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Abstract – In this paper, an effective particle swarm optimization (PSO) is proposed for 

polynomial models for time varying systems. The basic operations of the proposed PSO 

are similar to those of the classical PSO except that elements of particles represent 

arithmetic operations and variables of time-varying models. The performance of the 

proposed PSO is evaluated by polynomial modeling based on various sets of time-

invariant and time-varying data. Results of polynomial modeling in time-varying systems 

show that the proposed PSO outperforms commonly used modeling methods which have 

been developed for solving dynamic optimization problems including genetic 

programming (GP) and dynamic GP. An analysis of the diversity of individuals of 

populations in the proposed PSO and GP reveals why the proposed PSO obtains better 

results than those obtained by GP.  
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1. Introduction 

Genetic programming (GP) [25, 26] is a commonly used evolutionary computation 

method which is used to generate polynomial models for various systems such as 

chemical plants [38], time series systems [21], nonlinear dynamic systems [56], object 

classification systems [1, 65], machine learning systems [27], feature selection systems 

[43], object detection systems [37], speech recognition systems [11], control systems [5] 

and mechatronic systems [61]. The GP starts by creating a random initial population of 

individuals, each of which represents the structure of a polynomial model. Evolution of 

individuals takes place by mutation and crossover over generations, and individuals with 

high goodness-of-fit are selected as survivors in the next generation. The evolutionary 

process continues until the diversity of individuals of a population saturates to a low level 

or no progress can be found. 

Observations reveal that polynomial models represented by individuals in the GP 

are distinct from each other in early generations. As the GP is progressing, polynomial 

models represented by individuals converge to a form, which achieves relatively higher 

goodness-of-fit in the population. Vaessens et al. [59] and Reeves [55] put this 

population-based optimization method into the context of local searches. Maintaining 

population diversity in GP is a key to preventing premature convergence and stagnation 

in local optima [17, 40]. Using GP, it is difficult to develop optimal polynomial models 

for time-varying systems whose structures or coefficients vary over time while the 

diversity of individuals in a population is low. Time-varying characteristics can 

commonly be found in many industrial systems [6, 22, 41, 44, 57, 66, 36, 34]. To develop 

models for time-varying environments, Wagner et al. [60] developed a GP approach in 



which a varying window for capturing significant time series is proposed to generate time 

series models based on time series data. This approach cannot be applied for generating 

models for time-varying systems if the nature of the data is not all in time series formats. 

While mechanisms implemented on evolutionary algorithms have been well studied for 

solving various dynamic optimization problems [64], those implemented in GP have not 

been thoroughly studied for the development of polynomial models in time-varying 

environments. It is essential that an effective algorithm be developed for generating 

models that deal with time-varying characteristics, given their occurrence in many 

industrial systems. 

 Another more recent population based optimization method, particle swarm 

optimization (PSO) [15], inspires the movements of a population of individuals seeking 

optimal solutions. The movement of each individual is based on its best position recorded 

so far from previous generations and the position of the best individual among all the 

individuals [28, 29]. The diversity of the individuals can be maintained by selecting PSO 

parameters which provide a balance between global exploration, based on the position of 

the best individual in the swarm, and local exploration based on each individual’s best 

previous position. Each individual can move gradually toward both its best position 

recorded to date and the position of the best individual in the population. Kennedy and 

Eberhart [29] demonstrated that PSO can solve many difficult optimization problems 

with satisfactory results. PSO outperforms evolutionary computation methods for solving 

various static optimization problems [13, 31, 53, 62], and various dynamic optimization 

problems [2, 9, 8, 52] in which the optima or landscapes of the problems vary over time. 

Although PSO can obtain satisfactory results when solving various dynamic optimization 



problems, PSO has not currently been used on polynomial modelling for time-varying 

systems. The development of PSO for polynomial modelling for systems with time-

varying characteristics is a new research area. 

 In this paper, a PSO is proposed for the development of polynomial models for 

time-varying systems in which the system coefficients vary over time. The basic 

operations of the proposed PSO are identical to those of the classical PSO [12] except 

that the elements of individuals are represented by arithmetic operations and system 

variables of polynomial models. The representation of elements takes the form of 

grammatical swarm [47, 48] or grammatical evolution [46]. The performance of the 

proposed PSO in the present paper is evaluated by developing models based on several 

sets of time-varying data which are generated based on time-varying functions with 

different time varying characteristics. In order to provide a comprehensive evaluation, a 

comparison is conducted of the results obtained by the proposed PSO with:  

(a) classical GP [46] - in which the representation of individuals of population is 

identical to the one used in the proposed PSO; 

(b) dynamic GP - which is integrated with a recent mechanism [63] for solving 

dynamic optimization problems;  

(c) dynamic PSO - which is integrated with a recent mechanism [2] for dynamic 

optimization problems.  

Even if additional computational effort is used in the dynamic PSO to maintain 

the diversity of individuals, no significant difference in diversity can be found between 

the proposed PSO and the dynamic PSO. Compared with the two GPs, the results indicate 

that the proposed PSO outperforms both classical GP and dynamic GP in developing 



polynomial models for systems with both time-invariant data and time-varying data. The 

results can be explained by the diversity of individuals in the proposed PSO, which can 

be maintained in both early and later generations. The individuals of the proposed PSO 

continue to explore the solution spaces over the generations. In contrast the individuals of 

both the GP methods start to converge and get stuck on a solution after early generations.  

 This paper is organized as follows. Section 2 presents the operations of the 

proposed PSO. The experimental set-up for testing the proposed PSO, and the data sets 

used for evaluating the proposed PSO are presented in Sections 3.1 and 3.2 respectively. 

The experimental results and the analysis of the experimental results are presented in 

Section 3.3 and 3.4 respectively. Finally, conclusions and suggestions for further work 

are given in Section 4. 

 

2. Particle swarm optimization  

A time-varying system can be formulated as follows: 

 y = f t(x1,x2,…xm)        (1) 

where y is the output response, xj, j=1,2,…m, is the j-th variable of the time-varying 

system, and f t is the functional relationship of the time-varying system at time t. Based 

on a set of data which represents relations between the output response y and the 

variables, x1, x2, ..., xm at time t, the time-varying system tf  in (1) can be generated in a 

polynomial form with constant coefficients at time t. The data set at time t is defined by 
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i
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DDD Ritxitxitxit  ,,...,,,,, 21x  and the corresponding value of the response 

output of the i-th data at time t is   Rity D , . Where  tD  is available, tf can be 



generated as the high-order high-dimensional Kolmogorov-Gabor polynomial in 

expression (2): 
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where  ta0 ,  ta1  ,  ta2  , ....,  tam  ,  ta11 ,  ta12 , ...,  tamm  ,... and  ta mmm...  are the 

polynomial coefficients at time t. Equation (2) is a universal format of the polynomial 

model if the number of terms in equation (2) is large enough [18]. In this paper, a PSO is 

proposed in order to generate the time-varying model at time t based on equation (2), 

using an available set of data at time t. Based on [12], the proposed PSO uses a number of 

individuals, which constitute a swarm, and each individual represents a time-varying 

model. Each individual traverses the search space to trace the polynomial model of the 

time-varying system whose system coefficients vary over time. 

In the PSO, each individual is represented by the system variables (x1, x2, …, and 

xm) and the arithmetic operations (‘+’, ‘-’ and ‘*’) of the system model as defined in (2). 

m is the number of variables of the system model.  A similar mechanism was first 

proposed by Kennedy and Eberhart [30] for representing discrete binary variables, and 

has been applied to the PSO for solving flowshop scheduling problems [31, 51, 58]. The 

i-th individual at generation g is defined as  ,1 ,2 ,, ,...,
p

g g g g
i i i i NP p p p ; where mN p  ; 

popNi ,...,2,1 ; popN  is the number of individuals of the swarm; pN  is the number of 

elements of the individual; and popN  is an odd number; ,
g
i kp  is the k-th element of the i-th 

individual at the g-th generation, and ,
g
i kp  is in the range between 0 to 1 i.e.  , 0...1g

i kp  . 



If the value of pN  is large, a larger number of terms can be generated in the model, and 

the model can better fit the data which is used for model development. However, a model 

may contain too many unnecessary and complex terms. A complex, over-parameterized 

model with a large number of parametric terms reduces the transparency and ease of 

interpretation of the model leading to overfitting problems. To prevent the PSO from 

generating models which are too complex, the value of pN  has to be selected carefully. 

The value of pN can be determined based on the trial and error method, and the value of 

pN  cannot be set too high, otherwise redundant terms can be produced. If the number of 

variables of the system model is 4, pN  can be initially set as 10. If the modelling error 

obtained by the PSO is not satisfactory, the value of pN  can be increased until a 

satisfactory modelling error is achieved. If the modelling error obtained by the PSO is 

satisfactory, the value of  pN  can be decreased until just before an unsatisfactory 

modelling error is achieved. 

The elements in odd numbers (i.e. ,1 ,3 ,5,  ,  ,...g g g
i i ip p p ) are used to represent the 

system variables, and the elements in even numbers (i.e. ,2 ,4 ,6,  ,  ,...g g g
i i ip p p ) are used to 

represent the arithmetic operations. For odd k, if ,
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g
i kp  represents the l-th 

system variable, lx . System variables represented by the individual are summarized in 

Table 1. 

 



Table 1: Representation of system variables 
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In the polynomial model, ‘+’, ‘-’ and ‘*’ are the only three arithmetic operations 

considered.  For even k, if ,
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represents the arithmetic operations ‘+’, ‘-’ and ‘*’ respectively. Arithmetic operations 

represented by the individual are summarized in Table 2. 

Table 2: Representation of arithmetic operations 
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For example, the i-th individual at generation g with 11 elements is used to 

represent a polynomial model of the time-varying system at time t, which consists of 4 

system variables (i.e. x1, x2, x3 and x4): 

g
ip 1,  g

ip 2,  g
ip 3,  g

ip 4,  g
ip 5,  g

ip 6,  g
ip 7,  g

ip 8,  g
ip 9,  g

ip 10,  g
ip 11,  

0.18 0.41 0.94 0.92 0.41 0.89 0.06 0.35 0.81 0.01 0.74 
The elements in the individual are within the following ranges: 

g
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0< 
0.18 
≤ 1/5 

1/3< 
0.41 
≤ 2/3 

4/5< 
0.94 
≤5/5 

2/3< 
0.92 
≤3/3 

2/5< 
0.41 
≤3/5 

0< 
0.08 
≤1/3 

0< 
0.06 
≤1/5 

0< 
0.35 
≤1/3 

4/5< 
0.81 
≤5/5 

0< 
0.01 
≤1/3 

3/5< 
0.74 
≤4/5 

 

 



Therefore, the model is represented in the following form: 

g
ip 1,  g

ip 2,  g
ip 3,  g

ip 4,  g
ip 5,  g

ip 6,  g
ip 7,  g

ip 8,  g
ip 9,  g

ip 10,  g
ip 11,  

0 - 
4x  * 

2x  + 0 + 
4x  + 

3x  

 

which is equivalent to: 

   3424 00 xxxxg
i x  

or  

   3424 xxxxg
i x . 

 The PSO is used only to find the structure of the polynomial and not the 

coefficients. The system coefficients a0(t), a1(t), a2(t) and a3(t) are determined after the 

structure of the time-varying model at time t is established, where the number of 

coefficients is 4. The completed time-varying model at time t is represented as follows: 

   xg
if  a0(t) – a1(t)·x4·x2 + a2(t)·x4 + a3(t)·x3 

 In this research, the system coefficients a0(t), a1(t), a2(t) and a3(t) are determined 

by the orthogonal least squares algorithm (OLSA) [2, 5], which has been demonstrated to 

be effective in determining system coefficients in polynomial models [39]. Details of the 

orthogonal least squares algorithm can be found in [3, 7]. 

 The polynomial model represented by each individual is evaluated based on the 

root mean absolute error (RMAE). This reflects the differences between the predictions 

by the model of the time-varying system at time t and the actual values of the data sets at 

time t. The RMAE of the i-th individual at the g-th generation RMAEi
g can be calculated 

based on (3). 
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where g
if  is the polynomial model represented by the i-th individual g

iP  at the g-th 

generation,     , , ,D Dt j y t jx  is the j-th data set at time t, and ND is the number of 

training data sets used for developing the polynomial model of the time-varying system.  

The velocity ,
g
i kv  (corresponding to the flight velocity in a search space) and the k-

th element of the i-th individual at the g-th generation ,
g
i kp  are calculated by expressions 

(4) and (5) of the PSO [10] respectively: 
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where  

 ,1 ,2 ,, , ...
pi i i i Npbest pbest pbest pbest    , 

 1 2, , ...
pNgbest gbest gbest gbest    , 

 k = 1,2, …, Np, 

The best previous position so far of an individual is recorded from the previous 

generation and is represented as ipbest ; the position of the best individual among all the 

individuals is represented as gbest; rand() returns a uniform random number in the range 

of [0,1]; w is an inertia weight factor; 1  and 2  are acceleration constants [13]; K is a 

constriction factor derived from the stability analysis of equation (4) to ensure that the 



system converges, but not prematurely. K is a function of 1  and 2  as reflected in the 

following equation: 

          
 42

2
2 

K                                                                                      (6) 

where  21   and 4 . 

The proposed PSO utilizes pbesti and gbest to modify the current search point to 

prevent the individuals from moving in the same direction, but to converge gradually 

toward pbesti and gbest. g is the current generation number, G is the total number of 

generations [14]. 

 In (4), the particle velocity is limited by a maximum value maxv . The parameter 

maxv determines the resolution with which regions are to be searched between the present 

position and the target position. This enhances the local exploration of a search process. 

If maxv is too high, individuals might fly past good solutions. If maxv is too small, 

individuals may not explore sufficiently beyond local solutions. maxv  was often set as 

10%–20% of the dynamic range of the element on each dimension. The pseudo code of 

the proposed PSO is presented in Figure 1. 



 

Figure 1: Pseudo code of the PSO 

 

3. Polynomial modelling 

In this section, the effectiveness of the PSO in modeling time-invariant or time-varying 

systems is evaluated based on both the time-invariant data and time-varying data. The 

PSO and the other commonly used, but recently developed, algorithms are compared. 

 

3.1 Time-invariant and time-varying data 

For time-invariant data, five sets of data, namely static data, stat

Sph
 , stat

Ros
 , stat

Ras
 , stat

Gri
  and 

stat

Ack
 , were generated based on each of the five benchmark functions, Sphere, Griewank, 

Rastrigin, Rosenbrock and Ackley (see Table 3) by randomly choosing 100 numbers Xi in 

each of the predefined intervals  nXX maxmin , . The 100 corresponding output responses Yi 

{ 
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           { 
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g
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if 
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g
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end 

if 
g
kiv , <vmax 

 
g
kiv , =  vmax 

end 

Update each element of each particle g
kip ,  based on (5) 

Evaluate each particle g
iP  based on (3) 

Update pbesti and gbest 
            } 
} 



are computed by the benchmark function Yi = F(Xi) whose landscape and optimum are 

static with respect to time. The dimension of each benchmark function is n=4. The Sphere 

(
Sph

F ) and Rosenbrock (
Ros

F ) functions are unimodal (a single local and global optimum), 

and the Griewank (
Gri

F ), Rastrigin (
Ras

F ), and Ackley (
Ack

F ) functions are multimodal 

(several local optima).  

 

Table 3: Benchmark functions and initialization areas 
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The time-varying data used in this study was generated by a set of time-varying 

functions which were extended from the benchmark functions shown in Table 3. Xi was 

generated by randomly chosen numbers in the predefined interval of the benchmark 

function. Yi was computed in each generation of the PSO run by the time-varying 

function Yi = F(Xi, t) whose landscape or optima varies over time t. The mechanisms for 



the development of the time-varying functions were based on the dynamic properties of 

step changes of optima, changes of locations of optima, and changes of the landscapes of 

the benchmark functions [33, 42].  

For those based on the mechanism of step changes of optima, the time-varying 

data was generated based on each of the five benchmark functions, 
Sph

F , 
Ros

F , 
Ras

F , 
Gri

F  

and 
Ack

F . The optimum position x  of each benchmark function is moved by adding or 

subtracting random values in all dimensions by a severity parameter s, at every change of 

the environment [32]. The choice of whether to add or subtract the severity parameter s 

on the optimum x  is done randomly with an equal probability. The severity parameter s 

is defined by: 

   
   








0rand if 

0rand if 

minmax

minmax

XXd

XXd
s ,      (7) 

where d  determines the scale of the step change of optima.  

For each test run, a different random seed was used. The severity was chosen 

relative to the extension (in one dimension) of the initialization area of each benchmark 

function. The optima of the benchmark functions were periodically changed in every 100 

generations of the runs of the algorithms. For small step changes of optima,  5% d  is 

selected, and five sets of time-varying data, (namely step move data with %5d , 

5 Step

Sph
, 5 Step

Ros
, 5 Step

Ras
, 5 Step

Gri
 and  5 Step

Ack
) were generated based on the five benchmark 

functions, 
Sph

F , 
Ros

F , 
Ras

F , 
Gri

F  and 
Ack

F , in Table 3 respectively. For large step changes of 

optima,  10% d  is selected, and five sets of time varying data, (namely step move 

data with %5d , 10 Step

Sph
, 10 Step

Ros
, 10 Step

Ras
, 10 Step

Gri
 and 10 Step

Ack
) were generated 

respectively. 



For those based on the mechanism of changes of locations of optima [21], the 

time-varying data was generated based on the following time-varying function: 
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ii
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Sph

F , 
Ros

F , 
Ras

F , 
Gri

F  and 
Ack

F , in Table 3, s 

is a randomly chosen constant which is 20% of the range of the benchmark function 

 xF
i

. The optimum in  xF  shifts from the original optimum x  of  xF
i

 to the new 

optimum  sx  in every 100 generations. Based on these time-varying functions, five 

sets of time varying data, namely shift data, shift

Sph
 , shift

Ros
 , shift

Ras
 , shift

Gri
  and shift

Ack
 , were 

generated based on the five benchmark functions, 
Sph

F , 
Ros

F , 
Ras

F , 
Gri

F  and 
Ack

F  in Table 3 

respectively. 

 For those based on the mechanism of changes of the landscapes of the benchmark 

functions [24], the time-varying data was generated based on the following time-varying 

function, which is similar to equation (8): 

          xFtwsxFtwxF
ji

 0.1      (9) 

where  xF
i

 is any of the five benchmark functions in Table 3, and  xF
j

 is another 

benchmark function. The landscape of  xF  changes gradually from the landscape of 

 xF
j

 to the landscape of  xF
i

 in every 100 generations. s is a randomly chosen constant 

which is 20% of the range of the benchmark function  xF
i

. Based on the time-varying 

function (10), four sets of time varying data, namely match data, match

RosSph , match

RasSph , match

GriSph  

and match

AckSph , were generated in which 
Sph

F  is used as  xF
j

, and 
Ros

F , 
Ras

F , 
Gri

F  or 
Ack

F  



functions is used as  xF
i

. Another three sets of match data, match

RasRos , match

GriRos  and match

AckRos , 

were generated in which  RosF x  is used as  xF
j

, and 
Ras

F , 
Gri

F  or 
Ack

F  is used as  xF
i

. 

 A brief summary of all the 27 data sets is presented in Table 4, and the benchmark 

functions, which can be used to generate the data sets, can be downloaded from the 

following link (http://www.4shared.com/account/dir/G2J--2eV/sharing.html). 

 

Table 4: Description of the data sets 

Data sets Descriptions 
Static data stat

Sph
 , stat

Ros
 , stat

Ras
 , 

stat

Gri
 , stat

Ack
  

The static data was generated by the benchmark 
functions, 

Sph
F , 

Ros
F , 

Ras
F , 

Gri
F  and 

Ack
F . 

Step move 
data with 

%5d  

5 Step

Sph
, 5 Step

Ros
, 

5 Step

Ras
, 5 Step

Gri
, 5 Step

Ack
 

The step move data with %5d  were generated 
based on the benchmark functions, 

Sph
F , 

Ros
F , 

Ras
F , 

Gri
F  and 

Ack
F , in which the locations of the optima 

change from x  to sx  in every 100 generations. s 
is 5% of the ranges of the benchmark functions. 

Step move 
data with 

%10d  

10 Step

Sph
, 10 Step

Ros
, 

10 Step

Ras
, 10 Step

Gri
, 

10 Step

Ack
 

The mechanism is the same as that for the above data 
sets except that s is 10% of the ranges of the 
benchmark functions. 

Shift data shift

Sph
 , shift

Ros
 , shift

Ras
 , 

shift

Gri
 , shift

Ack
  

The shift data was generated based on the benchmark 
functions, 

Sph
F , 

Ros
F , 

Ras
F , 

Gri
F  and 

Ack
F , in which the 

locations of the optima move from x  to sx  
gradually. s is 20% of the ranges of the benchmark 
functions. 

Match data 
based on 

Sph
F  

match

RosSph , match

RasSph , 
match

GriSph , match

AckSph  

The match data based on 
Sph

F  was generated in 

which the landscape changes from 
Sph

F  to 
Ros

F , 
Ras

F , 

Gri
F  or 

Ack
F . 

Match data  
based on 

Ros
F  

match

RasRos , match

GriRos  , 
match

AckRos  

The match data based on 
Ros

F  was generated in 

which the landscape changes from 
Ros

F  to 
Ras

F , 
Gri

F  or 

Ack
F . 

 

 



3.2 Experiment Set-up 

In this paper, because the basic operation of the PSO discussed in Section 2 is similar to 

classical PSO, it is called classical PSO, C-PSO in this paper. The following parameters, 

which can be found in reference [48], were implemented in the C-PSO: the number of 

particles in the swarm was 100; the number of elements in the particle was 30; both the 

acceleration constants 1  and 2 were set at 2.05; the maximum velocity maxv  was 0.2; 

the pre-defined number of generations was 1000. Based on the results in [48], these 

parameters can produce satisfactory results when solving both parameterized and 

combinatorial problems. Therefore, these parameters are used in this research. The C-

PSO was compared against the following five approaches for generating models based on 

both the time-invariant and time-varying data sets, which have been discussed in Section 

3.1. 

1.  Classical genetic programming (C-GP): A commonly used method for 

polynomial modeling, the classical genetic programming (C-GP) [25, 26] was 

employed. Here the representation of the individuals of the grammatical 

genetic programming [46] is identical to the one of the representations of the 

C-PSO. The basic operations of the C-GP are shown in Figure 2 in the 

Appendix. The C-GP first starts by creating a random initial population (g) 

of individuals [1(g), 2(g),… POP(g)], while g=0. The i-th individual i(g) at 

the g-th generation represents the structure of the time-varying model (2). For 

example, the i-th individual at the g-th generation i(g) represents the structure 

of the following time-varying model at time t: 

  i(g) = x1
2 – x2

2 + x1·x2 ·x4      (10) 



  After determining the structure of the time-varying model i(g), the 

system coefficients are determined. The completed time-varying model i(g)’ 

is represented by:  

  i(g)’= a0(t) + a1(t)·x1
2 – a2(t)·x2

2 + a3(t)·x1·x2·x4   (11) 

where a0(t), a1(t), a2(t) and a3(t) are the system coefficients at time t, and are 

calculated by OLSA. This is the same as the one used in the C-PSO for 

calculating system coefficients. The classical genetic operations, point 

mutation and one-point crossover, were used. Standard roulette wheel 

selection was used. The following GA parameters were implemented in the C-

GP: The population size is 100. The type of replacement is elitist. Crossover 

rate and mutation rate were 0.9 and 0.01 respectively. The pre-defined number 

of generations was 1000. The dimension of the individuals was 30. 

2.  Dynamic particle swarm optimization (D-PSO): D-PSO is identical to the C-

PSO except for integration of the recent mechanisms for maintaining 

diversities of the swarms [2] when solving the dynamic optimization problem. 

The mechanism splits the whole set of particles into a set of interacting 

swarms. These swarms interact locally through an exclusion parameter and 

globally through an anti-convergence operator. Each swarm maintains its 

diversity by using either charged or quantum particles. Results show that 

when this mechanism for maintaining diversity in the PSO is used, the PSO 

outperforms the other PSO or evolutionary algorithms, even where they are 

integrated with other diversity maintaining mechanisms, for solving dynamic 

optimization problems. The performance of D-PSO was optimized by tuning 



it with different settings for the number particles in the sub-swarms. 5, 10 and 

25 particles in the sub-swarms were used and the best performance among 

them was recorded.  The detailed description of the mechanisms used to 

maintain diversity in the swarms can be found in [2]. 

3.  Dynamic genetic programming (D-GP): D-GP is identical to the C-GP except 

for integration of the recent mechanism [63] used for evolutionary algorithms 

on solving dynamic optimization problems. The mechanism relocates the 

positions of the individuals based on the changes of the landscape of the 

dynamic optimization problem and the average sensitivities of their decision 

variables to the corresponding change in the landscape. While integrating the 

mechanism in the evolutionary algorithm, the evolutionary algorithm 

outperforms the other dynamic evolutionary approaches for solving dynamic 

optimization problems. The detailed description of the mechanisms for 

maintaining diversity can be found in [63]. 

4. Polynomial-genetic algorithm (P-GA): P-GA is a genetic algorithm proposed by 

Potgieter and Engelbrecht [53] which can evolve structurally polynomial 

expressions in order to accurately describe a given data set. In P-GA, each 

individual is used to represent the structure of the polynomial and this is 

evolved based on the designed crossover and mutation operations. The 

coefficients of the polynomial are determined by OLSA [3, 7]. The crossover 

rate and the mutation rate were set at 0.1 and 0.2 respectively, which are the 

same as those used in [54]. The population size was set at 100. The individual 

length was set at 22.  



5. Polynomial neural network (PNN): PNN is developed based on a genetic 

algorithm which is proposed by Oh and Pedrycz [50]. Individuals in the 

genetic algorithm are used to represent the parameters of the PNN including 

the number of input variables, the order of the polynomial and input variables, 

which lead to a structurally and parametrically optimized network. The 

coefficients of the polynomial are determined by OLSA [3, 7]. The number of 

layers of the PNN was set at 3. The crossover rate and the mutation rate used 

in the genetic algorithm were set at 0.65 and 0.1 respectively, which are the 

same as those used in [50]. The population size was set at 100. The individual 

length was set at 36. 

 

3.3 Experimental results 

Thirty runs were performed on the C-PSO, D-PSO, D-GP, C-GP, P-GA and PNN in 

generating polynomial models based on each of the 27 data sets shown in Table 4. In 

each generation of the runs, the RMAE obtained by the individuals of the six algorithms 

was recorded. 

 Online performance of the algorithms is demonstrated by the convergence plots. 

Figures 3a, 3b, 3c, 3d and 3e show the convergence plots for the step move data with 

%5d ( 5 Step

Sph
, 5 Step

Ros
, 5 Step

Ras
, 5 Step

Gri
, 5 Step

Ack
) respectively. It can be observed from 

Figures 3a-3e that the evolutionary algorithms, C-GP, D-GP, P-GA and PNN, converged 

more quickly in the early generations than did those of the PSO algorithms, C-PSO and 

D-PSO. However, the PSO algorithms, C-PSO and D-PSO, kept progressing after the 

early generations. Finally, both the PSO algorithms, C-PSO and D-PSO, reached a 



smaller RMAE than that reached by the evolutionary algorithms, C-GP, D-GP, P-GA and 

PNN, in the final stage of the search. D-PSO can reach the smallest RMAE compared 

with those obtained by the other algorithms. Therefore in general, the PSO algorithms 

outperform the evolutionary algorithms in generating the models for these static data sets 

in later generations. For the rest of the data (static data, step move data with %10d , 

shift data, match data based on 
Sph

F , match data  based on 
Ros

F ), a similar finding can be 

observed in that the convergence speed of the evolutionary algorithms was faster than 

that of the particle swarm optimization algorithms in the early generations. In the late 

generations, the particle swarm optimization algorithms can reach a smaller RMAE than 

that reached by the evolutionary algorithms.  

The smallest RMEA among all generations of each run of each algorithm was 

recorded, and was averaged. This measure is called offline performance. The commonly 

used method for testing the significance of the results, the Wilcoxon Rank Sum Test, was 

used to compare the results between the two algorithms [19]. The results of the 30 runs 

for two algorithms form two independent random samples X and Y. The distributions of X 

and Y, FX and FY, are compared using the null-hypothesis H0: FX=FY and the one-sided 

alternative H1: FX<FY. We performed the significance tests at a significance level α = 

0.01. Only if the probability of the observed difference is less than α, is the null-

hypothesis rejected and the alternative hypothesis accepted. The significance comparison 

among a set of the six algorithms, C-PSO, D-PSO, D-GP, C-GP, P-GA and PNN, is 

displayed using a 6×6 matrix, where ‘X’ denotes that the result obtained by algorithm i 

and that obtained by algorithm j is statistically significant different. i and j are the 

position in the corresponding result table. An entry of ‘_’ indicates that the result 



obtained by algorithm i and algorithm j is not a statistically significant difference. We 

name such a matrix a significance matrix. 

 Tables 5, 6, 7, 8, 9 and 10 show the performance and the significance matrices for 

the static data, the step move data with %5d , the step move data with  %10d , 

the shift data, the match data based on 
Sph

F  and the match data based on 
Ros

F  respectively. 

The average RMAE among the 30 runs of each algorithm and the ranks of the algorithms 

in regard to the average RMAE are shown in the tables. Table 5 shows that D-PSO is 

better than C-PSO in generating time-invariant models based on the static data stat

Sph
 . C-

PSO is better than D-GP which is better than C-GP, P-GA and PNN. A significant 

difference can be found between the results obtained by the PSO algorithms (C-PSO and 

D-PSO) and those obtained by the evolutionary algorithms (D-GP, C-GP, P-GA and 

PNN). However, there is no significant difference between the results obtained by C-PSO 

and D-PSO, even if D-PSO can obtain a smaller RMAE than that obtained by C-PSO. In 

regard to the other static data sets ( stat

Ros
 , stat

Ras
 , stat

Gri
 , stat

Ack
 ), both the PSO algorithms, C-

PSO and D-PSO can obtain a smaller average RMAE than that obtained by the 

evolutionary algorithms, D-GP, C-GP, P-GA and PNN. Also, significant differences exist 

between the results obtained by the PSO algorithms (C-PSO and D-PSO) and those 

obtained by the evolutionary algorithms (D-GP, C-GP, P-GA and PNN). Also, similar 

results can be found in Tables 6, 7, 8, 9 and 10 where the PSO algorithms are 

significantly better than the evolutionary algorithms in generating models based on the 

time-varying data.  

Therefore, it can be concluded that the PSO algorithms are significantly better 

than the evolutionary algorithms. 



3.4 Population diversity 

An investigation of population diversities of C-PSO, D-PSO, D-GP, C-GP, P-GA and 

PNN is presented in this section. Maintaining population diversity in population-based 

algorithms like evolutionary algorithms or PSO is a key to preventing premature 

convergence and stagnation in local optima [11, 16, 40]. Thus it is essential to study the 

population diversities of the six algorithms during the search. Various diversity measures, 

which involve calculations of distance between two individuals in genetic programming 

for the development of models, have been widely studied [4, 49]. These distance 

measures calculate the distances between two individuals which are in a tree based 

representation in genetic programming. They indicate the number of different nodes and 

different terminals between two individuals. In this paper, we measure the distance 

between two individuals by counting the number of different terms of the polynomials 

represented by the two individuals in the four algorithms. If the terms in both 

polynomials are all identical, the distance between the two polynomials is zero. The 

distance between the two polynomials is larger when the number of different terms in the 

two polynomials is larger. For example, 1f  and 2f  are two polynomials represented by: 

 531
2

431211 xxxxxxxxf   

and  531451212 xxxxxxxxf   

 Both 1f  and 2f  contain the three terms 1x , 2x  and 531 xxx  , and the terms 31 xx   

and 2
4x  in 1f  and the terms 51 xx  and 4x  in 2f  are different. Therefore, the number of 

terms which are different in 1f  and 2f  are 2, and the distance between  1f  and 2f  is 

defined to be 2. 



 The diversity measure of the population at the g-th generation is defined by the 

total sum of distances of individuals which is denoted as: 

     
 


pN

i

pN

ij
ggg

jsisd
1 1

,  

where  isg  and  jsg  are the i-th and the j-th individuals in the population at the g-th 

generation, and d is the distance measure between the two individuals. 

 The diversities of the populations throughout the generations were recorded for 

the four algorithms. Figure 4 shows the diversity plots which indicate the diversities of 

the individuals in the algorithms in generating the models based on the step move data 

with %5d . Figure 4a, 4b, 4c, 4d and 4e shows the diversities for static data which 

are generated based on the benchmark functions 
Sph

F , 
Ros

F , 
Ras

F , 
Gri

F  and 
Ack

F  respectively. 

The diversities of the populations throughout the generations were recorded for the six 

algorithms. The five figures indicate that the diversities along the generations of the D-

PSO are slightly higher than those of the C-PSO which are much higher than those of the 

evolutionary algorithms, D-GP, C-GP, P-GA and PNN. For the rest of the data (static 

data, step move data with %10d , shift data, match data based on 
Sph

F , match data  

based on 
Ros

F ), similar findings indicate that the diversities of the two PSO algorithms are 

much larger than those of the evolutionary algorithms.  

 The findings indicate the reason why the PSO algorithms, D-PSO and C-PSO can 

obtain significantly better results than the evolutionary algorithms, D-GP, C-GP, P-GA 

and PNN. The diversities of the individuals of the PSO algorithms can be maintained 

along the search in both earlier and later generations, while the individuals of the 

evolutionary algorithms converged in the earlier generation. Therefore, the PSO 



algorithms are more likely to explore the solution space, as the diversity of the 

individuals of the algorithms can be maintained. In regard to the effectiveness of the two 

PSO algorithms, since the diversities of the populations of C-PSO are only slightly 

smaller than those of the D-PSO, D-PSO can obtain only slightly better results than those 

obtained by C-PSO. 

  

4 Conclusion and further work 

In this paper, a particle swarm optimization algorithm has been proposed for developing 

polynomial models in which both time-invariant and time-varying characteristics are 

represented. The individuals of the PSO are represented by arithmetic operations and 

system variables, which are the components of the polynomial models. A set of dynamic 

benchmark functions whose optima or landscapes vary over time was employed to 

evaluate the performance of the PSO. The PSO algorithms, C-PSO and D-PSO, were 

used to generate models based on both the time-invariant and time-varying data sets. The 

evolutionary algorithms, D-GP, C-GP, P-GA and PNN, were also included in the 

experiments for comparison. Results show that the PSO algorithms significantly 

outperform the evolutionary algorithms in generating models based on both the time-

invariant or time-varying data sets. It is observed that the evolutionary algorithms 

converge faster in the earlier generations when compared with the PSO algorithms. In 

contrast, the PSO algorithms can obtain better solutions in the later generations of the 

runs. The performance obtained in the results can be explained by the diversity measures 

and the fact that significant differences of diversities between the PSO algorithms and the 

evolutionary algorithms exist.  



 In future work, we will enhance the effectiveness of the PSO by the hybridization 

of the evolutionary algorithm and the PSO algorithm. Here the evolutionary algorithm 

will be implemented to localize the potential solutions in the early generations and the 

PSO algorithm will be implemented in order to continue to explore the solution space to 

avoid pre-mature convergence in late generations. The resulting algorithm will be further 

validated by solving real-time traffic flow forecasting problems, which are time varying 

in nature. 
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Appendix 

 

 

Figure 2: The pseudocode of the genetic programming GP 

 

{ 
Step 1: g=0 
Step 2: Initialize (g)=[1(g), 2(g),… POP(g)] 
          // (g) is the population of the g-th generation. 
          // i(g) is the i-th individual of (g). 
          //where k(g) = xi + xi xj +…..xi 
Step 3: Assign system coefficients a(t) in all k(g) by LSM 
          //where i(g)’ = a0(t) +  ai(t) xi +  aij(t) xi xj +  
          //              …..+ a12..Nterm(t) xi 
Step 4: Evaluate all k(g)’ based on (3) 
while (Terminational condition not fulfilled) do { 
          Step 5: Parent Selection (g+1) =[1(g+1), 2(g+1),  
                                                  …POP(g+1)] 
            //  where k(g+1) = xi + xi xj +…xi 
         Step 6: Crossover (g+1) 
         Step 7: Mutation (g+1) 
         Step 8: Assign parameters a(k) in all k(g+1) by 
LSM 
          //where k(g+1)’ = a0(t) +  ai(t) xi +  aij(t) xi xj +  
          //              …..+ a12..Nterm(t) xi 
         Step 9: Evaluate all k(g+1)’ based on (3) 
         Step 10: (g)= (g+1) 
         Step 11: g=g+1 
}
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Figure 3a: Convergence plot for step moving data 5 Step

Sph
 (Sphere function with  5% d )  
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Figure 3b: Convergence plot for step moving data 5 Step

Ros
 (Rosenbrock function with 

 5% d )  
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Figure 3c: Convergence plot for step moving data 5 Step

Ras
 (Rastrigrin function with 

 5% d ) 
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Figure 3d: Convergence plot for step moving data 5 Step

Gri
 (Griewank function with 

 5% d ) 
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Figure 3e: Convergence plot for step moving data 5 Step

Ackley
 (Ackley function with  5% d ) 
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Figure 4a: Diversity plot for step moving data 5 Step

Sph
 (Sphere function with  5% d ) 
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Figure 4b: Diversity plot for step moving data 5 Step

Ros
 (Rosenbrock function with 

 5% d ) 
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Figure 4c: Diversity plot for step moving data 5 Step

Ras
 (Rastrigrin function with  5% d ) 
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Figure 4d: Diversity plot for step moving data 5 Step

Gri
 (Griewank function with  5% d ) 
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Figure 4e: Diversity plot for step moving data 5 Step

Ackley
 (Ackley function with  5% d ) 

 
 
 
 



Table 5: Average RMAE and ranks for the static data ( stat

Sph
 , stat

Ros
 , stat

Ras
 , stat

Gri
 , stat

Ack
 ) 

Algorithm Static SphF  

( stat
Sph ) 

Static RosF  

( stat
Ros ) 

Static RasF  
( stat

Ras ) 

Static GriF  

( stat
Gri ) 

Static AckF  

( stat
Ack ) 

Mean 
rA 

oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix 
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 C-PSO 0.8873 
(1) 

_ _ X X X X 1.9252 
(2) 

_ _ X X X X 3.6538 
(2) 

_ _ X X X X 2.9008 
(2) 

_ _ X X X X 0.8178 
(2) 

_ X X X X X 1.8 

2 D-PSO 1.3661 
(2) 

_ _ X X X X 1.0401 
(1) 

_ _ X X X X 2.2758 
(1) 

_ _ X X X X 1.8290 
(1) 

_ _ X X X X 0.7747 
(1) 

X _ X X X X 1.2 

3 D-GP 4.3595 
(3) 

X X _ X _ _ 4.2012 
(3) 

X X _ _ _ X 5.6365 
(3) 

X X _ _ _ X 3.4597 
(3) 

X X _ _ _ _ 0.9546 
 (3) 

X X _ X X X 3 

4 C-GP 5.7800 
(6) 

X X X _ _ _ 5.2979 
(5) 

X X _ _ _ _ 6.0036 
(4) 

X X _ _ _ _ 5.8344 
(6) 

X X _ _ _ _ 1.0398 
(5) 

X X X _ _ _ 5.2 

5 P-GA 4.7552 
(5) 

X X _ _ _ _ 5.1909 
(4) 

X X _ _ _ _ 6.0764 
(5) 

X X _ _ _ _ 5.1195 
(5) 

X X _ _ _ _ 1.0069 
(4) 

X X X _ _ _ 4.6 

6 PNN 4.4885 
(4) 

X X _ _ _ _ 5.8052 
(6) 

X X X _ _ _ 6.3742 
(6) 

X X X _ _ _ 4.9114 
(4) 

X X _ _ _ _ 1.1207 
(6) 

X X X _ _ _ 5.2 

 
oP – Average RMAE obtained by the algorithms; rA – rank; ‘X’ – difference between the two algorithms is significant; ‘_’ - 
difference between the two algorithms is not significant; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6: Average RMAE and ranks for the step move data with %5d ( 5 Step

Sph
, 5 Step

Ros
, 5 Step

Ras
, 5 Step

Gri
, 5 Step

Ack
) 

Algorithm Step SphF - %5d  

( 5 Step
Sph ) 

Step RosF - %5d  

( 5 Step
Ros ) 

Step RasF - %5d  

( 5 Step
Ras ) 

Step GriF - %5d  

( 5 Step
Gri ) 

Step AckF - %5d  

( 5 Step
Ack ) 

Mean 
rA 

oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix 
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 C-PSO 2.8118 
(2) 

_ _ X X X X 2.0365 
(2) 

_ _ X X X X 4.9994 
(2) 

_ X X X X X 4.4084 
×101 

(2) 

_ X X X X X 0.8790 
(2) 

_ _ X X X X 2 

2 D-PSO 1.7906 
(1) 

_ _ X X X X 1.6411 
(1) 

_ _ X X X X 4.9159 
(1) 

X _ X X X X 2.6067 
×101 

(1) 

X _ X X X X 0.7767 
(1) 

_ _ X X X X 1 

3 D-GP 4.1972 
(3) 

X X _ X _ _ 4.8945 
(3) 

X X _ _ _ _ 6.6285 
(5) 

X X _ _ _ _ 6.0471 
×101 

(3) 

X X _ _ _ _ 2.7233 
(4) 

X X _ _ _ _ 3.6 

4 C-GP 6.2698 
(6) 

X X X _ _ _ 6.0860 
(6) 

X X _ _ _ _ 6.7806 
(6) 

X X _ _ _ _ 8.3000 
×101 

(6) 

X X _ _ _ _ 3.0748 
(6) 

X X _ _ _ _ 6 

5 P-GA 5.9230 
(5) 

X X _ _ _ _ 5.2762 
(4) 

X X _ _ _ _ 6.2917 
(3) 

X X _ _ _ _ 6.3092 
×101 

(4) 

X X _ _ _ _ 2.9372 
(5) 

X X _ _ _ _ 4.2 

6 PNN 5.1709 
(4) 

X X _ _ _ _ 5.7928 
(5) 

X X _ _ _ _ 6.5860 
(4) 

X X _ _ _ _ 6.7838 
×101 
(5) 

X X _ _ _ _ 2.7220 
(3) 

X X _ _ _ _ 4.2 

oP – Average RMAE obtained by the algorithms; rA – rank; ‘X’ – difference between the two algorithms is significant; ‘_’ - 
difference between the two algorithms is not significant; 
 
 
 
 
 
 
 
 
 
 
 



Table 7: Average RMAE and ranks for the step move data sets with %10d ( 10 Step

Sph
, 10 Step

Ros
, 10 Step

Ras
, 10 Step

Gri
, 10 Step

Ack
) 

Alg. Step SphF - %10d  

( 10 Step
Sph ) 

Step RosF - %10d  

( 10 Step
Sph ) 

Step RasF - %10d  

( 10 Step
Sph ) 

Step GriF - %10d  

( 10 Step
Sph ) 

Step AckF - %10d  

( 10 Step
Sph ) 

Mean 
rA 

oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix 
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 C-
PSO 

3.8595 
(2) 

_ _ X X X X 4.1047 
(2) 

_ X X X X X 5.6531 
(2) 

_ _ X X X X 6.7125 
×101 

(2) 

_ X X X X X 6.1591 
×101 

(2) 

_ _ X X X X 2 

2 D-
PSO 

3.6369 
(1) 

_ _ X X X X 3.1930 
(1) 

X _ X X X X 5.6379 
(1) 

_ _ X X X X 5.1045 
×101 

(1) 

X _ X X X X 3.5942 
×101 

(1) 

_ _ X X X X 1 

3 D-
GP 

5.1225 
(5) 

X X _ X _ _ 7.2864 
(5) 

X X _ _ _ _ 7.2221 
(4) 

X X _ _ _ _ 0.8528 
×102 

(3) 

X X _ X _ _ 0.7737 
×102 

(3) 

X X _ _ _ _ 4 

4 C-
GP 

7.1423 
(6) 

X X X _ _ _ 7.5441 
(6) 

X X _ _ _ _ 7.5313 
(5) 

X X _ _ _ _ 1.0793 
×102 

(6) 

X X X _ _ _ 1.0155 
×102 

(6) 

X X _ _ _ _ 5.8 

5 P-
GA 

5.9374 
(4) 

X X _ _ _ _ 7.0326 
(3) 

X X _ _ _ _ 7.1957 
(3) 

X X _ _ _ _ 1.0019 
×102 

(5) 

X X _ _ _ _ 0.9216 
×102 

(5) 

X X _ _ _ _ 4 

6 PNN 5.3002 
(3) 

X X _ _ _ _ 7.1971 
(4) 

X X _ _ _ _ 7.9044 
(6) 

X X _ _ _ _ 0.8770 
×102 
(4) 

X X _ _ _ _ 0.8781 
×102 

(4) 

X X _ _ _ _ 4.2 

oP – Average RMAE obtained by the algorithms; rA – rank; ‘X’ – difference between the two algorithms is significant; ‘_’ - 
difference between the two algorithms is not significant; 
 
 
 
 
 
 
 
 
 
 
 



Table 8: Average RMAE and ranks for the shift data ( shift

Sph
 , shift

Ros
 , shift

Ras
 , shift

Gri
 , shift

Ack
 )  

Alg. Shift SphF  

 ( shift
Sph ) 

Shift RosF  

 ( shift
Ros ) 

Shift RasF  

 ( shift
Ras ) 

Shift GriF  

 ( shift
Gri ) 

Shift AckF  

 ( shift
Ack ) 

Mean 
rA 

oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix 
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 C-
PSO 

8.01×10-3

(1) 
_ _ X X X X 6.90×10-5

(2) 
_ X X X X X 0.96 

(2) 
_ _ X X X X 2.46×10-1

(2) 
_ X X X X X 3.56×10-1

(2) 
_ _ X X X X 1.8 

2 D-
PSO 

8.55×10-3

(2) 
_ _ X X X X 3.60×10-5

(1) 
X _ X X X X 0.90 

(1) 
_ _ X X X X 0.48×10-1

(1) 
X _ X X X X 3.27×10-1

(1) 
_ _ X X X X 1.2 

3 D-GP 15.32×10-3 
(6) 

X X _ _ _ _ 7.45×10-5

(4) 
X X _ _ _ _ 2.11 

(3) 
X X _ _ _ _ 2.73×10-1

(3) 
X X _ X _ _ 3.66×10-1

(3) 
X X _ _ X _ 3.8 

4 C-GP 12.98×10-3

(3) 
X X _ _ _ _ 7.58×10-5

(5) 
X X _ _ _ _ 3.09 

(6) 
X X _ _ _ _ 3.71×10-1

(6) 
X X X _ _ _ 3.74×10-1

(4) 
X X _ _ _ _ 4.8 

5 P-GA 13.26×10-3 
(4) 

X X _ _ _ _ 7.20×10-5

(3) 
X X _ _ _ _ 2.85 

(5) 
X X _ _ _ _ 3.47×10-1

(5) 
X X _ _ _ _ 4.57×10-1

(6) 
X X X _ _ _ 4.6 

6 PNN 14.31×10-3 
(5) 

X X _ _ _ _ 7.83×10-5 
(6) 

X X _ _ _ _ 2.56 
(4) 

X X _ _ _ _ 3.33×10-1 
(4) 

X X _ _ _ _ 3.85×10-1 
(5) 

X X _ _ _ _ 4.8 

oP – Average RMAE obtained by the algorithms; rA – rank; ‘X’ – difference between the two algorithms is significant; ‘_’ - 
difference between the two algorithms is not significant; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 9: Average RMAE and ranks for the match data based on 
Sph

F  ( match

RosSph , match

RasSph , match

GriSph , match

AckSph ) 
Alg. Match SphF - RosF  

( match
RosSph ) 

Match SphF - RasF  

( match
RasSph ) 

Match SphF - GriF  

( match
GriSph ) 

Match SphF - AckF  

( match
AckSph ) 

Mean 
rA 

oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix  
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6  

1 C-
PSO 

2.3821×10-4

(2) 
_ _ X X X X 3.0658 

(2) 
_ X X X X X 2.9197 

(2) 
_ _ X X X X 1.0771×10-1

(2) 
_ X X X X X 2 

2 D-
PSO 

1.9713×10-4

(1) 
_ _ X X X X 0.7883 

(1) 
X _ X X X X 2.7702 

(1) 
_ _ X X X X 3.7706×10-2

(1) 
X _ X X X X 1 

3 D-GP 3.2735×10-3

(3) 
X X _ _ _ _ 4.5844 

(3) 
X X _ _ _ _ 5.0644 

(3) 
X X _ X _ _ 2.0051×10-1

(3) 
X X _ X X X 3 

4 C-GP 4.1303×10-4

(5) 
X X _ _ _ _ 4.6479 

(4) 
X X _ _ _ _ 6.0078 

(6) 
 

X X X _ _ _ 2.9128×10-1

(6) 
X X X X _ _ 5.25 

5 P-GA 4.0901×10-4

(4) 
X X _ _ _ _ 5.2263 

(6) 
X X _ _ _ _ 5.7057 

(5) 
X X _ _ _ _ 2.8324×10-1

(5) 
X X X _ _ _ 5 

6 PNN 4.4515×10-4 
(6) 

X X _ _ _ _ 4.7533 
(5) 

X X _ _ _ _ 5.6600 
(4) 

X X _ _ _ _ 2.8057×10-1 
(4) 

X X X _ _ _ 4.75 

oP – Average RMAE obtained by the algorithms; rA – rank; ‘X’ – difference between the two algorithms is significant; ‘_’ - 
difference between the two algorithms is not significant; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 10: Average RMAE and ranks for the match data based on 
Ros

F  ( match

RasRos , match

GriRos  , match

AckRos ) 
Alg. Match SphF - RosF  

( match
RosSph ) 

Match SphF - RasF  

( match
RasSph ) 

Match SphF - GriF  

( match
GriSph ) 

Mean 
rA 

oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix oP 
(rA) 

S-matrix 
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 C-
PSO 

2.1106 
(2) 

_ X X X X X 4.3659 
(2) 

_ X X X X X 1.2022×10-1

(2) 
_ X X X X X 2 

2 D-
PSO 

1.5180 
(1) 

X _ X X X X 3.5196 
(1) 

X _ X X X X 4.8864×10-2

(1) 
X _ X X X X 1 

3 D-GP 5.5616 
(4) 

X X _ _ _ _ 4.9281 
(3) 

X X _ _ _ _ 2.0899×10-1

(3) 
X X _ X _ X 3.33 

4 C-GP 5.8036 
(5) 

X X _ _ _ _ 5.0353 
(4) 

X X _ _ _ _ 2.5648×10-1

(5) 
X X X _ _ _ 4.67 

5 P-GA 5.6969 
(6) 

X X _ _ _ _ 5.1566 
(5) 

X X _ _ _ _ 2.5450×10-1

(4) 
X X _ _ _ _ 5 

6 PNN 5.5449 
(3) 

X X _ _ _ _ 5.1725 
(6) 

X X _ _ _ _ 2.5935×10-1 
(6) 

X X X _ _ _ 4 

oP – Average RMAE obtained by the algorithms; rA – rank; ‘X’ – difference between the two algorithms is significant; ‘_’ - 
difference between the two algorithms is not significant; 
 


