The total load and 

generation in the system is 6150.1 MW and 6192.84 MW respectively. The load model is considered to be 

constant current (I) and constant admittance (Y) load [37]. The power flow data and dynamics data of the 

models used are presented in the following sections 

After testing the proposed FESS on a single machine infinite bus system, the controller is also applied to the 

IEEE-39 bus system. The power generation for the 10 generates varies from 250MW to 1000MW. In order 

to test the proposed FESS with the IEEE-39 bus system, Generator 10 connected at bus 30 which is producing 

250MW is replaced by the wind power generator which is connected to the FESS at the PCC. The data 

corresponding to these generators are given in Table III in Appendix. Table IV contains the bus data. Table 

V has the IEEE-39 bus load data. All the parameters for the IEEE-39 bus system are given in Appendix [38]. 

VII. SIMULATION RESULTS FOR IEEE-39 BUS SYSTEM 

The IEEE-39 bus system is presented in this study. The coupling of the New England system with the 

proposed model is investigated. The transient stability analysis is performed through PSCAD/EMTDC. The 

simulation time is 15 s and the solution time step is 20 µs. Moreover, the wind speed is kept constant at the 

rated value of 11.8m/s. To ensure and validate the effectiveness of the proposed system and its control 

strategy a severe 3LG is applied for a duration of 0.1s on bus 30 of the IEEE 39 bus system as shown in Fig. 

7. 

The system is analyzed for three cases. First, the response of the system without FESS is investigated. Then, 

the system response with a PI controlled FESS is analyzed and lastly, the simulation results using adaptive 

neuro fuzzy controlled FESS are investigated and compared with that of the PI controller. Without the FESS 

system, the active and reactive power of the wind farm becomes unstable and fluctuates heavily as the fault 

happens. Also, after the fault, the turbine speed and the induction generator speed keep on increasing which 

makes the system unstable. As a result of the increasing speed of the IG and turbine, the voltage of the wind 



farm oscillates. So, it is clear that the system without FESS is highly unstable. Therefore, in order to achieve 

the transient stability, the system is tested with FESS having two different control strategies. 

First, the PI controlled FESS is connected with the system. The parameters of the PI controller are selected 

using the Black-box optimization technique. 

As the fault happens, the FESS compensates the active and reactive power of the wind farm by continuously 

exchanging the power through flywheel. Fig. 8 (a) and (b) shows the active and reactive power of the wind 

farm. It can be noted that the adaptive neuro fuzzy controller has response and less over shoot than the FESS 

with PI controller. Moreover, the IG speed and the turbine speed comes back to the pre-fault values using 

both the PI and the adaptive neuro fuzzy controller but the response of the adaptive controller is notably 

better than that of a PI controller as shown in Fig. 8 (c) and (d). Similarly, Fig. 8 (e) and (f) shows the voltage 

of the wind farm and the dc link voltage. The Power of the FESS can be seen in Fig. 8 (g), which shows 

better exchange of power in the case of adaptive neuro fuzzy controller. 

Comparing the results of the PI controlled FESS with the adaptive neuro fuzzy controlled based FESS, it is 

evident that the adaptive controller performs better and gives more precise and efficient result as compared 

to the classical PI-controller. 

The results prove that the wind turbine system coupled with the IEEE 39 bus New England test system 

becomes stable and performs appropriately with both the PI controlled FESS and the adaptive neuro-fuzzy 

controlled FESS. Moreover, it is to be stated that the response of the proposed system is much better with 

adaptive controlled FESS as compared to the PI controlled FESS.     

VIII. CONCLUSION 

This paper has introduced a novel adaptive neuro-fuzzy controlled FESS to enhance the transient stability of 

a grid-connected wind generator system. Detailed modeling and control strategies of the system under study 

are presented. The results has shown that the integration of a PI or an adaptive neuro-fuzzy controlled FESS 

with the wind generator system results in obtaining a stable system when a severe 3LG fault is applied. The 

transient response of the system with adaptive neuro-fuzzy controlled FESS is much better than that obtained 

with PI-controlled FESS. The proposed model performed efficiently and effectively on a single machine 

infinite bus system. The proposed model has also been applied to the IEEE-39 bus New England test system. 

The results were better and the transient stability of the system improved notably as compared to the system 



without FESS. Therefore, adaptive neuro-fuzzy controlled FEES was found to be an effective means for 

enhancing the transient stability stabilization of the wind generator system network. 

IX. APPENDIX 

The data of the IEEE-39 Bus New England test system is provided in Tables III-V. 
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Fig. 1 Model System 

 

 
Fig. 2 Cp- λ characteristics for different pitch angles 

 



 

Fig. 3 Model for FESS 

Fig. 4(a) Adaptive neuro fuzzy cascaded control for grid side converter (GSC) and rotor side converter (RSC) 

 

 
Fig.  4(b) ANN structure 
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Fig. 5. System responses without FESS. (a) Active power of the wind farm. (b) Reactive power of the wind farm. (c) IG Speed. (d) 

Turbine Speed. (e) Voltage of the wind farm. 
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(g) 

Fig. 6. System responses with PI and adaptive neuro-fuzzy controlled FESS. (a) Active power of the wind farm. (b) Reactive power of 

the wind farm. (c) IG Speed. (e) Turbine Speed. (e) Voltage of the wind farm. (f) DC Link voltage (g) Active power of the FESS. 
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Fig. 7 Single Line Diagram of IEEE-39 Bus New England Test System 
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Fig. 8. System responses with PI and adaptive neuro fuzzy controlled FESS. (a) Active power of the wind farm (b) Reactive power of 

the wind farm. (c) IG Speed. (e) Turbine Speed. (e) Voltage of the wind farm. (f) DC Link voltage. (g) Active power of the FESS. 
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Table I 

IG AND FESS Parameters 

 Induction Generator (IG) FESS 

Stator resistance (p.u) 0.01 0.01 

Stator leakage reactance (p.u) 0.1 0.05 

Rotor resistance (p.u) 0.01 0.007 

Rotor leakage reactance (p.u) 0.12 0.05 

Magnetizing reactance (p.u) 3.5 4.01 

Inertia Constant H (s) 1.5 15 

 

 

 

 

 

Table II 

Decision Table for 7x7 FLC 

 NL NM NS Z PS PM PL 

NL NL NB NB NM NS NS Z 

NM NL NM NM NM NS Z PS 

NS NL NM NS NS Z PS PM 

Z NL NM NS Z PS PM PL 

PS NM NS Z PS PS PM PL 

PM NS Z PS PM PM PM PL 

PL Z PS PS PM PL PL PL 

 

 

 

 

 

 

 

Table III 

Generator Data for IEEE 39 Bus System 

Bus 
Generator Total Power 

(MVA) 

Pgen 

(MW) 

Voltage of the Bus 

 (p.u) 

30 1290 250 1.0475 

31 574 520.81 0.982 

32 753 650 0.9831 

33 917 632 0.9972 

34 303 508 1.0123 

35 800 650 1.0493 

36 816 560 1.0635 

37 702 540 1.0278 

38 702 830 1.0265 

39 6667 1000 1.03 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



Table IV 
 Bus Data for IEEE 39 Bus System 

Bus Bus Name Base kV Voltage (p.u) 
Angle 

(deg.) 

1 Bus 1 345 1.045 -8.54 

2 Bus 2 345 1.041 -5.82 

3 Bus 3 345 1.025 -8.68 

4 Bus 4 345 1.001 -9.68 

5 Bus 5 345 1.003 -8.67 

6 Bus 6 345 1.006 -8.01 

7 Bus 7 345 0.995 -10.19 

8 Bus 8 345 0.994 -10.69 

9 Bus 9 345 1.028 -10.41 

10 Bus 10 345 1.015 -5.48 

11 Bus 11 345 1.011 -6.34 

12 Bus 12 345 0.998 -6.31 

13 Bus 13 345 1.012 -6.16 

14 Bus 14 345 1.009 -7.72 

15 Bus 15 345 1.013 -7.79 

16 Bus 16 345 1.029 -6.23 

17 Bus 17 345 1.03 -7.34 

18 Bus 18 345 1.027 -8.28 

19 Bus 19 345 1.049 -1.06 

20 Bus 20 345 0.991 -2.05 

21 Bus 21 345 1.03 -3.82 

22 Bus 22 345 1.049 0.64 

23 Bus 23 345 1.044 0.44 

24 Bus 24 345 1.035 -6.11 

25 Bus 25 345 1.044 -4.18 

26 Bus 26 345 1.045 -5.47 

27 Bus 27 345 1.032 -7.49 

28 Bus 28 345 1.047 -1.93 

29 Bus 29 345 1.048 0.84 

30 Gen 10 22 1.048 -3.39 

31 Gen 2 22 0.982 0 

32 Gen 3 22 0.983 2.51 

33 Gen 4 22 0.997 4.16 

34 Gen 5 22 1.012 3.14 

35 Gen 6 22 1.049 5.59 

36 Gen 7 22 1.064 8.3 

37 Gen 8 22 1.028 2.51 

38 Gen 9 22 1.027 7.91 

39 Gen 1 345 1.03 -10.15 

 
Table V 

 Load Data for IEEE-39 Bus System 

Bus Number Pload (MW) Qload (Mvar) 

3 322 2.4 

4 500 184 

7 233.8 84 

8 522 176 

12 8.5 88 

15 320 153 

16 329 32.3 

18 158 30 

20 628 103 

21 274 115 

23 247.5 84.6 

24 308.6 -92 

25 224 47.2 

26 139 17 

27 281 75.5 

28 206 27.6 

29 283.5 26.9 

31 9.2 4.6 

39 1104 250 

 


