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Abstract—Autonomous self-powered wireless sensor devices 

are inevitable future technology that will potentially become 

ubiquitous in many sectors such as industry, intelligent 

infrastructure and biomedical devices. This has spurred a great 

attention from researchers to develop self-sustained power 

harvesting devices. For this paper, we present a new numerical 

technique for modelling the MEMS power harvesters using 

parametric design optimisation and physical properties for 

various piezoelectric materials. This technique enables the 

prediction of optimal power harvesting responses that can be 

used to identify the performance of piezoelectric materials and 

particular piezoelectric geometry where this technique can 

alleviate tedious analytical methods for analysing parametric 

design optimisation and can assist for analysing piezo-MEMS 

system response before conducting the micro-fabrication 

process.  

I. INTRODUCTION 

   Harvesting electrical energy from the surrounding 

vibration environment can enable sensor devices to be 

completely self-sustaining. Such a situation requires technical 

challenges for designing robust power harvesters based on 

the geometry, physical properties, micro-fabrication, power 

optimisation, power management electronic circuits and 

sensor systems. The majority of piezoelectric power 

harvesting research has been focused on the meso-scale 

device for predicting power output using various analytical 

techniques such as electromechanical lumped parameter 

models and electrical equivalent system [1], [2], analytical 

approach using weak form techniques [3], [4] and closed 

form techniques [5]-[7]. The typical cantilever piezoelectric 

unimorph and bimorph beams with tip mass have been 

widely used for generating high power harvesting, since they 

allow significant electrical energy to be produced due to 

high elemental strain from the transverse bending motion. 

This technique has also drawn attention from researchers for 

the design of MEMS power harvesters using micro-

fabrication processes which mainly involve sputter 

deposition, photolithography, and etch processes. Most 

notably element layers of the device consist of active 
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piezoelectric material covered by electrode layers and 

passive silicon wafers with silicon proof mass [8]-[13].      

      The vast majority of MEMS power harvesting devices 

utilise piezoelectric materials made from lead zirconate 

titanate (PZT) and aluminum nitrate (AIN). The benefit of 

using PZT is that it can extract high power output due to its 

physical properties, having large piezoelectric coupling 

coefficient and dielectric permittivity. On the other hand, 

AIN is lead free material, having low piezoelectric coefficient 

and dielectric permittivity, but gives higher power density 

with moderate voltage output where the fabrication method 

provides for the use of the easy sputter deposition process 

[12], [13]. So far, there are a number of published papers 

concentrating on micro-fabrication of power harvesters. 

However, only a few research efforts have investigated 

MEMS power harvesters using analytical studies and 

fabrication design [11], [13].  

In this paper, the development of piezo-MEMS power 
harvesters using parametric geometry design and the physical 
properties will be explored using the new electromechanical 
finite element vibration method. At this stage, there are no 
other researchers developing this new numerical technique 
for modelling the piezo-MEMS power harvester. The key 
equations of constitutive finite element analysis are revealed 
and simplified, outlining the technical process for analysing 
optimal power harvesting frequency responses using different 
material properties and geometrical parameters of 
piezoelectric materials. The proposed numerical technique 
has proved that tedious analytical solutions can be avoided 
especially for analysing current parametric design 
optimisation and the prediction of the power harvesting 
performance can easily be simulated before conducting the 
fabrication process of the device. 

II. ELECTROMECHANICAL FINITE ELEMENT PIEZOELECTRIC 

ENERGY HARVESTER 

   In the microfabrication system considered here, the 
piezo-MEMS under base excitation and variable load 
resistance are covered with the electrode layers that can be 
connected with the two wires for generating one single 
voltage output as shown in Fig. 1. In this case, for numerical 
modelling, the global finite element equations of the system 
in Fig. 2 are based on the mechanical discretised element and 
the electrical discretised element where this is called the 
electromechanical discretisation. 
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A. Electromechanical coupled finite element formulation 

The linear coupled field piezoelectric constitutive 

equations based on the 3-1 mode of piezoelectric constant 

operation and 3-3 effect of piezoelectric permittivity can be 

formulated as, 
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The linear-elastic constitutive relation for the substructure 

can also be formulated as,  
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where the parameters T , S, E  and D represent stress, strain, 
electric field, and electric displacement, respectively. 
Moreover, coefficients c, e, and ε indicate elastic constant, 

piezoelectric coefficient, and permittivity at constant strain, 
respectively. The superscript 1 and 2 represent substructure 
and piezoelectric layers, respectively. 

 

The solution form of the mechanical transverse beam 

element can be formulated using the first-order Hermite 

interpolation function to give, 
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Parameters of the shape function Φ and the elemental 

displacement vector u for each node based on Fig. 3 can be 

formulated as,   

          xxxxxe
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where, 
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The strain-displacement relationship in terms of the vector 

displacement can be expressed as, 

      txtx, ee
uS Ψz  ,              (6) 

where the differential form of the shape function   of the 

strain displacement relationship can be formulated as, 
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The solution from the discretised electric field E can be 

assumed to be linear along the thickness of the piezoelectric 

material for inducing electrical potential  over the 

piezoelectric element. The electric field can be formulated  

as, 

     teee ztz, vE Ω 3
 .             (8) 

Note that electrical shape function was given as 

  p
e hz 1Ω . The stress fields in the partial differential 

shape function forms can be expressed by substituting Eq. 

(6) and Eq. (8) into Eq. (1a) and Eq. (2) to give, 
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The electric displacement vector of the piezoelectric 

component can be formulated by substituting Eqs. (6)-(8) 

into Eq. (1b) to give,  

        tztxze eeSee
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B. Lagrangian electromechanical finite element equations  

Lagrange equation for deriving the electromechanical 

discretised finite element dynamic equations of the piezo-

MEMS power harvester can be formulated as, 
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The kinetic energy can be formulated from the mass 
densities of the piezoelectric element and tip mass as, 
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Fig. 1. Physical system of piezo-MEMS beam connected with load 

resistance under base motion 

Fig. 2. Electromechanical discretisation of piezo-MEMS beam 

Fig. 3.    Local element at arbitrary nodes near the tip mass 
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Note that the effect of the rotary inertia of the tip mass  tipI2  

including its offset parameters c

tipxI0  are taken into account 

where most previous major published works have ignored 

this case. Parameter tipI0  is the zeroth mass moment of 

inertia of the tip mass. 

 

The potential energy for the piezoelectric element can be 

formulated as, 
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The electrical energy term for the piezoelectric element can 

be formulated as, 

 

 
 



1

2

dd
2

1 2

33

e

e

x

x A

T
xAWE DE   .                     (14) 

The non-conservative work on the system due to the input 

base excitation and electrical charge output can be stated as, 
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The expression given from Eq. (11) can be further solved by 

substituting Eqs. (3)-(10) to give the local element matrices 

of electromechanical dynamic equations by including 

Rayleigh damping  as, 
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where
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C. Global matrices of electromechanical dynamic equation 

The global matrix forms can be formulated using the 

generalised dynamic equations to give, 
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where M is global mass matrix, K is global stiffness matrix 

and C is Rayleigh damping. Other parameters θP , DP , and F 

indicate global electromechanical coupling matrices, global 
capacitance matrices, global mechanical forces, respectively. 
Moreover, variable i is global current output, u is global 

mechanical coordinate, and v is global voltage output. 

D.  Solution techniques using the orthonormalised global 

scalar forms    

The solution form of Eq. (17) can be formulated in terms 

of the normalised modal vector and time-dependent 

displacement generalised coordinate as, 

           tttttt mmmm aaaaau    112211 ... , (18) 

where the normalised modal matrix  can be formulated as, 
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where U represents eigenvector. Equation (17) can be further 

formulated by substituting Eq. (18) and premultiplying the 

result by T . The result of which can simply be formulated 

as, 
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where orthonormalised parameters from Eq. (20) can be 

stated as, 
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It should be noted that equations (21a) and (21b) represent 

the orthornormality property of mechanical dynamic 

equations that show diagonal matrices. At this case, equation 

(20) can be simplified as 
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Global scalar form of the electromechanical dynamic 

equations can be further formulated using Eq. (22) in order 

to obtain the series form of the multimode FRFs. In this 

case, the first discretised electromechanical piezoelectric 

dynamic equation can be formulated in terms of the multi 

degree of freedom (multimode) system r =1,2,3…NDOF 

and the number of normalised piezoelectric elements 

s=1,2,3…NELP as,           
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The second form of the discretised electromechanical 

piezoelectric dynamic equation can be formulated as,  
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The internal parallel connection in terms of the electrical 
discretised elements using Kirchhoff's voltage law (KVL) 
and Kirchhoff's current law (KCL) must be formulated in the 
scalar form as, 
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Voltage output related to the external load resistance can be 

formulated as,  

    loadp Rtitv    .                         (26) 

In this stage, after applying mathematical derivations using 

Eqs. (23)-(26), the power harvesting multimode FRFs series 

related to the input transverse acceleration can be formulated 

as, 
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To formulate the optimal multimode FRF of power 

harvesting, the reduced optimal load resistance can be 

formulated by differentiating Eq. (27) with respect to load 

resistance and setting the formula to be zero to give,  
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It should be noted that the optimal power harvesting can also 

be obtained by substituting Eq. (28) into Eq. (27).  
 

III. RESULT AND DISCUSSION 

 Piezo-MEMS device with different material properties 

and geometrical parameters are modelled using the proposed 

numerical technique. The selected piezoelectric properties 

are listed in table 1. The input base transverse acceleration 

onto the device was chosen to be 7 m/s2.  In Fig. 4, the 

device length L and width b with piezoelectric thickness hp 

and substructure (silicon) thickness hs were set to 5 mm, 2 

mm, 1 µm and 9 µm, respectively. The tip mass 

configurations were calculated according to material 

property made from silicon with density of 2330 kg/m3 and 

Young’s modulus of 160 GPa where the dimensions of tip 

mass with length ltip , thickness htip and width wtip were set to 

4 mm, 0.4 mm and 2 mm, respectively. 

 

     The optimal power harvesting FRFs of the piezo-MEMS 

configurations using Eqs. (28) and (29) are performed for 

identifying the optimal frequency bandwidths based on the 

physical properties of piezoelectric materials and for 

analysing the vibration characteristics. In Fig. 4, the device 

response using piezoelectric material made from PZN-PT 

shows the characteristic power harvesting FRF under 

variable load resistance. It also shows that the optimal power 

harvesting FRF whose amplitudes coincides with the load 

resistances of 1.2 kΩ and 1 MΩ gives two maximum values 

with the same result. Further investigation of the optimal 

power harvesting FRFs using different material properties 

can be seen in Fig. 5a, where most of the system responses 

show two peaks of equal amplitude with different size of 

frequency bandwidths except the system responses from 

AIN and PVDF properties. In Fig. 5b, the frequency 

bandwidths for each MEMS power harvesting device can be 

used to identify the performance of the electromechanical 

system.  

Table 1. Piezoelectric material properties. 

Reference/ 

Company 

Piezo-

electric 

material 

Young’s 

modulus 

 GPac11

 

Piezo-

electric 

coefficient  

d31 (pm/V) 

Relative 

dielectric 

constant  

o
T
33 εε /  

Density  

(kg/m3) 

Andosca, et 

al [13] 

AIN 340 -2 9 3260 

PVDF 3 20 12 1780 

Piezo 

Systems,  

Inc 

PSI-

5A4E 66 -190 1800 7800 

PSI-

5H4E 62 -320 3800 7800 

APC Inter-

national, 

Ltd 

PMN-

32%PT 24.77 -930 4600 8200 

APC 

840 80 -125 1275 7600 

APC 

855 59 -276 3300 7600 

Microfine 
PZN-

PT 
25 -1200 6500 8000 

DeL Piezo 

Specialities 

DL-40 100 -48 350 7700 

DL-53 61 -275 3350 7600 

 



 

 

 

 

 

 

 

  

 

 The optimal frequency bandwidth obtained from the 

optimal power harvesting FRF depends on the optimal load 

resistance which is directly related to piezoelectric coupling 

coefficient and permittivity. If the Piezo-MEMS harvester 

has a wider optimal frequency bandwidth, the resonance 

frequency of the device can shift along its working 

frequency band using the resistive shunt circuit. That gives 

benefit when the frequency of the vibration environment is 

slightly away from the system response of the device. As 

shown in Figs. 5a-b, device response with PZN-PT gives the 

strongest electromechanical system whereas PVDF shows 

the weakest electromechanical system. In this case, the 

effect of higher piezoelectric coupling coefficient with 

higher permittivity provides stronger electromechanical 

system that encompasses a wider optimal frequency 

bandwidth.  

 

 

 
 

 

Electromechanical vibration-based optimal power 

harvesting can also be further explored using the parametric 

design analyses based on the variations of piezoelectric 

length (lp), thickness (hp) and capacitance (PD) and tip mass 

length (ltip) where the geometry of the silicon substrate as 

given earlier remains to be constant. For this case, AIN 

piezoelectric material was chosen. Although it shows very 

low optimal frequency bandwidth compared with other 

piezoelectric materials, it is a lead-free material with low 

dielectric permittivity and piezoelectric coupling constant 

that gives high power density, voltage and easy preparation 

of sputter deposition process for MEMS level [13]. In Figs. 

6a-c, prediction of the optimal power harvesting using the 

parametric design of the piezoelectric length and thickness 

can be used to identify a particular location of the maximum 

level of the power output at certain resonance frequency. It 

shows that only a portion of the piezoelectric segment 

Fig. 4. Power harvesting FRF from PZN-PT. 

Fig. 5. Optimal responses of different  piezoelectric materials : a) power 

harvesting FRFs and b)  optimal frequency bandwidth.  

a)  

b)  

Fig. 6. Optimal parametric design of AIN piezoelectric: a) power 

harvesting FRFs, b) resonance frequency and c) piezoelectric capacitance.  

a)  

b)  

c)  



 

 

 

 

lengths between 3.2 mm and 4 mm with the thicknesses 

between 0.4 µm and 0.8 µm produces higher power output  

 

 
 

 

with the frequency ranges from 24 Hz to 29 Hz and higher 

internal capacitance. Note that the piezoelectric segment 

length is measured from the base to the end of the beam. 

Other important results can also be seen in Figs. 7a-b, where 

the system responses are based on the variances of the tip 

mass length and piezoelectric length. The results show that 

higher power outputs with lower resonance frequencies can 

be obtained when volumes of the tip mass increase and the 

piezoelectric segment lengths are identified in the particular 

dimensions away from the middle point. Overall, the 

investigation of parametric MEMS power harvester device 

with variable tip mass and piezoelectric geometries can be 

used to identify the maximum power output with low 

resonance frequency. 

 

IV.  CONCLUSION 

 This paper has presented parametric properties and 

design of the Piezo-MEMS power harvesters with the tip 

mass offset using novel numerical techniques of 

electromechanical finite element vibration analysis for 

formulating orthonormalised scalar forms of 

electromechanical dynamic equations. Such techniques can 

alleviate tedious solution from the analytical method, 

especially for designing complex geometry systems. The 

results show that piezoelectric properties can affect the 

optimal frequency bandwidth that can be used to tune the 

working frequency band of the device using the shunt circuit 

techniques. If the optimal frequency bandwidth gives larger 

value, the electromechanical system of the device will give a 

strong effect. Instead of making comparison with other 

piezoelectric materials using the optimal frequency 

bandwidth, the AIN piezoelectric material shows promising 

response for generating high power amplitudes, even though 

the piezoelectric coupling constant and electric permittivity 

show very low values. The challenge is to find the maximum 

resonance frequency of the device based on the best-fit 

amplitude from the vibration environment. The parametric 

optimal design of the piezo-MEMS can be an important 

technique for predicting maximum power harvesting before 

conducting micro-fabrication processes.  
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