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1 Introduction

Portfolios with a discrete investment horizon are routinely constructed and

assessed with consideration for two important concepts. First, mean-variance

efficiency: for an efficient portfolio, expected return is maximized for a given

level of risk as indicated by return variance (Markowitz, 1952). Second,

value-at-risk (VaR), being the level of portfolio loss that has specified (small)

probability of being breached.

In the spirit of Baumol (1963), Alexander and Baptista (2002) develop the

concept of mean-VaR efficiency for portfolios and demonstrate its very close

connection with mean-variance efficiency.1 In particular they formulate the

minimum VaR portfolio as a special type of mean-variance efficient portfolio.

Alexander and Baptista initially assume jointly normally distributed asset

returns and show that the global minimum VaR portfolio, when it exists, is

mean-variance efficient (Lemma 1, p.1166). Thus they are able to explicitly

identify the minimum VaR portfolio using the efficient frontier formulation

of Merton (1972) for the case when short sales are allowed (Proposition 1,

p.1167). They then extend their results to the multivariate Student’s t distri-

bution (Section 3, p.1177), and in fact to any distribution for which the VaR

can be written as a linear function of the expectation and standard deviation

of the returns. A Student’s t distribution assumption has notable relevance in

that the heavy-tailedness of returns distributions is an empirically-observed

fact: in a recent study, Platen and Sidorowicz (2008) show that a Student’s

t distribution with four degrees of freedom provides a good fit to the returns

of a large sample of widely varying world stock indices.

The Markowitz mean-variance efficiency paradigm for portfolio selection

has some very attractive features, including ease of application and analy-

sis, and a long history of theoretical understanding and practical experience,

which we want to preserve. Thus we specify our returns distribution as-
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sumption only with respect to mean-variance efficient portfolios, and proceed

by finding the portfolio on the efficient frontier that minimizes VaR, given

(small) probability q? as the specification for the acceptable likelihood of a

loss that exceeds VaR.2 We call this the minimum VaR portfolio, and term

q? the VaR breach probability or just breach probability.

Our empirical analysis finds that minimum VaR portfolios with commonly

used breach probabilities (formed ex ante) yield ex post returns that (i) gen-

erally conform to the ex ante VaR breach specifications, and (ii) conform, on

average, to ex ante return/risk expectations, as indicated by ranking amongst

the ex post returns of various other efficient and non-efficient portfolios. Our

results, obtained with two very distinct datasets, provide a considerable ex-

tension of evidence supporting the empirical validity and tractability of the

mean-VaR efficient portfolio framework originated by Alexander and Bap-

tista (2002). Furthermore, the conformity of ex post return performance

to ex ante specification/expectation for minimum VaR portfolios supports

Alexander et al.’s (2009) proposal that constraining VaR reduces portfolio

estimation risk.

Our contribution to the literature is best considered in comparison with

Alexander et al. (2009). Firstly, Alexander et al. use simulation and empiri-

cal analyses to examine the ex post performance of VaR-constrained efficient

portfolios in general; whereas we use empirical analysis to examine the perfor-

mance specifically of the minimum VaR portfolio in comparison with mean-

variance efficient minimum variance and tangency portfolios, and inefficient

equally weighted and index portfolios. Secondly, our empirical analysis ex-

amines the minimum VaR portfolio with short sales allowed and disallowed;

whereas Alexander et al. examine VaR-constrained portfolios with short sales

allowed only. Thirdly, for their empirics, Alexander et al. use the six Fama-

French size and book-to-market partitioned portfolios; whereas we use the

cross-sectionally more diverse 25 Fama-French size and book-to-market port-
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folios. Finally, our empirics extend to a second dataset comprised of iShares

utilized with higher frequency (weekly) portfolio rebalancing (in contrast to

monthly rebalancing using the Fama-French data).

This paper is organized as follows. Section 2 sets out the relation between

an efficient portfolio and its VaR, and specifically identifies the minimum

VaR portfolio. Section 3 introduces two disparate datasets and reviews the

characteristics of the minimum VaR portfolios constructed from them, for

varying breach probabilities, and with and without short sales allowed. We

apply a rolling window investment process to the two datasets to represent

an investor who uses recent historical data to period-to-period identify the ex

ante minimum VaR portfolios. Then, in Section 4, we examine the time series

ex post performance of this strategy, and demonstrate that the minimum VaR

portfolios generally conform well to their ex ante VaR breach specifications.

Favorable return/risk performance is also demonstrated in comparison with

tangency, minimum variance, equally weighted and index portfolios. Finally,

Section 5 concludes the paper.

2 Value-at-risk along the efficient frontier

For a designated discrete investment time horizon, let σ > 0 and µ be,

respectively, the standard deviation (“volatility”) of return and the expected

return of a portfolio constructed from a specified universe of N ≥ 2 risky

assets. An efficient risky asset portfolio is a combination of the assets that

dominates other possible combinations by offering the maximum possible

expected return given its volatility of return, or, equivalently, the minimum

possible volatility of return given its expected return. The range of efficient

combinations (σp, µp) defines the efficient frontier in (σ, µ) space (Markowitz,

1952).

Define random variable Rp to be the realized return of an efficient portfolio
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over the discrete investment time horizon, and let Zp = (Rp − µp)/σp be the

standardized realized return. We assume each Zp to be identically distributed

for all possible efficient portfolios, and use VaR considerations to single out

a specific portfolio on the efficient frontier.3 To do this, let −Q be the

benchmark rate of return below which a return will fall with probability q,

0 < q < 1 (for VaR considerations, q will be small, i.e. 0 < q < 0.5). So we

have the relations

Pr (Rp < −Q) = Pr

(
Zp <

−Q− µp

σp

)
= Φ

(
−Q− µp

σp

)
= q,

and, inversely,

−Q = µp + σpΦ−1(q), (1)

where Φ(·) is the cumulative distribution function (cdf)4 of Zp, and Φ−1(·) is

its inverse function (assumed uniquely defined). For a typical small value of

q, we expect that Φ−1(q) will be negative and Q will be positive.

The efficient frontier formulation of Merton (1972) specifies an explicit

relation between µp and σp when short sales are allowed. Using this relation,

we can eliminate µp from (1), reducing it to a functional equation of the form

Q = Q(σp, q). (2)

Our suggested strategy can now be summarized as follows. Let q∗ denote

a specified value of the VaR breach probability, q. Substitute q? for q in (2),

then use (2) to select that value of σp which minimizes the VaR, Q. This

yields a value, denoted Qmin, and a corresponding VaR-minimizing value of

σp, denoted σQmin. This procedure identifies the minimum VaR strategy,

with Qmin the minimum value-at-risk corresponding to q?. Precise details of

the procedure, with short sales allowed, are set out in Section 2.1 below.

As an aid to intuition, Figure 1 displays example probability density func-

5



tions for two efficient portfolios (designated A and B) and their comparative

VaRs, QA and QB, for a given q?. To minimize VaR, we choose the portfo-

lio that maximizes −Q: Figure 1 indicates that portfolio A is preferable to

portfolio B in terms of VaR.

INSERT FIGURE 1 HERE

2.1 The minimum VaR strategy

In this section we obtain Alexander and Baptista’s (2002) minimum VaR

portfolio result, alluded to with equation (2). Substitute a given VaR breach

probability q? for q in (1), and use equation (17) of Merton’s (1972) analytic

representation of the efficient frontier to eliminate µp. This yields an explicit

expression for the relation between Q and σp, namely,

−Q =

[
A+

√
D(Cσ2

p − 1)
]

C
+ σpΦ−1(q?), (3)

where A = i′Σ−1µ, B = µ′Σ−1µ, C = i′Σ−1i, and D = BC − A2 > 0,

as per Merton (1972, p.1853). This relation is valid for σmvp < σp < ∞,

where σmvp is the volatility of the minimum variance portfolio, given by

σmvp =
√

1/C.

Here µ is the N -vector of expected returns and Σ is the N × N non-

singular variance-covariance matrix of the returns for the N risky assets, i

is an N -vector of ones, and the prime denotes a vector or matrix transpose.

Merton’s (1972) approach allows short-selling of individual risky assets but

requires a “net positive” investment overall, which we can normalize to one

unit of investment; hence i′xp = 1, where xp is the N -vector of portfolio

allocation weights corresponding to the selected portfolio.

Some calculus shows that the existence of a definable minimum VaR port-

folio depends on the value of the “excess gradient criterion” (EGC), defined
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by

EGC =
√
D/C −

(
−Φ−1(q?)

)
.

For EGC < 0, VaR is minimized when dQ/dσp = 0. Calculating dQ/dσp

from (3) yields the coordinates of the minimizing portfolio as

σQmin =
|Φ−1(q?)|√

C [Φ−1(q?)]2 −D
, and µQmin =

A

C
+

D

C
√
C [Φ−1(q?)]2 −D

.

The corresponding minimized value of Q satisfies

−Qmin =
A

C
+
C|Φ−1(q?)|Φ−1(q?) +D

C
√
C [Φ−1(q?)]2 −D

, (4)

and some further algebra gives the corresponding portfolio allocation as

xQmin =

 A

CD
+

1

C
√
C [Φ−1(q?)]2 −D

(CΣ−1µ− AΣ−1i
)

+
1

D

(
BΣ−1i− AΣ−1µ

)
. (5)

Equations (4) and (5) respectively correspond to equations (11) and (10) of

Alexander and Baptista (2002) if Φ−1(q?) (in our notation) is substituted for

−t∗ (in theirs). Our requirement that EGC < 0 is equivalent to Alexander

and Baptista’s Proposition 1 requirement that t > Φ(
√
D/C), where t (in

their notation) equals 1− q? (in ours).5

As explained by Alexander and Baptista (2002, Corollary 3), the minimum

variance portfolio is notionally a special case of the minimum VaR strategy

obtained in the limit as q? → 0. If we accept that our distributional assump-

tion for standardized efficient portfolio returns entails an infinite left tail, then

q? → 0 implies Φ−1(q?) → −∞ and σQmin → σmvp =
√

1/C. Since we wish
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to work with discrete returns, as is appropriate for Markowitz-style portfolio

optimization, the reasonableness of our assumption that standardized effi-

cient portfolio returns have identical distributions will certainly break-down

at the extreme left tail (i.e. as q? → 0). However this is not necessarily of

concern. For the purpose of VaR minimization, given a reasonable choice

of q? > 0, we are only concerned that the tail area (i.e. q?) of our single

assumed distribution matches the actual tail areas to the left of −Q(σp, q
?)

of the true returns distributions of different efficient portfolios; this is gen-

erally borne out by the empirical ex post performance of the minimum VaR

portfolios assessed in this paper.

For EGC ≥ 0, the minimum VaR portfolio can only be approached in

the limit as σp → ∞.6 For the case when Φ−1(q?) = −
√
D/C, we have

Qmin → −A/C, as σp →∞; and for the case when Φ−1(q?) > −
√
D/C, we

have Qmin → −∞, as σp → ∞. For our datasets and realistic choices of q?,

there are no instances of EGC ≥ 0. If such an instance occurs in a dataset,

the technique of Maller and Turkington (2002) can be used to approach the

minimum VaR portfolio as closely as desired.

If the portfolio allocation decision requires short sales to be restricted

(or any other such imposition of lower or upper limits on individual risky

asset positions), numerical techniques can be used to identify the minimum

VaR portfolio. However, equation (5) will still be valid when short sales are

disallowed if the calculated portfolio allocation weights do not involve short

positions.

Alexander and Baptista (2004) revisit the mean-VaR efficient portfolio

framework and additionally consider conditional value-at-risk (CVaR) as the

integral risk measure for portfolio optimization. The CVaR metric, in con-

trast to VaR, is attractive for being a coherent risk measure as per Artzner et

al. (1999).7 Appendix A demonstrates that the Section 2 setup also extends

to the identification of a minimum CVaR portfolio.
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3 Empirical analysis

It has been observed many times in practice and in the literature that port-

folios selected by the Markowitz procedure frequently fail to perform ex post

as they were expected to ex ante. However, we find that efficient portfolios

constructed using the minimum VaR strategy do yield performance close to

that expected, as demonstrated by the empirical analysis that follows.

Given a universe of risky assets investable for a series of equal-length time

periods, and a specified VaR breach probability q?, specific implications of

the setup and definitions given in Section 2 are that a time series strategy of

investing in the minimum VaR portfolio should result in:

(i) a series of portfolio return realizations that breach the time-varying min-

imum value-at-risk according to a binomial distribution with “success” prob-

ability q?; furthermore,

(ii) a lesser number of portfolio return realizations breaching the time-varying

minimum value-at-risk than for any other efficient portfolio strategy.

Such expectations will only be borne out in reality if the world behaves in

accordance with the assumptions made in deriving the relations in Section 2.

In particular, the distribution assumed for the realized returns will, of course,

be critical to the VaR calculations.

We test the minimum VaR strategy on two particular “real-world” asset

return datasets, each observed over different periods of time. The potential

disadvantage of this approach is a lack of generality, because the specifics of

the data samples limit the extent to which inference can be made about wider

populations, as compared with the alternative of a simulation approach, with

which we could apply and evaluate procedures with full knowledge of the pop-

ulation parameters underlying the data.8 The disadvantage of a simulation

approach is that simulated data can never fully capture the variations inher-

ent in real-world data: we are particularly interested in extreme downside as-
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set return events, where the minimum VaR strategy should prove attractive.

We attempt to curtail the lack of generality associated with our approach by

selecting widely representative samples of assets for our datasets.

The performance of the minimum VaR strategy, along with some “stan-

dard” portfolios, is assessed out-of-sample using datasets of returns for two

different universes of investable assets. The first set of assets is the 25

Fama and French size (market equity, ME) and book-to-market (book equity-

to-market equity, BE/ME) partitioned and value-weighted stock portfolios

(which we term FF5×5), and the second is an international collection com-

prised of iShares.

For investors limiting themselves to domestic US assets, the optimization

problem is daunting due to the very large number of individual securities that

might be considered. Furthermore, straightforward Markowitz optimization

via a sample variance-covariance matrix is impossible when there are more

assets than there are time series observations of returns on those assets (in

which case the matrix would be singular). Reducing the problem to a choice

between asset classes is a viable compromise. The question then arises as

to which asset classes might appropriately be used. In order to reduce the

dimensionality of the problem to a manageable level, we use the 25 value-

weighted size and book-to-market partitioned US stock portfolios inspired by

the approach of Fama and French (1993), thereby making a strategic choice

of asset classes.9

Fama and French (1993) demonstrate the value-relevance of size and book-

to-market factors in comparison to the market risk-premium factor of the

standard CAPM. It thus seems appropriate to use size and book-to-market

derived stock portfolios as asset classes underlying an investment allocation

decision. Indeed these portfolios have previously been used to study portfolio

optimization (e.g. by Jagannathan and Ma, 2003). An investor implementing

a strategy based on allocations to the FF5×5 portfolios needs simply to
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allocate funds to assets representative of these portfolios.10

Portfolio optimization naturally lends itself to application for international

diversification. Giving regard to such purpose, we utilize exchange-traded

funds in the form of iShares, together with Standard & Poor’s depository

receipts, to represent the opportunity set available to an investor who is not

constrained to invest only in domestic securities.

While our portfolio investment setup is single-period, we incorporate a

dynamic aspect in the empirical implementation via the use of a rolling in-

vestment allocation process. We take the position of an investor allocating

wealth to a portfolio of assets with perfect hindsight about what has hap-

pened, but with very imperfect foresight about how the portfolio will perform

in the future. Portfolio estimation and investment allocation is undertaken

based on sample returns data for a “window” of time, and portfolio perfor-

mance is calculated out-of-sample over the next unit of time. The window is

then “rolled forward” by one unit of time, and the procedure repeated. In

this way a time series of realized portfolio returns is generated, which can

be used to evaluate the overall performance of the portfolio strategy. This

procedure is described in detail in Appendix B.

3.1 FF5×5 and iShares datasets

Monthly returns for the 25 Fama and French size and book-to-market par-

titioned and value-weighted portfolios were downloaded from Ken French’s

website.11 The 25 time series consist of 978 monthly returns from July 1926

to December 2007. Using a rolling estimation period of length 200 months,

778 vectors of mean monthly returns and matrices of monthly return vari-

ances and covariances were obtained as time series estimates of µ and Σ.12

This approach was repeated for the iShares dataset; however the shorter

time series of iShares data requires more economy in terms of the estimation
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and holding periods for application of portfolio optimization. From the CRSP

database we obtained time series of Wednesday fortnightly discrete total

returns for 23 international stock index iShares,13 and Standard & Poor’s

depository receipts tracking the US S&P 500 stock index (SPY) and the

US S&P MidCap 400 stock index (MDY). The iShares and the SPY and

MDY exchange-traded funds offer investors a convenient method of creating

an internationally diversified equity portfolio. For 17 of the iShares, and the

SPY and MDY indices, the time series consist of 307 fortnightly returns from

fortnight-ending 3 April 1996 to 26 December 2007. The returns time series

for another six, newer, iShares have various later commencement dates, but

the same terminal date.14 Using a rolling estimation period of 100 fortnights,

a time series of 207 sets of µ and Σ was obtained.15

For both the FF5×5 and iShares datasets, for each estimation period, three

minimum VaR portfolios were identified using the methodology outlined in

Section 2, corresponding to VaR breach probabilities (q?) equal to 0.01, 0.05

and 0.10. Furthermore three “standard” portfolios were identified: the min-

imum variance portfolio; the tangency portfolio that maximizes µp/σp (i.e.

the efficient frontier portfolio that is tangent to a ray from the origin in

(σp, µp) space); and the equally weighted portfolio.16 Finally, an appropriate

index asset was also identified as a fourth standard portfolio: specifically

we use the S&P500 index and the MSCI World investable index, for which

returns time series were obtained from CRSP. The realized return of each of

these seven portfolios was calculated for the unit of time (month or fortnight)

subsequent to each estimation period.

3.2 Minimum VaR portfolio characteristics

We considered two probability distributions for the efficient portfolio stan-

dardized realized returns: a Student’s t distibution with four degrees of free-
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dom (t4), and a standard normal distribution. In the empirical evaluations

reported in more detail in the next section, we found the Student’s t4 distri-

bution to be appropriate for portfolios when short sales are allowed, whereas

the imposition of a no-short-sales constraint resulted in realized returns dis-

tributions with very light tails at the lefthand end, for which the standard

normal was more appropriate. Consequently, we only present results assum-

ing a Student’s t4 distribution for portfolios with short sales allowed, and

assuming a standard normal distribution for portfolios with short sales dis-

allowed, and we restrict discussion to these cases.17

INSERT FIGURE 2 HERE

Figure 2 shows an example ex ante efficient frontier (top panel) and the

associated VaR along the efficient frontier (bottom panel) as estimated from

a subset of the FF5×5 dataset. The bottom panel of Figure 2 depicts the

relation given by equation (3) for three choices of q? = {0.01, 0.05, 0.10}
and specifically identifies each minimum VaR portfolio, which correspond to

locations on the efficient frontier shown in the top panel. Figure 2 illustrates

that, for practical values of VaR breach probability (q? ≤ 0.10), the minimum

VaR portfolios are generally located towards the lefthand end of the efficient

frontier, while remaining quite distinct from the minimum variance portfolio.

The top panel in Figure 2 also reveals that both the S&P500 index and the

equally-weighted combination of the FF5×5 portfolios are located below the

efficient frontier.

INSERT FIGURE 3 HERE

Figure 3 shows that the expected return-risk ratios (µp/σp) of the three

minimum VaR portfolios corresponding to q? = {0.01, 0.05, 0.10} lie between

those of the minimum variance and tangency portfolios for the entire time

series of 778 portfolio sets obtained from the FF5×5 dataset, with or without
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short sales allowed. With short sales allowed (see the top panel of Figure 3),

the expected return-risk ratios of the minimum VaR portfolios are readily

distinguishable from each other and from those of the minimum variance

and tangency portfolios. With short sales disallowed (see the bottom panel

of Figure 3), the minimum VaR portfolios are often located very close to each

other and to the minimum variance portfolio.18

The tangency portfolio, by its nature, should produce the highest re-

turn/risk outcomes. However, as demonstrated by Alexander et al. (2009),

overestimation error for expected return increases sharply as portfolio choice

moves up along the efficient frontier. As illustrated by Figure 2, the loca-

tion of the minimum VaR portfolio moves up along the efficient frontier as

breach probability increases. Therefore, as breach probability increases, the

ex post return/risk performance of the minimum VaR portfolio will benefit

in terms of higher (estimated) expected performance, but will suffer due to

higher overestimation error. Thus an “optimal” breach probability may be

identified as the point when this trade-off becomes zero at the margin. Addi-

tional results not presented in this paper for both of our datasets with short

sales allowed indicate that this optimal breach probability occurs at a level

considerably higher than our maximum choice of q? = 0.10.

4 Ex post portfolio performance

In this section we summarize the results obtained from the rolling window

investment process applied to our two datasets. The 200 month rolling esti-

mation window (with monthly steps) applied to the FF5×5 dataset yielded

a monthly time series of 778 sets of ex ante portfolios and their ex post re-

alized returns. Similarly, the 100 fortnight rolling estimation window (with

fortnightly steps) applied to the iShares/depository receipts dataset yielded

a fortnightly time series of 207 sets of ex ante portfolios and their ex post
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realized returns. Note that the overlapping estimation periods associated

with the rolling window investment process imparts some serial correlation

on the portfolio time series (see Appendix B).

4.1 Ex post portfolio performance: FF5×5 data

For an overall view of the data, refer to Figure 4, which shows the expected

and realized returns of the minimum VaR portfolios constructed from the

FF5×5 data, along with the negatives of their time varying VaRs, with and

without short sales allowed. Using the technique detailed in Section 2, the

portfolios are derived using a Student’s t4 distribution when short sales are

allowed and a standard normal distribution when short sales are disallowed.

INSERT FIGURE 4 HERE

The different minimum VaR bounds indicated in Figure 4 all start off wide,

relative to expected return, early in the time series (due to the presence of the

1929 stockmarket crash and subsequent volatility in the rolling estimation

window), but tighten as the time series moves into more benign periods of

stockmarket volatility. Breaches of minimum VaR (i.e. incidents of realized

return less than the negative of minimum VaR, Rp < −Qmin) are clearly

revealed in Figure 4 when they occur. For example, the October 1987 realized

return is clearly identifiable as a breach for each minimum VaR portfolio.

With short sales allowed and a VaR breach probability of q? = 0.01, the

minimum VaR portfolio exhibits only two VaR breaches (see panel (a) of

Figure 4), but when the VaR breach probability is loosened to q? = 0.10 (see

panel (c)) the number of VaR breaches increases to 76. Later (see Figure 5

and Table 2) we assess whether the observed VaR breaches conform to the

implications of our setup in Section 2.

Table 1 provides summary statistics for the minimum VaR and standard

portfolios over the 778 rolling window observations for the FF5×5 data. The
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first four columns summarize the characteristics of the portfolio weights. A

favorable characteristic of the minimum VaR portfolios is that the portfolio

weights for individual assets entail only modest extremes, even when short

sales are allowed. By contrast, the portfolio weights for the tangency portfolio

are highly variable and extreme in the short sales case. For example, the time

series of portfolio weights (60 sets of 24 weights plus 718 sets of 25 weights)

for the minimum VaR portfolio with q? = 0.10 has a global minimum of

−1.62, a median minimum of −0.58, a global maximum of 1.25, and a median

maximum of 0.84; whereas the respective values for the tangency portfolio

are −142.5, −1.68, 137.3 and 1.42. That is, when short sales are allowed,

the minimum VaR portfolio strategy is not overly prone to extreme long and

short positions, whereas the tangency portfolio strategy is.

INSERT TABLE 1 HERE

Disallowing short sales limits extreme positions, as all portfolio weights

must lie between zero and one, which also limits the scope for differentiation

between efficient portfolios. Consequently the differences between the port-

folio weight extremes of the minimum variance, minimum VaR and tangency

portfolios are reduced (see columns 1–4, rows “without short sales allowed”,

of Table 1). The smaller differentiation is also observable in terms of ex-

pected return-risk ratio by comparing the top and bottom panels of Figure 3

(noting the difference in the scales of the vertical axes).

In columns 5–11 of Table 1, summary statistics for the expected return-

risk ratios and realized returns of the minimum variance, minimum VaR and

tangency portfolios are listed, and seen to be consistent with their relative

efficient frontier positions. That is, the time series minima, maxima and

means of the expected return-risk ratios (columns 5–7) all increase in the or-

der of the efficient frontier positions of the portfolios: again, the incremental

differences are much greater with short sales allowed than without. Interest-
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ingly, although the tangency portfolio has the greatest extremes of portfolio

weights, it has the lowest variability (standard deviation) of expected return-

risk ratio (see column 8). The time series means and standard deviations of

the realized returns (columns 9 and 10) also generally increase in the order

of the efficient frontier positions of the portfolios: only the mean realized

return of the tangency portfolio strategy with short sales allowed deviates

from this order (with a very low mean realized return). Measured by the

ratio of mean realized return to standard deviation of realized return (col-

umn 11), the tangency portfolio with short sales allowed produces, by far, the

worst performance, followed by the inefficient S&P500 and equally weighted

portfolios with the next worst performances.

From comparison of columns 9–11 with columns 5–8 of Table 1, the con-

formity of the rankings of ex post return performance with the rankings of ex

ante return-risk expectation for the minimum VaR portfolios is supportive

of Alexander et al.’s (2009) proposal that constraining VaR reduces portfolio

estimation risk. Constraining short sales is also known to reduce portfolio

estimation risk (e.g. see Jagannathan and Ma, 2003); but comparison of the

ex post results (columns 9–11) with and without short sales allowed indicates

that minimizing VaR reduces portfolio estimation risk without the loss of

return performance associated with additionally constraining short sales.

For each portfolio strategy, columns 12–17 of Table 1 provide: summary

statistics for realized returns standardized by their ex ante expected values

and standard deviations (µp and σp), so that they represent observations

on Zp; and test statistics for the fits of the assumed distributions. With

short sales allowed, we do not reject the Student’s t4 distribution for the

standardized realized returns of the minimum variance and minimum VaR

portfolios at the 5% level of significance using a Kolmogorov-Smirnov test

(column 16), though we do reject it for the tangency portfolio. With short

sales disallowed, we also reject the standard normal distribution as a fit for
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all portfolios (column 17).19 However, a caveat is in order here. For VaR

considerations we need only be concerned with the left tail of the returns

distributions. Figure 5 shows a magnified view of the extreme left tails of

the P-P (probability) plots for minimum VaR portfolio standardized realized

returns versus the Student’s t4 distribution when short sales are allowed, and

versus the standard normal distribution with short sales disallowed.

INSERT FIGURE 5 HERE

With short sales allowed: up to the q? = 0.05 and 0.10 probability levels

(see panels (a) and (b) of Figure 5) the Student’s t4 distribution conforms

reasonably closely with the empirical distributions of the commensurate min-

imum VaR portfolio standardized realized returns. When short sales are dis-

allowed: up to the 0.05 probability level (see panel (c)) the standard normal

distribution provides a good fit with the commensurate empirical distribu-

tion; and up to the 0.10 probability level (see panel (d)) the standard normal

distribution is marginally more heavy tailed than the commensurate empiri-

cal distribution.20

Our next set of results, shown in Table 2, allows us to assess whether the

numbers of breaches of minimum VaR observed in the time series in Figure 4

conform to the distributional assumptions we have made for standardized

realized returns.

INSERT TABLE 2 HERE

Table 2 has two diagonal series of boxed and bolded numbers: these

tally the minimum VaR portfolios’ breaches of minimum VaR (occurences

of Rp < −Qmin depicted in Figure 4), and can be compared within columns

to the tallies of breaches by the other portfolios. Our expectations are that

the boxed and bolded numbers (i) should conform to a Binomial(778,q?) dis-

tribution, and (ii) should be the lowest within their own columns. Numbers
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that are less than the boxed and bolded numbers within a column are under-

lined, indicating portfolios that were more successful (i.e. had fewer breaches

of minimum VaR) than the minimum VaR portfolio. The Binomial(778,q?)

expectation and 90% (two-tailed) confidence interval for VaR breaches for

each minimum VaR portfolio are indicated in brackets under the boxed and

bolded observed VaR breaches.

The minimum VaR portfolios’ VaR breach tallies shown in Table 2 gener-

ally conform well to their binomial distribution expectations. For q? = 0.01,

the deviation of breaches from expectation is attributable to a difference in

the tail areas (up to the 0.01 probability level) of the empirical and assumed

distributions for standardized realized returns.

We note that the minimum VaR portfolio for a given q? does not always

attain the minimum number of breaches of minimum VaR in comparison to

other portfolios, as indicated by the underlined numbers within columns of

Table 2. However this underperformance only occurs with respect to nearby

efficient portfolios, i.e. the minimum variance portfolio or other minimum

VaR portfolios with close q? values, and the differences are slight. That

other portfolios are found, ex post, to serendipitously produce fewer breaches

of minimum VaR than the minimum VaR strategy, implemented ex ante,

might not be particularly worrying to an investor relying on the minimum

VaR to achieve desired, or required, outcomes.

For each portfolio, Table 3 presents the average size of the breaches of

minimum VaR tallied in Table 2. The size of a breach is calculated as the

negative of the portfolio’s realized return (i.e. realized loss), minus minimum

VaR (i.e. −Rp−Qmin). For example, with short sales allowed and q? = 0.05,

the minimum VaR portfolio breaches minimum VaR (i.e. breaches its own

VaR) 37 times by an average of 0.018 (see panel (b) of Figure 4 for a depiction

of these breaches and see Table 2 for the tally); since each breach is for

a monthly investment period, we multiply by 12 to present an annualized
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average breach size of 22% (see Table 3). For comparison, again with short

sales allowed and q? = 0.05, the tangency portfolio breaches minimum VaR

101 times (see Table 2) with an annualized average breach size of 198%

(see Table 3). Note that, in describing average breach size, the % symbol

represents a difference in percentages rather than a percentage difference.

INSERT TABLE 3 HERE

Like Table 2, Table 3 has two diagonal series of boxed and bolded values:

these are the average size of breaches of minimum VaR specifically for the

minimum VaR portfolios, and can be compared within columns to the average

size of breaches of minimum VaR by the other portfolios. Our expectation

is that the boxed and bolded values should be the lowest within their own

columns. Values that are less than the boxed and bolded values within a

column are underlined, indicating portfolios that were more successful (had

a lower average size of breaches of minimum VaR) than the minimum VaR

portfolio. Similar to the results depicted in Table 2, when the minimum VaR

portfolio does not achieve the lowest average size of breaches of minimum

VaR, as indicated by the underlined values within columns of Table 3, almost

always this underperformance only occurs with respect to nearby portfolios,

i.e. the minimum variance portfolio or other minimum VaR portfolios with

close q? values. Testing for differences of means within columns, there is no

portfolio that has an average size of breaches of minimum VaR significantly

lower than that of the minimum VaR portfolio.

The rolling window investment process utilized in this empirical analysis

seeks to represent an investment procedure that commits an investor to an

uncertain outcome each period. Implemented under our assumptions, the

minimum VaR strategy generally performs as expected, and thereby generally

distinguishes itself favorably in terms of breaches of minimum VaR – certainly

in comparison with the tangency, equally weighted and index portfolios.
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4.2 Ex post portfolio performance: iShares data

The analysis reported in Section 4.1 for the FF5×5 data considers a particular

universe of domestic US assets. This section’s analysis considers a different

universe of international assets represented by (up to) 23 international stock

index iShares and two US stock index Standard & Poor’s depository receipts.

For this dataset the time span of the returns data is shorter but more fre-

quently observed than for the FF5×5 dataset. Thus, in order to achieve

a reasonable time series length of portfolio estimates and realized returns,

fortnightly portfolio rebalancing was applied instead of monthly rebalancing.

Figure 6 (which is the counterpart for the iShares data of Figure 4 for

the FF5×5 data) shows the expected and realized returns of the minimum

VaR portfolios constructed from the iShares data, along with the negatives

of their time varying VaRs, with and without short sales allowed. Breaches

of minimum VaR (i.e. incidents of realized return less than the negative of

minimum VaR, Rp < −Qmin) are clearly revealed in Figure 6 when they

occur.

INSERT FIGURE 6 HERE

Table 4 provides summary statistics for the minimum VaR and standard

portfolios over the 207 rolling window observations for the iShares data.

These results are generally in accordance with the FF5×5 results presented

in Table 1. Beginning with columns 1–4 of Table 4, the minimum VaR port-

folios’ investment weights for individual assets entail only modest extremes of

long and short positions in comparison to the tangency portfolio when short

sales are allowed. Next, columns 5–11 show that the time series statistics

for the expected return-risk ratios and realized returns of the minimum vari-

ance, minimum VaR and tangency portfolios are very much consistent with

their relative efficient frontier positions. As was the case with the FF5×5

data, it is only the mean realized return of the tangency portfolio strategy
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with short sales allowed that deviates from the expected order of performance

with a very large negative mean realized return (column 9). Measured by the

ratio of mean realized return to standard deviation of realized return (col-

umn 11), the tangency portfolio with short sales allowed produces, by far, the

worst performance, followed by the mean-variance inefficient MSCI World in-

vestable index with the next worst performance. In contrast to the FF5×5

results, disallowing short sales almost always improves portfolio performance

as measured by the ratio of mean realized return to standard deviation of

realized return (column 11). Finally, the Kolmogorov-Smirnov test p-values

given in columns 16–17 do not reject the Student’s t4 distribution as a fit for

the standardized realized returns of the minimum VaR portfolios with short

sales allowed; nor do they reject the standard normal distribution as a fit

for the standardized realized returns of the minimum VaR portfolios without

short sales allowed.21

INSERT TABLE 4 HERE

Figure 7 shows a magnified view of the extreme left tails of the P-P (proba-

bility) plots for minimum VaR portfolio standardized realized returns versus

the Student’s t4 distribution when short sales are allowed, and versus the

standard normal distribution with short sales disallowed. With short sales

allowed: up to the q? = 0.05 probability level (see panel (a) of Figure 7) the

Student’s t4 distribution is slightly more heavy tailed than the empirical dis-

tribution of the commensurate minimum VaR portfolio standardized realized

returns; and up to the 0.10 probability level (see panel (b)) the Student’s t4

distribution is less heavy tailed than the commensurate empirical distribu-

tion. When short sales are disallowed: up to the 0.05 probability level (see

panel (c)) the standard normal distribution is less heavy tailed than the com-

mensurate empirical distribution; and up to the 0.10 probability level (see

panel (d)) the standard normal distribution has a tail weight similar to the
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commensurate empirical distribution.

INSERT FIGURE 7 HERE

Tables 5 and 6 are the counterparts for the iShares data of Tables 2 and 3

for the FF5×5 data. The conclusions are similar. The tallies of the minimum

VaR portfolios’ breaches of minimum VaR shown by the boxed and bolded

numbers in Table 5 conform well with our expectations: except for the min-

imum VaR portfolio without short sales and with q? = 0.01, the numbers

of breaches are within the 90% confidence interval for a Binomial(207,q?)

random variable. As with the FF5×5 results, we find ex post that there are

portfolios that breach minimum VaR on fewer occasions than the minimum

VaR portfolio, as indicated by the underlined numbers within columns of Ta-

ble 5, but they are nearby efficient portfolios and the differences are slight.

Table 6 presents the average size of the breaches of minimum VaR tallied

in Table 5. When the minimum VaR portfolio does not achieve the lowest

average size of breaches of minimum VaR, as indicated by the underlined

values within columns of Table 6, this underperformance usually only oc-

curs with respect to nearby efficient portfolios (although notably the equally

weighted portfolio outperforms in two of the six columns). Testing for dif-

ferences of means within columns of Table 6, there is no portfolio that has

an average size of breaches of minimum VaR significantly lower than that of

the minimum VaR portfolio.

INSERT TABLES 5 and 6 HERE

5 Conclusion

That investors can, and should, maximize the return to risk ratios of their

portfolios is a well established principle. Investors might also minimize or
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limit the size of the VaRs of their portfolios. These important portfolio

features can be analyzed and managed jointly.

We provide empirical support for the applicability and validity of Alexan-

der and Baptista’s (2002) relation linking the concepts of portfolio efficiency

and VaR minimization via analyses based on two datasets of asset returns.

The first of these represents investment opportunities for investors restricting

themselves to US securities only. The second is of shorter duration, observed

at higher frequency, comprising returns on a set of assets useful to investors

seeking an internationally diversified portfolio. Portfolios were formed ex

ante and need not have behaved as expected ex post. Nevertheless we find

that, for commonly used VaR breach probabilities, minimum VaR portfolios

yield returns that conform well with the specified VaR breach probabilities

and with return/risk expectations.

The analysis shows that investors can achieve a mean-variance efficient

portfolio and simultaneously minimize VaR. It also highlights the fact that

an accurate estimate of the distribution function of the returns is essential,

but only for the lefthand tail near the VaR breach probability designated by

the user.

Notes

1See also Alexander (2009), Alexander and Baptista (2004, 2006, 2008), and Alexander

et al. (2009) for further development and analysis of this concept. Fabozzi et al. (2009)

present a recent review of this concept and other related research.
2The VaR of a portfolio conventionally refers to the threshold dollar loss the portfolio is

at risk of suffering over a discrete holding period with a specified small probability, q?, say

(which might be, for example, the 1% level specified by the Basel Committee on Banking

Supervision, 2006). We deviate slightly from this convention and quantify VaR relative to

initial portfolio value; i.e. our VaR represents a relative loss rather than an absolute loss.

With this interpretation, the VaR is the negative of the return at the q?-quantile on the

lefthand end of the portfolio’s returns distribution.
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3Working within the Markowitz (1952) paradigm it is desirable to use discrete returns

corresponding to the designated discrete portfolio holding period, as we do. This implies

a potential lower bound of minus one for realized returns, with consequently varying

lower bounds for the standardized realized returns of different portfolios. In principle this

violates our assumption of identically distributed standardized realized returns of efficient

portfolios, but, practically speaking, the lower bound is seldom if ever achieved and exerts

no effect on the analysis.
4The symbol Φ is reminiscent of the standard normal cdf, but we do not restrict our-

selves to this distribution.
5Similarly relevant is Lemma 1 of Alexander and Baptista (2006).
6Equation (3) shows that −Q is the sum of two functions of σp: Merton’s (1972) efficient

frontier, added to a line through the origin with slope Φ−1(q?). The slope of the efficient

frontier decreases from plus infinity at σp = σmvp to
√
D/C > 0 as σp → ∞. Thus a

definable maximum for −Q (minimum for VaR) will obtain for choices of q? sufficiently

small that Φ−1(q?) < −
√
D/C, which is indicated by a negative value for the excess

gradient criterion, EGC. Dependent on the choice of q?, as one moves further up along

the efficient frontier, it is the case that EGC ≥ 0 when the progressive efficient portfolio

returns distributions persistently move to the right (i.e. offer increased expected return,

contributing to higher −Q) at a rate faster than their q?-tails broaden away to the left of

the mean (thereby lowering −Q).
7If asset returns are jointly normally distributed, then VaR is a coherent risk measure

as explained by Artzner et al. (1999, Remark 3.6). The same argument applies for a

Student’s t distribution.
8Alexander et al. (2009) provides simulation results for the ex post performance of

VaR-constrained optimal portfolios, including the minimum VaR portfolio.
9The importance of asset classes relative to individual securities is highlighted by Ib-

botson and Kaplan (2000), who find, on average, that the returns of investment fund

benchmarks explain around 90% of fund returns, and that funds do not add “value above

their policy benchmarks because of a combination of timing, security selection, manage-

ment fees, and expenses” (p.32).
10The analysis is unaffected by survival bias (although the strategy may incur transac-

tion costs over and above those involved in rebalancing the portfolio to achieve the desired

allocations). Stocks which disappear, or shift to a different size and/or book-to-market

partition, are simply replaced by others.
11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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12The big-ME/high-BE/ME portfolio has missing data for July 1930 to June 1931 and

was thus excluded from portfolio optimization for initial estimation periods that overlap

these dates. That is, with roll-forward of the 200 month estimation period, the number of

assets available for portfolio optimization was initially 24 (for the 60 months from March

1943 to February 1948), and finally 25 (for the 718 months from March 1948 to December

2007).
13iShares are units of exchange-traded funds managed to track various stock indices. We

chose all non-US, non-overlapping (i.e. primarily country specific rather than regional)

international equity iShares with returns histories longer than two years. The resulting set

of 23 iShares track the MSCI international stock indices for: Australia, Canada, Sweden,

Germany, Hong Kong, Italy, Japan, Belgium, Switzerland, Malaysia, Netherlands, Austria,

Spain, France, Singapore, Taiwan, United Kingdom, Mexico, South Korea, Brazil and

South Africa; the FTSE/Xinhua China 26 index; and the S&P Latin America 40 Index.

The respective tickers are EWA, EWC, EWD, EWG, EWH, EWI, EWJ, EWK, EWL,

EWM, EWN, EWO, EWP, EWQ, EWS, EWT, EWU, EWW, EWY, EWZ, EZA, FXI,

ILF.
14The returns time series for EWT, EWY, EWZ, EZA, FXI and ILF respectively com-

mence with fortnight-ending 19 July 2000, 24 May 2000, 19 July 2000, 12 February 2003,

20 October 2004 and 7 November 2001.
15For each estimation period, iShares without a full 100 fortnight returns history were

excluded. Thus, with roll-forward of the estimation period, the number of assets increases

from 19 to 24 (note that the returns history for FXI is too short for inclusion).
16The methods for identifying the standard portfolios are generally well-known and

are thus not detailed here. However note that the tangency portfolio is occasionally

non-existent. With short sales allowed, Merton (1972), Theorem II, p.1865 ff., gives the

condition for existence of the tangency portfolio; in the case of non-existence, the technique

of Maller and Turkington (2002) was used to approximate a tangency portfolio. With short

sales disallowed, the efficient frontier terminates at the highest-risk single asset, which

limits the possible existence of the tangency portfolio; in the case of non-existence, the

tangency portfolio was taken to be the highest-risk single asset.
17Our assumptions for standardized realized returns are supported by analyses using

the Kolmogorov-Smirnov test reported in Table 1 below. The Student’s t4 distribution

and the standard normal are at extreme ends of a spectrum, in terms of heaviness of tails.

As noted previously, a Student’s t4 distibution has been found to be appropriate for world

stock indices (Platen and Sidorowicz, 2008), and Jagannathan and Ma (2003) found the
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standard normal distribution to be appropriate for portfolios with short sales disallowed.
18We repeated the analysis in Figure 3 for the iShares data; as the corresponding dia-

grams convey the same impression as those for the FF5×5 dataset, we have not included

them in this paper.
19Only “like-for-like” comparisons are reported in columns 16–17 of Table 1 for the

minimum VaR portfolios, by which we mean that minimum VaR portfolios formed under

a t4 distribution assumption have their standardized realized returns compared with the

t4 distribution (for cases when short sales are allowed), and similarly for the normal

distribution (when short sales are not allowed). We recognize that the rolling window

portfolio estimation process introduces autocorrelation for the time-series of µp and σp,

and thereby also for Zp, which undermines the validity of our Kolmogorov-Smirnov test

statistics. However we still provide these results as background to our main “numbers of

breaches of minimum VaR” results, which we expect to be binomially distributed.
20An alternative to making distributional assumptions such as Student’s t4 or standard

normal is to use the empirical cdf to locate quantiles for the calculation of VaRs, but

it is usually desirable to do some form of smoothing so as not to be too dependent on

the vagaries of a particular set of historical information. One could use the “peaks over

threshold” method (see Embrechts et al., 1997, Section 6.5) to fit a generalized Pareto

distribution to the extreme left tail of the returns distribution; but this introduces some

subjectivity into deciding on a threshold, and would involve a more complex data analysis,

different for each case considered. We feel that the t4 and normal assumptions are a

reasonable compromise for our datasets. Distributions that better fit the empirical left

tail would, of course, only improve the performance of the VaR procedure.
21See note 19.

Appendix A: Extension to minimizing CVaR

Symbolize conditional value-at-risk (CVaR) as Q̃ and define it to be the

expected relative loss a portfolio will suffer conditional on a VaR breach.

The CVaR of an efficient portfolio with VaR quantile Q is given by

−Q̃ =

∫ −Q

−∞ r dPr(Rp < r)

Pr(Rp < −Q)
.
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In our setup, Q is related to µp, σp and q by equation (1). Set q = q?

and substitute for Q with equation (1), and change variable from r to z =

(r − µp)/σp to get

−Q̃ = µp + σp

∫ Φ−1(q?)

−∞ z dPr(Zp < z)

q?
.

This is of the same form as for −Q in equation (1), but with the quantile level

shifted via a more negative coefficient of σp (so that −Q̃ < −Q). Hence the

minimization approach demonstrated for VaR similarly applies for CVaR.

Alexander and Baptista (2004) obtain this relation under the assumption

of normally distributed returns, and demonstrate the potential for a CVaR

constraint to dominate a VaR constraint in terms of risk management by

providing an efficient portfolio opportunity set with both lower maximum

risk and lower minimum risk.

Arguably the distribution assumption for efficient portfolio returns entailed

in our setup will be less reasonable for minimizing CVaR (compared to mini-

mizing VaR) because the “spread” of the assumed and real distribution tails

will need to coincide (not just the areas of the assumed and real tails as is

the case for minimizing VaR).

Appendix B: Rolling window investment

methodology

Here we describe the methodology used for the empirical analysis. Rolling

time series windows of width m were used for portfolio estimation, where

m = 200 months for the FF5×5 data and m = 100 fortnights for the iShares

data.
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Rolling window investment allocation

Let St denote the N -vector of asset prices as observed from market closing

prices at time t, t = 0, 1, 2, . . . , T , where T denotes the length of the entire

time series of asset prices. Let δt denote the N -vector of asset dividends at

time t, t = 1, 2, . . . , T . T = 978 (months) for the FF5×5 data and T = 307

(fortnights) for the iShares data. For an asset to be included amongst the

N assets, it requires a minimum return history of length m. Returns are

calculated from market close to close, thus (St + δt − St−1)/St−1 (with the

divisions taken component-wise) is the discrete raw return vector, Rt, at

time t, t = 1, 2, . . . , T . Let µt and Σt be the expected value and variance-

covariance matrix of Rt+1, considered as a random variable; in general, we

allow for them to change with time.

At a given time t, for a window of width m, we estimate µt and Σt by the

sample mean and sample variance-covariance matrix of the returns based on

the previous m trading periods’ observations; thus

µ̂t =
1

m

t∑
s=t−m+1

Rs,

and similarly for Σ̂t. Extension from this sample variance-covariance estima-

tion approach to other estimation approaches is of interest but left for future

research.

We begin the series of estimates at time m and conclude it at time T ;

e.g. the first FF5×5 window extends from July 1926 to February 1943, from

which we calculate µ̂m and Σ̂m. The window is then rolled forward one time

period to get µ̂m+1 and Σ̂m+1, etc., and we continue this process until we

finally obtain µ̂T and Σ̂T .

The minimum VaR portfolio allocation for time t = m, denoted x̂Qmin,m,

corresponding to VaR breach probability q?, is calculated from equation (5)
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by substituting µ̂m and Σ̂m for µ and Σ. Rolling the window forward and

repeating for values t = m+1,m+2, . . . , T gives the time series of minimum

VaR portfolio allocations.

Rolling window investment evaluation

At each of times t = m+ 1,m+ 2, . . . , T we calculate the realized return on

a minimum VaR portfolio with allocation vector x̂Qmin,t from

Rp,t = x̂′Qmin,t−1Rt.

This gives a time series of observations Rp,m+1, . . . , Rp,T as the returns on a

minimum VaR portfolio.

Although it might be reasonable to assume the return vectors R1, . . . ,RT

are independent, the realized portfolio returns Rp,m+1, . . . , Rp,T are correlated

by virtue of the overlaps occurring in the calculation of the µ̂t and Σ̂t,

and hence in the corresponding portfolio allocations, as the window is rolled

forward. Nevertheless the degree of dependence is negligible for portfolio

returns separated by m or more units of time, as there is then no overlap in

the observations used to calculate the µ̂t and Σ̂t. Where necessary, we can

use the limit theory worked out for “m-dependent” observations in Herrndorf

(1984), to justify significance tests.
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Figure 1: Comparative VaRs for two hypothetical efficient portfolios
Example probability densities for the realized returns of two efficient portfolios (A and
B) and their comparative VaRs (corresponding to benchmark returns −QA and −QB) for
nominal VaR breach probability q?. φR(·) is the probability density function for efficient
portfolio realized return, Rp. (σA, µA) and (σB , µB) are the volatility and expected return
combinations for efficient portfolios A and B. B is above and to the right of A on the
efficient frontier (i.e. µB > µA and σB > σA).
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Figure 2: FF5× 5 Efficient frontier and minimum VaR portfolios
Ex ante (σp, µp) frontier of efficient portfolios with locations of the minimum VaR and
“standard” portfolios (top panel), and corresponding efficient frontier VaR (Q, given by
equation (3)) (bottom panel), with short sales allowed and assuming a Student’s t4 distri-
bution for efficient portfolio standardized realized returns; incorporating the 25 Fama and
French ME and BE/ME portfolios, and estimated from the 200 month period from June
1983 to January 2000.
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Figure 5: FF5×5 P-P plots
Left tail P-P plots of monthly standardized realized returns of minimum VaR portfolios
with q? = {0.05, 0.10}, with and without short sales allowed respectively versus Student’s
t4 and standard normal distributions; incorporating the 25 Fama and French ME and
BE/ME portfolios with 778 rolling 200 month estimation periods.
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Figure 7: iShares P-P plots
Left tail P-P plots of fortnightly standardized realized returns of minimum VaR portfolios
with q? = {0.05, 0.10}, with and without short sales allowed respectively versus Student’s
t4 and standard normal distributions; incorporating 22 international stock index iShares
and the SPY and MDY with 207 rolling 100 fortnight estimation periods.
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Table 2: FF5× 5 VaR breaches
Numbers of breaches of minimum VaR, for monthly minimum VaR portfolios with
q? = {0.01, 0.05, 0.10} and “standard” portfolios, with and without short sales allowed
respectively assuming Student’s t4 and standard normal distributions for standardized re-
alized returns; incorporating the 25 Fama and French ME and BE/ME portfolios with 778
rolling 200 month estimation periods.

6 50 103 19 50 79

13 63 117 24 62 90

2 34 73 16 37 74

q
�

=0.01 2 37 73 17 37 72
(4, 7.8, 13)* (4, 7.8, 13)*

q
�

=0.05 1 37 75 15 37 70
(29, 38.9, 49)* (29, 38.9, 49)*

q
�

=0.10 3 38 76 16 37 67

(64, 77.8, 92)* (64, 77.8, 92)*

34 101 142 17 40 71

portfolio

S&P500 index

FF5x5 portfolios:

equally weighted

*(0.05 probable maximum breaches, expected breaches = 778q
�

, 0.95 probable maximum breaches),                                                 

for a Binomial(778,q
�

) random variable.
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Breaches of minimum VaR for a time series of 778 realized returns

without short sales allowed, assuming 

standard normal distribution for              

standardized realized returns

q
�

=0.10q
�

=0.01q
�

=0.10q
�

=0.05q
�

=0.01 q
�

=0.05

with short sales allowed, assuming         

Student's t4 distribution for                             

standardized realized returns
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Table 3: FF5× 5 average size of VaR breaches
Average size of breaches of minimum VaR, for monthly minimum VaR portfolios with
q? = {0.01, 0.05, 0.10} and “standard” portfolios, with and without short sales allowed
respectively assuming Student’s t4 and standard normal distributions for standardized
realized returns; incorporating the 25 Fama and French ME and BE/ME portfolios with
778 rolling 200 month estimation periods.

44% 32% 32% 28% 30% 32%

51% 38% 37% 47% 36% 38%

38% 27% 27% 27% 32% 27%

q
�

=0.01 36% 22% 26% 26% 32% 28%

q
�

=0.05 75% 22% 26% 30% 33% 29%

q
�

=0.10 30% 24% 27% 28% 32% 30%

470% 198% 162% 41% 38% 35%

portfolio

S&P500 index

FF5x5 portfolios:

equally weighted

with short sales allowed, assuming                

Student's t4 distribution for                             

standardized realized returns

Average size of breaches of minimum VaR for a time series of 778 monthly realized returns,*        

annualized (x 12)

without short sales allowed, assuming 

standard normal distribution for            

standardized realized returns
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*Size of breach is the negative of realized return (i.e. realized loss) minus minimum VaR.                                                               

N.B. the % symbol represents a difference in percentages rather than a percentage difference. 
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Table 5: iShares VaR breaches
Numbers of breaches of minimum VaR, for fortnightly minimum VaR portfolios with
q? = {0.01, 0.05, 0.10} and “standard” portfolios, with and without short sales allowed
respectively assuming Student’s t4 and standard normal distributions for standardized
realized returns; incorporating 22 international stock index iShares and the SPY and
MDY with 207 rolling 100 fortnight estimation periods.

3 16 31 8 16 26

6 17 36 10 19 32

1 10 22 8 12 17

q
�

=0.01 1 8 24 7 14 20
(0, 2.1, 5)* (0, 2.1, 5)*

q
�

=0.05 2 9 24 8 14 21
(5, 10.4, 16)* (5, 10.4, 16)*

q
�

=0.10 2 9 28 8 14 21

(14, 20.7, 28)* (14, 20.7, 28)*

38 56 72 12 20 33

with short sales allowed, assuming         

Student's t4 distribution for                             

standardized realized returns

Breaches of minimum VaR for a time series of 207 realized returns

iShares portfolios:

q
�

=0.10q
�

=0.05q
�

=0.01

without short sales allowed, assuming 

standard normal distribution for              

standardized realized returns

*(0.05 probable maximum breaches, expected breaches = 207q
�

, 0.95 probable maximum breaches),                                                 

for a Binomial(207,q
�

) random variable.
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Table 6: iShares average size of VaR breaches
Average size of breaches of minimum VaR, for fortnightly minimum VaR portfolios with
q? = {0.01, 0.05, 0.10} and “standard” portfolios, with and without short sales allowed
respectively assuming Student’s t4 and standard normal distributions for standardized
realized returns; incorporating 22 international stock index iShares and the SPY and
MDY with 207 rolling 100 fortnight estimation periods.

365% 119% 86% 175% 123% 96%

31% 61% 49% 44% 53% 50%

34% 33% 38% 27% 53% 59%

q
�

=0.01 40% 39% 35% 32% 50% 54%

q
�

=0.05 23% 36% 36% 30% 52% 54%

q
�

=0.10 32% 40% 33% 34% 55% 56%

1245% 916% 741% 58% 68% 60%

*Size of breach is the negative of realized return (i.e. realized loss) minus minimum VaR.                                                               

N.B. the % symbol represents a difference in percentages rather than a percentage difference. 
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