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Abstract

This paper introduces a computational approach for solving non-linear optimal
control problems in which the objective function is a discontinuous function
of the state. We illustrate this approach using a dynamic model of shrimp
farming in which shrimp are harvested at several intermediate times during
the production cycle. The problem is to choose the optimal harvesting times
and corresponding optimal harvesting fractions (the percentage of shrimp stock
extracted) to maximize total revenue. The main difficulty with this problem
is that the selling price of shrimp is modelled as a piecewise constant function
of the average shrimp weight and thus the revenue function is discontinuous.
By performing a time-scaling transformation and introducing a set of auxiliary
binary variables, we convert the shrimp harvesting problem into an equivalent
optimization problem that has a smooth objective function. We then use an
exact penalty method to solve this equivalent problem. We conclude the paper
with a numerical example.

Keywords: Optimal control, Non-smooth optimization, Shrimp farming,
Exact penalty function

1. Introduction

In [17], Yu and Leung proposed a mathematical model for shrimp farm-
ing over a single batch production cycle. This model was subsequently used
to demonstrate that harvesting shrimps at intermediate times before the fi-
nal harvest (called partial harvesting) is an optimal strategy for maximizing
the overall profit. The dynamic equations in [17] describe shrimp growth by a
uniform density-dependent growth rate and shrimp mortality by way of expo-
nential decay. Research into aquaculture population dynamics shows that this
mathematical model is appropriate in the shrimp farming context [10, 14].
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In this paper, we again consider the model proposed by Yu and Leung in [17],
which describes the mortality and growth processes of the shrimp population.
The dynamics in this model involve jumps in the state variables because there is
a sudden change in the number of shrimps when an intermediate harvest takes
place. This model has one major limitation: it assumes that the shrimp price
is constant, when in fact the price of shrimp usually varies significantly with
the average shrimp weight. In this paper, we improve the model by introducing
a more realistic price function that is suitable for a commercial environment.
More specifically, we have incorporated a piecewise constant price function,
which depends on the average shrimp weight, into the revenue function.

The problem of choosing the harvest times and the harvest fractions (i.e.
the percentage of shrimp stock extracted) to maximize the total revenue is an
optimal control problem in which the objective function is discontinuous and
the dynamic system experiences state jumps at variable time points. Such op-
timal control problems are called impulsive optimal control problems in the
literature, and they have been an active area of research over the past decade
[3, 7, 11, 13, 15, 16]. To handle the variable jump points, we apply the time-
scaling technique [7, 11], which involves mapping the variable jump times to
fixed integers, thus yielding an equivalent problem in a new time horizon. This
transformation is necessary as most standard optimal control algorithms for im-
pulsive systems can only handle jump times that are fixed [7, 9, 15]. Although
the time-scaling transformation eliminates the variability in the jump times, it
does not eliminate the discontinuity in the objective function. Hence, inspired
by the relaxation approaches in [8, 12, 20], we introduce new binary variables
into the objective function, together with linear and quadratic constraints, to
transform the objective function into a smooth function. The resulting opti-
mization problem can be solved using an exact penalty method. This involves
adding continuous penalty terms to the cost function to transform the original
non-smooth optimal control problem into an approximate unconstrained prob-
lem. The penalty terms are zero at feasible points and positive at infeasible
points. Prior research [8, 19, 20] indicates that any local minimizer of the un-
constrained problem will be a local minimizer of the original problem when the
penalty parameter is sufficiently large.

In this paper, we illustrate the effectiveness of the proposed approach by
applying it to the shrimp farming model. The time-scaling transformation and
exact penalty approach result in a problem that can be readily solved using
MISER 3.3 [2], which is an optimal control software based on the control pa-
rameterization technique [1, 4, 6]. The approach described in this paper can
also be readily extended to more general optimal control problems involving
discontinuous objective functions. To the best of our knowledge, this paper is
the first attempt at generating numerical solutions such non-smooth optimal
control problems.
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2. Problem Formulation

We start with the dynamic model proposed by Yu and Leung [17] in which
the biological mortality and growth processes of the shrimp stock are described
by the following differential equations:

ṅ(t) = −mn(t), n(0) = n0, (1)

ẇ(t) = g[f(t), w(t), n(t), t], w(0) = w0, (2)

where

• t is the time in weeks;

• w(t) is the average weight of an individual shrimp in grams at time t;

• n(t) is the number of remaining shrimp at time t;

• m is a given constant representing the natural mortality rate of the shrimp;

• f(t) is the feeding rate at time t;

• g is a given function that is differentiable with respect to each of its argu-
ments;

• n0 and w0 are given initial conditions at t = 0.

Let [0, T ] denote the time horizon over which a single production cycle takes
place (the final harvest occurs at time t = T ).

Suppose that N harvests (N − 1 intermediate harvests and 1 final harvest)
take place during the production cycle. Let τj ∈ [0, T ] denote the time of the jth

harvest, with τN referring to the final harvest time. Then we have the following
constraint:

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN = T. (3)

Let νj denote the fraction of shrimp stock harvested at time τj . Then clearly,

0 ≤ νj ≤ 1, j = 1, . . . , N. (4)

The state variables n and w are subject to the following jump conditions at each
harvest time t = τj :

n(τ+j )− n(τ−j ) = −νjn(τ
−
j ), (5)

w(τ+j )− w(τ−j ) = 0, (6)

where, for a general function h(t), we adopt the notation h(τ±) = lim
t→τ±

h(t).

Equation (5) asserts that the difference in the number of shrimps before
and after the jth harvest is equal to the number of shrimps harvested at time
t = τj . Equation (6) simply states that the average shrimp weight is unchanged
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by the jth harvest. This assumes, of course, that when harvesting the shrimp,
a uniform cross-section of the shrimp stock is extracted.

In the general dynamics (1) and (2) proposed by Yu and Leung in [17], the
feeding rate f(t) is also a decision variable to be chosen optimally, in addition
to the harvesting fractions νj and harvesting times τj . Note though, that no
specific example of this general form was actually proposed by Yu and Leung
and their numerical results were based on a simpler form of the dynamics not
involving the feeding rate. Following their lead, we also ignore the feeding rate
f(t) and consider only the harvesting fractions and the corresponding harvesting
times as decision variables. However, note that the computational approach in
this paper can be easily extended to also optimize the feeding rate f(t) using
the control parameterization technique described in [1, 4, 6].

Yu and Leung proposed the following general model for the revenue obtained
at the jth harvest time [17]:

Revenue = Rj{p[w(τj)], w(τj), n(τ−j ), νj , cj , h}, (7)

where

• cj is the variable cost of the jth harvest in dollars per kilogram;

• h is the fixed cost associated with each harvest;

• p[w(τj)] is the sale price of shrimp in dollars per kilogram (as a function
of the average weight of shrimp at the jth harvest);

• Rj is a given continuously differentiable function.

We adopt the following specific model suggested by Yu and Leung for the total
revenue over the production cycle [0, T ]:

J =

N∑
j=1

[
10−3{p[w(τj)]− cj}w(τj)n(τ−j )νj − h

]
. (8)

The numerical examples in [7, 17] consider the revenue function (8) for the
simple case when the price function p[w(τj)] is a constant. More realistically, the
sale price of shrimp is heavily dependent on the average weight of the shrimp.
Thus, in this paper, we consider a more appropriate price function in which
different prices are assigned to different weight ranges. This piecewise constant
price function is defined as follows:

p[w(τj)] = αi, βi−1 ≤ w(τj) < βi, i = 1, . . . , L, (9a)

where

• L is the number of different price levels;

• β0 is the left end point of the lowest weight range;

• βi is the right end point of the ith weight range;
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• αi is the sale price of shrimp stock in dollars per kilogram when the average
weight lies in the interval [βi−1, βi).

We assume without loss of generality that

β0 < β1 < β2 < · · · < βL (9b)

and
α1 < α2 < α3 < · · · < αL. (9c)

From a practical point of view, the price function (9a) is far more realistic than
those used in [7, 17]. It is worth mentioning that [18] also considers the prize-
size relationship of shrimp in a partial harvesting situation. [18] focuses on a
network-flow approach for determining an efficient harvesting policy, whereas
in our paper we focus on an optimal control approach for an impulsive system
model .

Following the lead of Yu and Leung [17], we consider the following specific
dynamics for the state variables n and w:

ṅ(t) = −mn(t), n(0) = n0, (10)

ẇ(t) = a− bw(t)n(t), w(0) = w0, (11)

where m, a and b are given constants.
We now formulate an optimal control problem as follows: Choose the har-

vesting fractions νj and the corresponding harvesting times τj to maximize the
revenue function defined by (8) and (9a) subject to the dynamics described by
equations (10) and (11), the constraints given by (3) and (4) and the jump
conditions given by (5) and (6). We refer to this problem as Problem A.

When L = 1 (i.e. there is only one price level), Problem A reduces to the
shrimp harvesting problem considered in [7, 17]. In this reduced problem, the
objective is smooth, and therefore the problem can be solved effectively using the
impulsive control techniques discussed in [7, 9]. In this paper, we are interested
in the more difficult case when L > 1; that is, when there are distinct price levels.
In this case, Problem A presents two major challenges for existing numerical
solution methods:

• The jump conditions (5) and (6) occur at variable time points;

• The objective function is discontinuous and hence non-differentiable.

For these reasons, Problem A with L > 1 cannot be solved using standard
optimal control software such as MISER 3.3. In this paper we use a time-
scaling transformation to handle the variable jump points and a smoothing
transformation to handle the discontinuous objective function. Both of these
transformations are described in the next section.
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3. Problem Transformation

3.1. Application of the Time-Scaling Technique

Problem A is an optimal control problem in which the harvesting times
are decision variables to be chosen optimally. The state variable n undergoes
an instantaneous jump at each harvesting time. From a computational point
of view, it is well known that variable jump times cause major difficulties for
standard optimal control algorithms [7, 9]. Such algorithms require that the
jump times be fixed, whereas in Problem A, the jump times are decision variables
to be optimized. Thus, we adopt the time-scaling transformation described in
[5, 7], which enables us to map the harvesting times to fixed points in a new
time horizon.

We first introduce a new time variable s ∈ [0, N ] and relate s to t through
the following differential equation:

ṫ(s) = u(s), t(0) = 0, (12a)

and
t(N) = T, (12b)

where u : [0, N ] → R is a piecewise constant function satisfying the bounds

0 ≤ u(s) ≤ T, s ∈ [0, N ]. (13)

Let
θj = τj − τj−1, j = 1, . . . , N. (14)

That is, θj represents the duration between the (j− 1)th and jth harvest times.
Thus,

θj ≥ 0, j = 1, . . . , N.

We express u(s) mathematically as follows:

u(s) =

N∑
j=1

θjχ[j−1,j)(s), (15)

where χ[j−1,j)(s) : R → R is the indicator function defined by

χ[j−1, j)(s) =

{
1, if s ∈ [j − 1, j),

0, otherwise.

Thus, the control function u(s) has fixed switching times at s = 1, . . . , N , and its
height represents the duration between consecutive harvest times in the original
time horizon. For s ∈ [k − 1, k], it follows from equations (12) and (15) that

t(s) =

∫ s

0

u(η)dη =

k−1∑
j=1

θj + θk(s− k + 1) (16a)
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and thus

t(k) =
k∑

j=1

θj =
k∑

j=1

(τj − τj−1). (16b)

In particular, t(N) = T , as required by equation (12b).
Applying the transformation defined by (12), the dynamics in Problem A

become

˙̃n(s) = −mñ(s)u(s), ñ(0) = n0, (17)

˙̃w(s) = [a− bw̃(s)ñ(s)]u(s), w̃(0) = w0, (18)

where ñ(s) = n(t(s)), w̃(s) = w(t(s)), and t(s) is the solution of the differential
equation (12a). In the new time horizon, the state jumps occur at the fixed
times s = 1, . . . , N − 1. Thus, the jump conditions (5) and (6) become

ñ(j+)− ñ(j−) = −νj ñ(j
−), (19)

w̃(j+)− w̃(j−) = 0. (20)

Problem A is thus transformed into the following problem: Choose the control
u(s) and the parameters νj , j = 1, . . . , N to maximize the transformed revenue
function

J̃ =
N∑
j=1

[
10−3{p[w̃(j)]− cj}w̃(j)ñ(j−)νj − h

]
(21)

subject to the dynamics (12), (17)-(18), the jump conditions (19)-(20) and the
following bounds:

0 ≤ νj ≤ 1, j = 1, . . . , N, (22a)

0 ≤ u(s) ≤ T, s ∈ [0, N ]. (22b)

We refer to this problem as Problem B. The control u(s) in Problem B governs
the harvesting times in the original time horizon.

Problems A and B are mathematically equivalent. The variable jump times
in Problem A have been replaced by fixed times in Problem B. Although this
makes the problem more amenable to solution via standard optimal control soft-
ware packages such as MISER 3.3, the objective function is still a discontinuous
function of the state. Thus, Problem B cannot be solved directly by MISER 3.3,
which requires the objective to be smooth. In the next subsection, we overcome
this difficulty by introducing new binary variables (adopting the transformation
strategy described in [8, 19]) in addition to new linear and quadratic constraints.

3.2. Smoothing Transformation

Let zij , i = 1, . . . , L, j = 1, . . . , N , be new binary variables defined as follows:

zij =

{
1, if βi−1 ≤ w̃(j) < βi,

0, otherwise.
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With this definition, we can write p[w̃(j)] as:

p[w̃(j)] =

L∑
i=1

zijαi.

Thus, the revenue function may be written as:

Ĵ(z,ν, u) =

N∑
j=1

[
10−3

{ L∑
i=1

zijαi − cj

}
w̃(j)ñ(j−)νj − h

]
, (23)

where

ν = [ν1, . . . , νN ]⊤ ∈ RN

zj = [z1j , z2j , . . . , zLj ]
⊤ ∈ RL

z = [(z1)
⊤, (z2)

⊤, . . . , (zN )⊤]⊤ ∈ RLN

Although we have defined each zij to be a binary variable, MISER 3.3 only
allows us to define variables in a continuous domain. Hence, to ensure that each
zij is a binary variable, we impose the following constraints:

Hj(z) =

L∑
i=1

zij − 1 = 0, j = 1, . . . , N, (24a)

gij(z) = zij(1− zij) ≤ 0, i = 1, . . . , L, j = 1, . . . , N, (24b)

0 ≤ zij ≤ 1, i = 1, . . . , L, j = 1, . . . , N. (24c)

It is clear that (24) ensures zij ∈ {0, 1}. However, (24) alone is not sufficient to
ensure that zij is consistent with the definition given at the beginning of this
section. Therefore, we impose the additional constraints given below:

Gij(z) = zij [βi−1 − w̃(j)][βi − w̃(j)] ≤ 0, i = 1, . . . , L, j = 1, . . . , N. (25)

We now prove two important results.

Lemma 1. Suppose that zij, i = 1, . . . , L, j = 1, . . . , N , satisfy constraints
(24) and (25). For any i ∈ {1, . . . , L} and any j ∈ {1, . . . , N}, if zij = 1, then
βi−1 ≤ w̃(j) ≤ βi.

Proof. Suppose zij = 1. Then inequality (25) reduces to

[βi−1 − w̃(j)][βi − w̃(j)] ≤ 0.

Since βi−1 < βi (recall (9b)), this inequality is only satisfied when we have

βi−1 ≤ w̃(j) ≤ βi.
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Lemma 2. Suppose that zij, i = 1, . . . , L, j = 1, . . . , N , satisfy constraints (24)
and (25). For any i ∈ {1, . . . , L} and any j ∈ {1, . . . , N}, if βi−1 < w̃(j) < βi,
then zij = 1.

Proof. Suppose βi−1 < w̃(j) < βi. Recall that inequalities (24b) and (24c)
ensure that zij ∈ {0, 1}. Suppose that zij ̸= 1. Then we must have zij = 0. It
thus follows from (24a) that there exists a k ∈ {1, . . . , L}\{i} such that zkj = 1.
Then, by Lemma 1, we have βk−1 ≤ w̃(j) ≤ βk. Since k ̸= i, and the weight
intervals are disjoint (recall (9b)), this contradicts βi−1 < w̃(j) < βi.

Having arrived at a contradiction, it follows that zij = 1.

Remark 1. Lemma 2 implies that if w̃(j) lies in the interior of the ith weight
range, then we must have zij = 1. However, the converse of this result is not true
in general (i.e. Lemma 2 is not the direct converse of Lemma 1). According to
Lemma 1 and (9b), if w̃(j) = βi, then the only two possibilities are z(i+1),j = 1
and zij = 1. Since the shrimp price increases with the average weight of shrimp,
if w̃(j) = βi at an optimal solution, then z(i+1),j = 1 and zij = 0. Thus, the
optimization process will push w̃(j) into a higher weight range as the revenue is
maximized. It follows that, at an optimal solution, zij is an indicator variable
equal to 1 if w̃(j) is in the ith weight range and equal to zero otherwise.

Our transformed problem can hence be described as follows: Choose the sys-
tem parameters zij , the harvesting fractions νj and the control u(s) to maximize
(23) subject to:

• the dynamics (12) and (17)-(18);

• the jump conditions (19)-(20);

• the bounds (22);

• the constraints (24)-(25).

We refer to this problem as Problem C.
Although Problem C has a smooth objective function, the additional quadratic

constraints imposed on the system (see inequalities (24) and (25)) give rise to
a disjoint feasible region. Hence, standard optimization algorithms will strug-
gle with these constraints. Indeed, when using MISER 3.3 to solve Problem C
directly, we encountered a large number of numerical issues. This is expected,
as MISER 3.3 assumes that the optimization problem has a continuous feasible
region, an assumption that is violated in Problem C.

In the next section, we apply the exact penalty method proposed in [8] to
transform Problem C into an unconstrained problem, which can then be solved
readily by MISER 3.3.
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4. An Exact Penalty Method

The exact penalty approach involves creating a pseudo-objective function
by adding terms based on the constraints to the objective. Problem C, a con-
strained optimization problem, is subsequently transformed into an approximate
unconstrained problem that can be readily solved using MISER 3.3.

The constraint violation is defined by:

∆(z, u) =

N∑
j=1

[
Hj(z)

]2
+

L∑
i=1

N∑
j=1

[
max {0, Gij(z)}

]2
+

L∑
i=1

N∑
j=1

[
max {0, gij(z)}

]2
+ [t(N)− T ]2.

Note that ∆(z, u) = 0 if and only if the constraints in Problem C are satisfied.

Using the strategy introduced in [8], an exact penalty function Ĵσ(z,ν, u, ϵ)
is constructed as follows:

Ĵσ(z,ν, u, ϵ) =


−Ĵ(z,ν, u), if ϵ = 0, ∆(z, u) = 0,

−Ĵ(z,ν, u) + ϵ−λ∆(z, u) + σϵγ , if ϵ > 0,

+∞, otherwise,

where

• ϵ is a new decision variable;

• σ > 0 is the penalty parameter;

• λ and γ are positive constants satisfying 1 ≤ γ ≤ λ.

The new decision variable ϵ is subject to the following bounds:

0 ≤ ϵ ≤ ϵ̃, (26)

where ϵ̃ > 0 is a small positive number.
Our unconstrained penalty problem, to be referred to as Problem D, is de-

fined as follows: Choose the system parameters zij , the harvesting fractions

νj , the new decision variable ϵ and the control u(s) to minimize Ĵσ(z,ν, u, ϵ)
subject to:

• the dynamics (12) and (17)-(18);

• the jump conditions (19)-(20);

• the bounds (22) and (26).
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Note that when the penalty parameter σ is large, the term σϵγ in Ĵσ forces ϵ
to be small, thus causing the second term ϵ−λ∆(z, u) to severely penalize any

constraint violations. It can be shown that Ĵσ is an exact penalty function
in the sense that when the penalty parameter σ is sufficiently large, any local
solution of the approximate unconstrained problem (i.e. Problem D) is also a
local solution of Problem C [8].

Problem D can be solved as a non-linear programming problem using the
MISER 3.3 software. MISER automatically calculates the objective function
gradients by integrating a costate system backwards in time; for more details
see [1, 2, 6, 11].

In summary, the original non-smooth optimal control problem undergoes a
series of transformations to overcome the challenges that would exist in realistic
problems of this nature. This approach is summarized below.

• Our original problem included a complex revenue function that is a dis-
continuous function of the state variables. The decision variables need to
be chosen optimally to maximize this revenue function.

• We use the time-scaling transformation (described in Section 3.1) to map
the variable jump times to fixed times in a new time horizon, as standard
optimal control algorithms can only deal with fixed jump times.

• We then use a smoothing transformation involving binary variables and
quadratic constraints (described in Section 3.2) to overcome the challenge
posed by the discontinuous objective function.

• Since standard optimal control software such as MISER 3.3 struggle with
these quadratic constraints, we apply the exact penalty approach to trans-
form the problem into an unconstrained problem. We thus arrive at a
smooth impulsive optimal control problem with fixed jump times and only
bound constraints. Such problems can be solved effectively using MISER
3.3, which solves optimal control problems using non-linear programming
techniques.

In the next section, we demonstrate the efficiency of the proposed approach
with a numerical example.

5. Numerical Results

We consider the shrimp farming model described in Section 2 with the fol-
lowing parameters:

• N = 4 (3 partial harvests and 1 final harvest);

• L = 5 (price function is based on 5 different weight ranges for the shrimp);

• T = 13.2;

• cj = 0 for j = 1, 2, 3, 4 (no variable harvesting costs);
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i βi−1 βi αi

1 0 5 $2
2 5 10 $4
3 10 15 $6
4 15 20 $8
5 20 25 $12

Table 1: Price Function Parameters

σ ϵ∗ Penalty Function Value Constraint Violation

104 4.0661× 10−1 5.601975× 103 0.0000
105 2.6733× 10−1 4.180581× 103 0.0000
106 2.8292× 10−2 3.107395× 103 0.0000
107 5.0437× 10−4 3.110452× 103 0.0000
108 7.5006× 10−4 3.110451× 103 0.0000

Table 2: Numerical convergence using λ = 4.01 and γ = 3.55

• h = 50;

• n0 = 40, 000 and w0 = 1;

• a = 3.5 and b = 10−5;

• αi, i = 1, . . . , 5 and βi, i = 0, . . . , 5 are given in Table 1.

Recall from Section 4 that the parameters λ and γ in the exact penalty
function must satisfy the condition 1 ≤ γ ≤ λ. This is to ensure that the
convergence results in [8] hold. Numerical testing reveals that the choice of λ
and γ can significantly affect the results. Our best results were obtained using
either λ = 4.01 and γ = 3.55 or λ = 5.01 and γ = 3.55. These results are
presented below.

When running MISER 3.3, the initial values for ϵ and σ were 5.0×10−1 and
1.0× 104 respectively. The penalty parameter σ was increased by a multiple of
10 for each subsequent MISER run. As expected this caused ϵ to decrease in
value. Tables 2 and 3 show the penalty function value and the optimal value of
ϵ (denoted by ϵ∗) for each run.

Note that the results in Tables 2 and 3 show a clear convergence of the
objective function as σ is increased.

The optimal solution corresponding to the last line in Table 2 is:

ν1 = 6.8488× 10−1, ν2 = 6.7209× 10−1, ν3 = 0.0000, ν4 = 1.0000,

τ1 = 8.47906, τ2 = 13.2, τ3 = 13.2, τ4 = 13.2,

w(τ1) = 10.0, w(τ2) = 20.0, w(τ3) = 20.0, w(τ4) = 20.0.
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σ ϵ∗ Penalty Function Value Constraint Violation

104 4.3980× 10−1 5.330159× 103 0.0000
105 2.9917× 10−1 4.330777× 103 0.0000
106 1.6207× 10−2 3.106807× 103 0.0000
107 8.2666× 10−3 3.107617× 103 0.0000
108 8.2661× 10−3 3.103999× 103 0.0000

Table 3: Numerical convergence using λ = 5.01 and γ = 3.55

The optimal solution corresponding to the last line in Table 3 is:

ν1 = 6.4803×10−1, ν2 = 5.4889×10−2, ν3 = 8.6884×10−2, ν4 = 1.0000,

τ1 = 8.47906, τ2 = 8.89985, τ3 = 10.71427, τ4 = 13.2,

w(τ1) = 10.0, w(τ2) = 10.9935, w(τ3) = 15.0, w(τ4) = 20.0.

The optimal state variables corresponding to the solutions in Tables 2 and
3 are shown in Figures 1 and 2.

The results obtained in this section cannot be directly compared to the
numerical results obtained in [7, 17]. This is because the price function used
here is a weight dependent piecewise constant function (recall (9a)) and is not
a fixed constant as in the numerical examples of [7, 17]. The method presented
in this paper is more realistic from a commercial point of view, as the shrimp
price is expected to be heavily dependent on the weight of the shrimp.

6. Concluding Remarks

We have developed an efficient computational algorithm for solving a class of
optimization problems containing a discontinuous (and therefore non-differentiable)
objective function subject to a dynamic system involving jump conditions at
variable time points. The technique was successfully tested on a realistic shrimp
farming problem. We note that that this algorithm could be adapted to other
classes of problems to maximize or minimize non-smooth objective functions
subject to various forms of constraints and continuous time dynamics.

Our results illustrate that we can obtain clear convergence of the objective
function while optimally determining the partial harvesting fractions as well
the corresponding partial harvest times, as shown by the numerical results.
Future studies on the shrimp problem will consider variable initial conditions,
variable harvesting costs and optimization of the feeding rate. Models for mul-
tiple continuous-production cycles of shrimp involving suitable cost functions
for variable harvesting costs may also be examined in future research.

Moreover, research should be undertaken to study the relationship between
the constants λ and γ in the exact penalty approach. Extensive numerical
testing has shown that the optimal solution obtained is sometimes sensitive to
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the values chosen for λ and γ. It would be of great benefit to develop a general
guide as to the choice of values of these parameters, especially considering the
vast array of applications of the exact penalty approach [1, 19].
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