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ABSTRACT

The problem of joint space-time decoding and interference rejec-
tion in multiple-access MIMO wireless communication systems is
considered in the case of erroneous or limited channel state infor-
mation (CSI) at the receiver. Linear beamforming-type techniques
that have an improved robustness in such an imperfect CSI case
are proposed.

1. INTRODUCTION

Space-time coding has recently emerged as a powerful approach
to exploit spatial diversity and combat fading in MIMO wireless
communication systems. Orthogonal space-time block codes (OS-
TBCs) [1] represent an attractive class of space-time coding tech-
niques because they enjoy full diversity and low decoding com-
plexity. In the point-to-point MIMO communication case, the op-
timal maximum likelihood (ML) detector for this class of codes
consists of a simple linear receiver which maximizes the output
signal-to-noise ratio (SNR) and the symbol-by-symbol detector.
For each symbol, the ML detector can be interpreted as a matched
filter (MF) receiver [2].

In the multiple-access MIMO communication case, the ML
receiver has much more complicated structure and prohibitively
high complexity as compared with the ML receiver for the point-
to-point MIMO case. Therefore, in multiple-access scenarios sub-
optimal but simple linear receivers can be a good choice.

Several linear receiver techniques have been recently devel-
oped for space-time coded multiple access MIMO systems [3]-[6].
Unfortunately, all these techniques assume that the exact CSI is
available at the receiver. In practice, this condition can be hardly
met because of limited/outdated training as well as the effects of
multiple-access interference (MAI) and noise.

In this paper, we develop linear beamforming-type techniques
for joint space-time decoding and interference rejection that are
based on the worst-case performance optimization and provide an
improved robustness in the case of imperfect (erroneous) receiver
CSI. Simulation results validate substantial robustness improve-
ments achieved by our techniques.

2. BACKGROUND

2.1. Point-to-Point MIMO

The relationship between the input and the output of a single-
access (point-to-point) MIMO system with N transmit and M re-
ceive antennas and flat block-fading channel can be expressed as
[1]

Y = XH + V (1)

where Y � [yT (1) · · · yT (T )]T , X � [xT (1) · · · xT (T )]T ,
and V � [vT (1) · · · vT (T )]T are the matrices of the received
signals, transmitted signals, and noise, respectively, H is the N ×
M complex channel matrix, T is the block length, and (·)T de-
notes the transpose. Here, y(t) = [y1(t) · · · yM (t)], x(t) =
[x1(t) · · · xN (t)], and v(t) = [v1(t) · · · vM (t)] are the com-
plex row vectors of the received signal, transmitted signal, and
noise, respectively.

We denote complex information-bearing symbols prior to spa-
ce-time encoding as s1, s2, . . . , sK and assume that these symbols
belong to (possibly different) constellations Uk, k = 1, 2, . . . , K .
Let s � [s1 · · · sK ]T . Note that s ∈ S where S = {s(1) · · · s(L)}
is the set of all possible symbol vectors and L is the cardinality of
this set. The T × N matrix X(s) is called an OSTBC if [1]

• all elements of X(s) are linear functions of the K complex
variables s1, s2, . . . , sK and their complex conjugates;

• for any arbitrary s, it satisfies

X
H(s)X(s) = ‖s‖2

IN (2)

where IN is the N ×N identity matrix and ‖ ·‖ denotes the
Euclidean norm of a vector or Frobenius norm of a matrix.

It can be readily verified that the matrix X(s) can be written
as [6]-[8]

X(s) =
K∑

k=1

(CkRe{sk} + DkIm{sk}) (3)

where Ck � X(ek), Dk � X(jek), j =
√−1 and ek is the

K × 1 vector having one in the kth position and zeros elsewhere.
Using (3), one can rewrite (1) as [6]-[8]

Y = As + V (4)

where the “underline” operator for any matrix P is defined as

P �

[
vec{Re(P)}
vec{Im(P)}

]
(5)

and vec{·} is the vectorization operator stacking all columns of a
matrix on top of each other. Here, the 2MT × 2K real matrix A

is defined as [6], [8]

A � [C1H · · · CKH D1H · · · DKH] (6)

This matrix has an important property that its columns have the
same norms and are orthogonal to each other AT A = ‖H‖2I2K .

In the presence of exact CSI at the receiver, the optimal (ML)
space-time decoder uses channel knowledge to find the closest



point to the received signal in the noise-free observation space
Y = {Y(1),Y(2), . . . ,Y(L)}, i.e., it obtains [1]

lopt = argmin
l∈{1,...,L}

‖Y − Y
(l)‖ (7)

and then uses this index to decode the transmitted bits. Here Y(l)

is the noise-free received signal matrix that corresponds to the vec-
tor of information-bearing symbols s(l).

The ML receiver can also be viewed as a matched filter whose
output SNR is maximized [2]. It has been shown in [8] that (7) is
equivalent to the MF linear receiver which computes the following
estimate of s:

ŝ =
1

‖H‖2
A

T
Y (8)

and builds the estimate of the vector s as

ŝ = [IK jIK ] ŝ (9)

The kth element of ŝ is then compared with all points in Uk. The
closest point is accepted as an estimate of kth entry of s. This
procedure is repeated for all k = 1, 2, . . . , K , that is, the decoding
is done symbol-by-symbol.

2.2. Multiple-Access MIMO

Let us now consider an uplink multiple-access MIMO commu-
nication system shown in Fig. 1. The transmitters are assumed
to have the same number of transmitting antennas and to encode
the information-bearing symbols using the same OSTBC1. The re-
ceived signal is given by [6]

Y =

P∑
p=1

XpHp + V (10)

where Xp is the matrix of transmitted signals of the pth transmit-
ter, Hp is the channel matrix between the pth transmitter and the
receiver, and P is the number of transmitters.

Applying the “underline” operator of (5) to (10), we have

Y =
P∑

p=1

Ap sp + V (11)

where sp is a K × 1 vector of information-bearing symbols of the
pth transmitter and

Ap = [C1Hp · · ·CKHp D1Hp · · ·DKHp] � [ap,1 · · · ap,2K ]

In the multiple-access MIMO case, the MF receiver of (7) be-
comes highly non-optimal because it ignores the effect of MAI
treating it as a noise. In this case, the receiver performance is deter-
mined by the signal-to-interference-plus-noise ratio (SINR) rather
than the SNR and some cancellation of co-channel interference is
required.

Using the array processing-type model (11) and assuming that
the first transmitter is the transmitter-of-interest, we can express
the output vector of a linear receiver as [6]

ŝ1 = W
T
Y (12)

1These assumptions are only needed for notational simplicity and can
be relaxed, see [6].
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Figure 1: Multiple-access MIMO system.

where W = [w1 w2 · · · w2K ] is the 2MT × 2K real matrix of
the receiver coefficients and ŝ1 is the estimate of the vector s1 at
the receiver output. The vector wk can be interpreted as the weight
vector for the kth entry of s1.

Given the matrix W, the estimate of the vector of inform-
ation-bearing symbols of the transmitter-of-interest can be com-
puted as ŝ1 = [IK jIK ] ŝ1. Using such a linear estimate, the kth
information-bearing symbol can be detected as a point in Uk which
is the nearest neighbor to the kth entry of ŝ1.

The similarity of the vectorized multiple-access MIMO model
(11) and models used in array processing gives an opportunity to
design the matrix W using minimum variance (MV) principle. In
particular, in [6] it has been proposed to estimate each entry of s1

by minimizing the receiver output power while preserving a unity
gain for this particular entry of s1, that is,

min
wk

w
T
k R̂wk s.t. a

T
1,kwk = 1 for all k = 1, . . . , 2K (13)

where R̂ = 1
Q

∑Q

q=1 Yq Yq
T is the sample estimate of the 2MT

×2MT full rank covariance matrix R � E{Y YT } of the vector-
ized data (11) , Yq is the qth received data block, Q is the number
of data blocks available, and E{·} denotes the statistical expecta-
tion.

The solution to (13) is given by [6]

wk =
1

aT
1,kR̂

−1a1,k

R̂
−1

a1,k , k = 1, . . . , 2K (14)

The form of the obtained MV receiver (14) is similar to that of the
minimum variance distortionless response (MVDR) receiver used
in beamforming and mimimum output energy (MOE) receiver used
in multiuser detection. Although the receiver (14) is able to reject
MAI, it does not cancel self-interference [3] which, for each wk,
is caused by other entries of s1 than the kth one. Note that the
complete cancellation of self-interference is a very desirable fea-
ture because, otherwise, the symbol-by-symbol detector becomes
non-optimal [6].

To incorporate the self-interference cancellation feature into
(13), it was proposed in [6] to use additional zero-forcing con-
straints aT

1,lwk = 0 for all l �= k. These constraints guarantee that
self-interference is completely rejected.

With such additional constraints, the problem (13) can be re-
formulated as

min
W

tr{WT
R̂W} s.t. A

T
1 W = I2K (15)



where tr{·} denotes the trace of a matrix. Using the Lagrange
multiplier method, the solution to (15) can be written in the form
of the following MV receiver [6]

WMV = R̂
−1

A1(A
T
1 R̂

−1
A1)

−1 (16)

To improve the performance in the case of erroneous CSI and
sample size, it was proposed in [6] to apply ad hoc diagonal load-
ing to (14) and (16), i.e., to use the matrix R̂ + γI2MT instead of
R̂ in these receivers. However, it is not clear from [6] what is the
optimal choice of γ and how it depends on the norm of the CSI
errors.

3. ROBUST LINEAR RECEIVERS

In this section, we develop new modifications of the techniques
(14) and (16) which are robust against imperfect channel knowl-
edge at the receiver. Let us consider the error matrix H1 − Ĥ1

between the true channel matrix H1 and its presumed (e.g., esti-
mated) value Ĥ1 and let the Frobenius norm of this error matrix
be upper bounded by a known constant ε, i.e.,

‖H1 − Ĥ1‖ ≤ ε (17)

For OSTBCs, it can be proven that

‖H1 − Ĥ1‖ = ‖a1,k − â1,k‖, k = 1, . . . , 2K (18)

where a1,k is the kth column of A1(H) (the true value of the
vector a1,k) while â1,k is the kth column of the matrix A1(Ĥ)
(the presumed value a1,k). The sought robust modification of (13)
should minimize the output power subject to the constraint that the
distortionless response is maintained for any estimate Ĥ1 of the
channel matrix H1 that satisfies (17). Using (18), we can write
such a robust modification of (13) as

min
wk

w
T
k R̂wk s.t. min

‖e1,k‖≤ε
w

T
k (â1,k +e1,k) ≥ 1, k = 1, . . . , 2K

(19)
It can be shown using the results of [9] that the problem (19) is
equivalent to

min
wk

w
T
k R̂wk s.t. w

T
k â1,k − ε‖wk‖ = 1, k = 1, . . . , 2K (20)

Applying the Lagrange multiplier method, for each k = 1, . . . , 2K
we obtain the equation

2R̂wk + µεwk/‖wk‖ = µâ1,k (21)

where µ is the unknown Lagrange multiplier. To get around the
problem of computing µ, we assume that a constant modulus con-
stellation is used for which the vector wk can be arbitrarily rescal-
ed without affecting the performance of a linear receiver. Using
this fact and making the rescaling wk := wk/µ, we can rewrite
(21) as

wk = (2R̂ + (ε/‖wk‖)I2MT )−1
â1,k (22)

Note that the term ε/‖wk‖ can be interpreted as an adaptive diag-
onal loading factor which is optimally matched to the given level
ε of the channel uncertainty. To solve (22), we can apply a simi-
lar technique that is developed in [10]. The value of ‖wk‖ can be
found as the root of the nonlinear equation

2MT∑
i=1

(
[ã1,k]i

2λi‖wk‖ + ε

)2

= 1 (23)

where UΛUT is the eigenvalue decomposition of R̂; Λ = diag{
λ1, · · · , λ2MT } is the diagonal matrix of eigenvalues of R̂; ã1,k =
UT â1,k; and [·]i denotes the ith element of a vector.

Inserting the so-obtained ‖wk‖ in the right-hand side of (22),
we are able to compute wk. Repeating this procedure for all k =
1, · · · , 2K, we obtain the weight matrix W.

Now, let us develop a robust modification of the receiver (16).
To do this, we must add worst-case zero-forcing constraints for
self-interference. Following this idea and taking into account that
in this case it is impossible to reject self-interference completely,
we add to (19) additional constraints to limit the contribution of
self-interference to the receiver output power. Then, our problem
takes the following form

min
wk

w
T
k R̂wk s.t. min

‖e1,k‖≤ε
w

T
k (â1,k + e1,k) ≥ 1

max
‖Ek‖≤η

‖(BT
k + E

T
k )wk‖ ≤ δ (24)

where

Bk � [â1,1, · · · , â1,k−1, â1,k+1, · · · , â1,2K ] (25)

Ek � [e1,1, · · · , e1,k−1, e1,k+1, · · · , e1,2K ] (26)

δ is the value which limits the contribution of self-interference,
and η is the upper bound for ‖Ek‖. For OSTBCs, it can be proven
that

η = ε
√

2K − 1 (27)

Using Cauchy-Schwartz inequality, we can rewrite the con-
straint (24) as ‖BT

k wk‖ + η‖wk‖ ≤ δ. Note that the parameter δ
should be chosen as small as possible (provided that the problem
(24) is feasible). However, the issue of feasibility and the choice
of δ can be avoided by treating δ as a variable to be minimized.
Doing so, we obtain the following problem:

min
wk,δ

w
T
k R̂wk + δ s.t. w

T
k â1,k − ε‖wk‖ ≥ 1

‖BT
k wk‖ + η‖wk‖ ≤ δ (28)

This is a second-order cone (SOC) programming problem which
can be efficiently solved using interior point algorithms [11].

4. SIMULATIONS

In simulations, we use the half-rate (2K = T = 8) generalized
orthogonal design STBC from [1] and assume P = 2 transmitters
with N = 3 antennas per transmitter. The receiver has M = 4
antennas. We assume that the interfering transmitter uses the same
OSTBC as the transmitter of interest. Throughout the simulations,
the interference-to-noise ratio (INR) is equal to 20 dB and the
QPSK modulation scheme is used. All plots are averaged over
200 independent simulation runs. In each simulation run, the el-
ements of the true channel matrix H were independently drawn
from a complex Gaussian random generator with zero mean and
unit variance. Furthermore, in each simulation run, each element
of the presumed channel matrix Ĥ was generated by drawing a
complex Gaussian random variable with zero mean and the vari-
ance of 0.2 and adding this variable to a corresponding element of
the matrix H. The imperfect CSI case is assumed, i.e., all the re-
ceivers tested (except the so-called informed MV receiver) use the
presumed channel matrix rather than the true one. The informed
MV receiver corresponds to the ideal case of the receiver (16) with
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Figure 2: SER versus SNR.

the exactly known H. This receiver does not correspond to any
practical situation and is included in our simulations for the sake of
comparison only. The proposed robust receivers are compared to
the MF receiver (8), the above-mentioned informed MV receiver,
and the diagonally loaded MV receiver (which corresponds to the
receiver (16) with the sample diagonally loaded covariance matrix
R̂ + γI2MT ). The diagonal loading factor of γ = 10σ2 is taken
where σ2 is the noise variance. Note that this is a popular ad hoc
choice of γ that is commonly accepted in the beamforming com-
munity.

In Fig. 1, the symbol error rates (SERs) of the linear receivers
tested are displayed versus the SNR. In this figure, Q = 100 data
blocks are used to form the data covariance matrix R̂.

Fig. 2 shows the SERs of the receivers tested versus the num-
ber of data blocks. In this figure, SNR = 15 dB.

¿From both figures, it can be seen that the proposed robust
receivers greatly outperform all the other receivers tested (includ-
ing the informed MV receiver). As expected, the receiver (28)
substantially outperforms (22) because the former technique takes
advantage of an additional nulling of self-interference. The poor
performance of the informed MV receiver can be explained by
the fact that it is insufficiently robust against finite sample effects.
From Fig. 1, we also observe that the performance of the diago-
nally loaded MV receiver severely degrades at high SNRs. This
degradation is due to the fact that this receiver uses the fixed diag-
onal loading factor.

5. CONCLUSIONS

The problem of the design of robust linear receiver techniques for
joint space-time decoding and interference rejection in multiple-
access MIMO wireless communication systems has been addressed
in the case of an imperfect CSI at the receiver. The proposed robust
techniques have been shown to provide substantial performance
improvements relative to non-robust linear receivers.
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