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Blind Signal Separation Using
Steepest Descent Method
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Antonio Cantoni, Fellow, IEEE

Abstract—A method that significantly improves the convergence
rate of the gradient-based blind signal separation (BSS) algorithm
for convolutive mixtures is proposed. The proposed approach is
based on the steepest descent algorithm suitable for constrained
BSS problems, where the constraints are included to ease the per-
mutation effects associated with the convolutive mixtures. In addi-
tion, the method is realized using a modified golden search method
plus parabolic interpolation, and this allows the optimum step size
to be determined with only a few calculations of the cost function.
Evaluation of the proposed procedure in simulated environments
and in a real room environment shows that the proposed method
results in significantly faster convergence for the BSS when com-
pared with a fixed step-size gradient-based algorithm. In addition,
for blind signal extraction where only a main speech source is de-
sired, a combined scheme consisting of the proposed BSS and a
postprocessor, such as an adaptive noise canceller, offers impres-
sive noise suppression levels while maintaining low-target signal
distortion levels.

Index Terms—Blind signal separation (BSS), gradient based, op-
timization, second order, step-size search.

I. INTRODUCTION

MICROPHONE arrays have been used successfully for
speech enhancement in various applications including

personal digital assistants (PDAs) and mobile phones. This is
due to the fact that microphone arrays provide spatial diversity,
which can be exploited to give spatial selectivity (e.g., [1]–[3]).

Microphone array techniques can be largely classified into
two broad areas—namely beamforming and blind signal sep-
aration (BSS). Both approaches share the commonality of fil-
tering and combining the microphone signals to best extract the
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source(s) of interest. Traditional beamforming methods require
information, such as array geometry and source localization, to
form a beam toward the source of interest. In the second case,
all of the sources are separated from their mixtures without a
priori knowledge of the sources or the arrays. Currently, BSS is
an emerging field of interest since the only assumption required
is that the sources are statistically independent [4], [5]. Thus, un-
like its counterpart beamforming, BSS has the ability to separate
sources from the observed mixtures without source localization
or array geometry information. Such flexibility has made BSS
a popular technique in many applications (e.g., image enhance-
ment, speech enhancement, and biomedical signal processing).

In general, there are two types of BSS approaches, namely,
higher-order-based BSS [5]–[7] and second-order-based BSS
[8]–[11]. These two approaches require different assumptions
regarding the signal statistics. For example, higher-order-based
BSS generally requires an assumption about the sources’ den-
sity functions [12]. Second-order based BSS, on the other hand,
requires assumption about the second-order statistics such as
nonstationarity or nonwhiteness [10].

The slow rate of convergence is frequently an issue with gra-
dient-based BSS, particularly for convolutive mixtures. For real-
time applications, convergence and complexity are critically im-
portant as the algorithm is required to converge fast to reflect
changes in statistics. In [13]–[16], adaptive step-size algorithms
have been investigated for higher-order-based BSS, applicable
for instantaneous mixing. The formulated optimization prob-
lems are unconstrained optimization problems. The unmixing
filters and the step sizes are adaptively updated for every itera-
tion, depending on the gradient.

In this paper, we consider the convolutive mixing problems
with second-order gradient-based BSS. Additional constraints
on the time-domain unmixing filters are included to ease the
permutation problem associated with convolutive mixings [8].
Thus, these problems are formulated as constrained optimiza-
tion problems. Consequently, the adaptive step-size methods de-
scribed for instantaneous mixing are not directly applicable.

Here, we propose a scheme which is based on the steepest
descent algorithm to improve the convergence characteristics
of the gradient-based BSS with fixed step size, described in
[8]. The proposed method is realized using a modified Golden
search procedure [18] plus a parabolic interpolation to deter-
mine the optimum step size in each iteration. By using Brent’s
method [19], a parabola is fitted between the points where the
minimum step size is located and the optimized step size can
be effectively estimated with just a few calculations of the cost
function. An important feature of the proposed method is that
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it does not require a priori selection of step-size parameters
used in published adaptive step-size algorithms for instanta-
neous mixing.

As an application for speech enhancement for blind signal ex-
traction where there is usually a single desired speech signal in a
noisy environment, we combine the proposed BSS with a post-
processor, such as an adaptive noise canceller (ANC) [20], to
further reduce the influence of noise in the dominant BSS speech
output. In this case, the BSS is employed as a preprocessor to
give a separation of the speech signal of interest and the noisy
background.

Evaluations of the proposed algorithm have been performed
in simulated environments and in a real room hands-free envi-
ronment. Results show that faster convergence compared with
fixed step-size BSS is obtained by incorporating the optimum
step-size search. Apart from the improved convergence rate, it
has been observed in evaluations that the proposed approach
achieves a desired cost function value with fewer total number
of operations than the fixed step-size algorithm described in [8].

The outline of the paper is given as follows. Second-order
BSS is formulated in Section II following the approach de-
scribed in [8], and the notation employed in the paper is
introduced. In Section III, the proposed modification to the
fixed step-size gradient-based BSS algorithm is presented.
The complexity of the proposed BSS algorithm is derived in
Section IV. Section V illustrates the use of the proposed algo-
rithm for speech enhancement application with one dominant
speech output, where the BSS is combined with a postprocessor,
such as an ANC. Finally, Section VI presents the simulation
results, and Section VII concludes the paper.

II. BSS BLIND SIGNAL SEPARATION

Consider the model used in [8] for a convolutive mixture of
sources in which the received signal vector for microphones

is

(1)

where is the sampled time index at the time instant
and denotes the sampling period. The matrix

is a mixing matrix, where is the length of the
impulse responses from the sources to the microphones. The

vector contains sources at the time index

while is the noise and denotes transposition. The re-
ceived signal vector is passed through unmixing matrices
with dimension , where and are the
length of the unmixing filters, to produce an output signal vector
that can be expressed as

(2)

The objective is to find the unmixing matrices
to recover the sources (up to an arbitrary

scaling and permutation) [8], [17]. The exact number of
sources is usually unknown and is generally assumed to be the
same as the number of microphones . Consequently, the
unmixing matrices and are assumed to
have the dimension for all .

As in [8], we define the -point windowed discrete Fourier
transform (DFT) with normalized frequency

and index as

(3)

where is an overlapping factor and . Since the
BSS method in [8] exploits the nonstationarity of signals, the
received signal is processed in block BSS. Furthermore, the pro-
cessing is carried out in the frequency domain. Thus, the DFT
domain received signal is divided into blocks of data. Denote

as the number of samples in each block. For ,
the cross-power spectrum for the block, , can be
obtained as

(4)

where denotes Hermitian transposition. Note that the
model in (1) involves linear convolution whereas frequency-do-
main processing using the DFT corresponds to circular
convolution. Assumptions dealing with linear/circular convolu-
tion and also nonstationarity issues related to our problem are
covered in [8].

The task at hand is to estimate matrix for each
frequency that jointly decorrelates all of the matrices in
(4) for all . As proposed in [8], this problem can be mathe-
matically formulated as minimizing the following weighted cost
function over all of the frequencies :

(5)
where the matrix is the diagonalization error

(6)

and is the Frobenius norm.
The matrix is a diagonal matrix with elements

equal to along the diagonal. Thus,
for all and , , we have

if
if

where denotes the element of a matrix . The
weighting function is obtained based on the correlation
matrices , , as
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The minimization of the weighted cost function in (5) can
lead to an arbitrary permutation of the frequency bins. A method
to overcome this problem is to constrain the corresponding time-
domain unmixing weight of [8]
as

(7)

where and are a zero matrix. We now
reformulate the equivalent constraints to (7) in terms of the
frequency-domain unmixing matrices. Denoting and , re-
spectively, as the -point inverse DFT matrix operation and a

matrix

(8)

where and are a zero
matrix and a identity matrix, respectively.
The constraint (7) can be reduced to

(9)

where and
, , is the element of matrix

. The vector is a zero vector.
The constraints in (9) are equivalent to the following linear
constraints on the frequency-domain unmixing matrices:

(10)

where

with denoting the element of the matrix
.

To avoid the degenerate solution of matrices with zero en-
tries, it is necessary to introduce additional constraints on the
elements of the unmixing matrices. One possible constraint is
to restrict the diagonal elements of to be one for all .
Alternatively, the unmixing matrices can be forced to be unitary
[10], [17]. These constraints on the unmixing matrices can be
incorporated as constraints in the optimization problem or in-
cluded as penalty functions in a weighted cost [17].

The problem of minimizing (5) with (10) and additional con-
straints on the diagonal of the unmixing matrices can be viewed
as an optimization problem over , , with di-
agonal elements of chosen as constant

(11)

It follows from (11) that along the diagonal, (10) is satisfied for
all . Thus, the optimization problem can be formulated
as (12), shown at the bottom of the page.

III. STEEPEST DESCENT ALGORITHM AND

GRADIENT DIRECTION

The problem (12) is a constrained optimization problem
with linear constraints. By reducing it to an unconstrained
optimization problem [21], this problem can be solved by using
the Newton method. However, as (12) is optimized over all
unmixing matrices , , the number
of reduced variables is still large. Thus, the Newton method
applied to this problem has high computational complexity.
Hence, the gradient approach is employed in this case for the
optimization problem.

In this section, a two-level adaptive optimization procedure,
which includes a step-size optimization, is developed for
solving the problem (12) using the gradient search. In general,
the convergence of the gradient search algorithm depends on
the value of the step size . The gradient-based algorithms
converge slowly for small values of and may diverge for large
values of . Thus, it is desirable to obtain the best value of
for each iteration.

A. Gradient Direction

As the first step, we derive the gradient direction of the cost
function at the th iteration, where is an integer. The partial
derivative of the cost function
at the th iteration with respect to the unmixing weights

, , can be expressed as

if
if

(13)

where

(14)
Equivalently, we have

(15)

where “ ” is a matrix with elements equal to outside the
diagonal and zero along the diagonal.

where is a constant and

(12)
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B. Step-Size Search for the Gradient Descent Algorithm in
Each Iteration

We now develop a procedure to search for an optimum step
size for each iteration . Denote as the projection operator
for a set of matrices into the space defined by the linear con-
straints in (12). The optimum step size is obtained so that

(16)

The search for can be viewed as a one-dimensional opti-
mization problem with respect to . Thus, a line search method
that utilizes the idea of the golden search algorithm for obtaining
the minimum in one interval [18] is modified for suitability to
this problem. Since the line search requires the calculation of
the cost function a number of times, with each time requiring
the projection of the unmixing matrices into the space defined
by linear constraints in (12), the number of projections can be re-
duced by 1) projecting the gradient direction (15) into the space
defined by the linear constraints in (12) to obtain a projected di-
rection

(17)

2) searching for an optimum step size in this direction. Since

the problem (16) reduces to

(18)

and 3) once the optimum step size is obtained, the coefficient
update can be projected into the space defined by the linear con-
straints to prevent the accumulation of numerical errors.

For notational convenience, we define a one-dimensional
function with respect to the parameter as

(19)
The search for an optimum step size can be described as fol-

lows.
Procedure III.1: Search for an optimum step size that

minimizes the cost function (19).
Step 1) Initialize a step size , a constant , and an

accuracy level . Set , , and .
Step 2) Obtain the cost functions and . If

, then reduce the initial step size by
setting . Let and go to the beginning
of Step 2. Otherwise, and continue
to Step 3).

Step 3) Increase by setting and let
. Calculate the cost function . If

, then set , and return to
the beginning of Step 3). Otherwise, go to Step 4).

Step 4) We have three points , , and , satisfying

(20)

Thus, there exists a local minimum in the interval
. Brent’s method using parabolic inter-

polation [19] is then employed to search for the
local optimum step size in the interval .
Following that, a parabola is fitted among three
points , , and . The
minimum of this parabola in the interval
can be calculated as

(21)

with the corresponding cost function . Next,
progress to Step 5).

Step 5) If , then go to Step 6). Otherwise,
we have one of the following two cases.

Case 1) The value of falls in the interval .
If , then set ,

, , and .
Otherwise, set and .

Case 2) The value of falls in the interval .
If , then set ,

, and .
Otherwise, set and .

For both cases, the new set of three points
, , and satisfies the

constraints in (20). Thus, return to Step 4).
Step 6) If , then let . Set the optimum

step size as and stop the procedure.

The advantage of Procedure III.1 is that it is relatively simple
since only the cost function (19) is required to be calculated.
In addition, by combining parabolic interpolation with an in-
creasing step size search for each step by , the optimum
step size can be found with just a few calculations of the
cost function.

C. Summary of the Steepest Descent Gradient-Based
Optimization Procedure

The proposed two-level optimization procedure for the
problem (12) is now outlined as follows.

Procedure III.2: Two-level adaptive optimization procedure.
Step 1) Initialize the iteration and the time-domain

unmixing matrices as

if
(22)

Transform into the frequency domain using
-point DFT to obtain , .

It can be seen that , ,
satisfy the constraints in (12).

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 2, 2009 at 02:08 from IEEE Xplore.  Restrictions apply. 



4202 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 8, AUGUST 2007

Step 2) Calculate the projected search direction
, , in (17).

Step 3) Search for an optimum step size in the direction
, , according to Pro-

cedure III.1. Update the unmixing weight matrices
according to

(23)

To prevent accumulation of numerical errors, these
matrices can be projected into the space defined by
the linear constraints in (12).

Step 4) Calculate the cost function

for the iteration. If

where is a small tolerance and denotes the
absolute value, then go to Step 5). Otherwise, set

and return to Step 2).
Step 5) Stop the procedure. The optimum unmixing ma-

trices in the frequency domain are

with the corresponding time-domain impulse re-
sponses .

IV. COMPLEXITY FOR ADAPTIVE BSS ALGORITHM

In this section, we estimate the number of complex multipli-
cations required in each iteration for two cases with: 1) fixed
step size and 2) optimized step size. Since the observed signal
is real, we only need to estimate the unmixing matrices for
frequencies, where . To reduce the computa-
tional complexity, the first summation of the cost function in (5)
is now defined only between 0 and As can be seen from
Algorithms III.1 and III.2, the main calculating steps required
for the BSS algorithm include 1) obtaining the cost function (5);
2) calculating the gradient direction (15); and 3) obtaining the
projected gradient direction.

We start with estimating the number of complex multiplica-
tions required for (5). The number of multiplications required
for (6) for each is . Thus, the number of multiplications
required for (5) is

(24)

Moreover, the number of multiplications required to obtain
the gradient direction (15) for each iteration can be given as

(25)

The projected gradient, on the other hand, requires two
-point DFT. If is chosen as a power of two, then the

fast Fourier transform (FFT) can be used. Thus, a -point
FFT requires multiplications. Consequently, the
number of multiplications required to constrain the gradient is

Hence, the number of multiplications for each iteration of the
BSS with fixed step size is

(26)

Denote as the average number of cost function calculation re-
quired to obtain the optimized step size. The number of multipli-
cations required in each iteration for the BSS with the optimized
step size is

(27)

Denote and as the number of iterations required by BSS
with a fixed and optimized step size, respectively, for conver-
gence. The complexity ratio between the optimized and the fixed
step size for convergence is defined as

(28)

In the simulation result section, the BSS will be shown with
an optimized step size and does not require as many iterations
for convergence as with the fixed step size.

V. BSS POSTPROCESSOR WITH ADAPTIVE NOISE CANCELLER

As an application for speech enhancement where there is
usually a single desired speech signal in a noisy environment,
the improved BSS is combined with postprocessing such as an
ANC [20] to further suppress the noise component in the BSS
speech-dominant output. Prior to the postprocessing stage, the
BSS outputs must be correctly channeled into the desired and
the reference signals. Thus, we employ the kurtosis, which is
a quantitative measure of non-Gaussianity of a signal, for each
BSS output in order to determine the desired speech signal.

For , the kurtosis for the th BSS output can
be estimated as shown in (29), at the bottom of the next page,
where is the th element of , which is the
output of through the BSS. In addition, is the
variance of and denotes the expectation over .

A smaller value of kurtosis indicates that the distribution
tends toward Gaussian while a higher value of kurtosis indi-
cates that the distribution tends toward super-Gaussian. Since
a speech signal has a Laplacian distribution [22], it belongs
to the super-Gaussian case. In addition, it follows from the
central limit theorem that the interference/noise may be due to
many nondirectional sources (e.g., babble noise tends to be a
Gaussian-like distribution).

By denoting as the index of the output corresponds to the
largest kurtosis

(30)
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then is the speech-dominant output while ,
, are the noise-dominant outputs.

The ANC is then employed to further cancel any compo-
nents correlating to , , from . Denote

as the coefficient vector of the ANC filter with order
for the th BSS output at the th iteration

The ANC speech output is given by

(31)

where and is an vector of the th output

(32)

The modified frequency-domain leaky LMS algorithm [23]
is used to update the ANC coefficient weight with

(33)
where is a nonlinear function given by

(34)

The constants and are the leaky factor and the step size for
the ANC, respectively, while denotes the norm of a vector.
The value can be obtained iteratively as

(35)

where is the smoothing factor.

VI. SIMULATION RESULTS

Simulations are performed with , , and
. The values of and are chosen as and .

The overlapping factor is . The tolerances and
are chosen as and . The fixed step
size and the initial step size for Procedure III.1 are chosen as

[8].

A. BSS in a Simulated Environment With Two Speech Sources
and Two Microphones

The sources include male and a female speech having the
same power and operating at the same time. The mixing signals
have 8-s duration with the sampling rate of 8 kHz.

The mixing channels are chosen to be the same as those in
[17]. The impulse responses of the first set of mixing channel A
are

(36)

Fig. 1. Case 1: Convergence comparison for BSS with fixed and optimized
step size in a simulated environment with channel A. Note that the number of
iterations on the x-axis for the two subplots are different.

while the impulse responses of the second set of mixing channel
B are

(37)
Figs. 1 and 2 plot the convergence of the BSS algorithms with

fixed and optimum step size for five sets of mixing signals with
the channels given in (36) and (37), respectively. The BSS with
optimum step size converges when the stopping criterion in Step
4 of Procedure III.2 is satisfied while the BSS with fixed step
size runs until the cost function approaches that of the optimum
step size. It can be seen that BSS with an optimum step size
results in a significantly faster convergence than the one with
fixed step size.

Table I shows the average signal-to-interference ratio (SIR)
(in decibels) and the average distortion (in decibels) for the two
speech output using both mixing channels. The BSS with the
optimized step size has approximately the same SIR and distor-
tion as with the one with a fixed step size. The BSS algorithms
separate the two speech signals while maintaining low distor-
tion of the speech signals.

Table II shows the complexity comparison between the BSS
with optimized and fixed step size. The table also shows the
average number of calculations required for the cost function
in each step for searching the optimum step size. The BSS with
an optimized step size has a lower total complexity than the one

(29)
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TABLE I
CASE 1: SECOND-ORDER BSS IN SIMULATED ENVIRONMENTS WITH TWO SPEECH SOURCES AND TWO MICROPHONES

TABLE II
CASE 1: COMPLEXITY COMPARISON ACCORDING TO TABLE I FOR SIMULATED ENVIRONMENTS

Fig. 2. Case 1: Convergence comparison for BSS with a fixed and optimized
step size in a simulated environment with channel B.

with a fixed step size, even for cases when the fixed step-size
algorithm converges relatively fast.

B. Combined Scheme of BSS and ANC in a Real Room
Environment With a Speech Source and Babble Noise

Simulation is tested in a real room environment of dimensions
using a linear array, sampled at 8 kHz. The

interelement array distance is 0.04 m and the speech source is
positioned 0.55 m at an arbitrary angle of 65 from the center
of the array. Similar to the first case, the algorithm is tested for
five sets of a noisy received signal, each having 8 s. The purpose
of placing the source at an angle is to test whether the proposed
structure is able to pick up the source without any localization
information. As for the interference, two loudspeakers emitting
babble noise are placed facing the front two corners of the room
and three other loudspeakers (also babble) are randomly placed
in the middle of the room facing the array.

Fig. 3. Case 2: Convergence comparison for BSS with a fixed and optimized
step size in a real room environment with two microphones.

Figs. 3–5 show the convergence of the BSS cost function for
a fixed and optimized step size. The number of microphones in-
creases from 2 to 4. The BSS with an optimized step size results
in a faster convergence rate than the one with a fixed step size.
This is especially evident for the case with three or four micro-
phones.

Table III shows the average signal-to-noise ratio (SNR) (in
decibels) for the speech-dominant output and the noise-to-signal
ratio (NSR) (in decibels) for the noise-dominant output with the
number of microphones increasing from 2 to 4. The BSS with
an optimized step size has approximately the same average SNR
and NSR as the one with the fixed step size.

Table IV shows the complexity comparison between the fixed
and optimized step size BSS for convergence. The BSS algo-
rithm with an optimized step size achieves overall lower com-
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Fig. 4. Case 2: Convergence comparison for BSS with a fixed and optimized
step size in a real room environment with three microphones.

Fig. 5. Case 2: Convergence comparison for a BSS with a fixed and optimized
step size in a real room environment with four microphones.

TABLE III
CASE 2: AVERAGE SIGNAL-TO-NOISE RATIO (SNR) FOR SPEECH-DOMINANT

OUTPUT AND NOISE-TO-SIGNAL RATIO (NSR) FOR NOISE-DOMINANT OUTPUT

IN A REAL ROOM ENVIRONMENT WITH BABBLE NOISE. THE NUMBER OF

MICROPHONES INCREASES FROM TWO TO FOUR. THE NOISY RECEIVED

SIGNAL HAS AN AVERAGE SNR OF 0 dB

TABLE IV
CASE 2: COMPLEXITY COMPARISON ACCORDING TO TABLE III

FOR A REAL ROOM ENVIRONMENT WITH BABBLE NOISE

Fig. 6. Case 2: Spectrogram for the original speech and the noise component
at the first microphone for the case with four microphones in a real room envi-
ronment with babble noise.

plexity due to its faster convergence which results in a signifi-
cant reduction in the number of iterations.

As for the combined scheme of BSS and ANC, the noise
level in the speech-dominant output is reduced further by
passing BSS outputs through a postprocessor, such as an ANC.
The ANC exploits the temporal content of the babble-dom-
inant output to remove the residual babble sources in the
speech-dominant output. For the ANC, the parameters , , ,
and are chosen as , , , and .

Table V shows the SNR for the speech-dominant output of
ANC during the first 4 s, 4–8 s, 8–12 s, and 12–16 s. The noise
suppression levels increase significantly as the time increases
(e.g., between 12–16 s). In addition, the noise suppression is
increased with a higher number of microphones. The table also
shows the distortion level for the speech outputs. The hybrid
processor yields a significant noise suppression level while
maintaining a low level of target signal distortion.

Fig. 6 shows the spectrogram of the source and the noise com-
ponents for one of the data sets in the noisy received signal at the
first microphone for the case with four elements. The spectro-
grams of the speech and the noise-dominant BSS outputs with
optimized step size are given in Fig. 7. Clearly, the babble noise
is suppressed in the speech-dominant output and dominated in
the noise-dominant output.

Fig. 8 plots the spectrogram for the combined BSS and ANC
output as well as the noisy received signal during the period
between 8–16 s. A significant noise suppression is obtained for
the ANC output while maintaining low distortion of the speech
signal.
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TABLE V
CASE 2: AVERAGE SIGNAL-TO-NOISE RATIO (SNR) FOR THE SPEECH DOMINANT OUTPUT AFTER THE ANC

FOR A REAL ROOM ENVIRONMENT WITH BABBLE NOISE

Fig. 7. Case 2: Spectrogram of the speech-dominant and the noise-dominant
BSS outputs for the case with four microphones and optimized step-size BSS
in a real room environment with babble noise.

Fig. 8. Case 2: Spectrogram of the combined BSS and ANC output, and the
noisy received signal for the case with four microphones and optimized step
size BSS in a real room environment with babble noise.

VII. CONCLUSION

In this paper, we have proposed a steepest descent adaptive
optimization procedure which includes a step size search in the
context of gradient-based second-order BSS to improve con-
vergence and reduce complexity associated with the fixed step

size. The method is realized by using a modified golden search
method and a parabolic interpolation to search for an optimal
step size in each iteration. The performance of the proposed
algorithm evaluated in simulated environments and a real room
environment shows that the algorithm results in a significantly
faster convergence and with lower overall complexity when
compared to the constant step-size gradient-based algorithm.

REFERENCES

[1] M. Brandstein and D. Ward, Microphone Arrays: Signal Processing
Techniques and Applications, ser. Digital Signal Processing. Berlin,
Germany: Springer-Verlag, 2001.

[2] J. Benesty, S. Makino, and J. Chen, Speech Enhancement. Berlin,
Germany: Springer-Verlag, 2005.

[3] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts
and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[4] P. Smaragdis, “Efficient blind separation of convolved sound mix-
tures,” presented at the IEEE Workshop Applications Signal Process.
Audio Acoust., Oct. 1997.

[5] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: Wiley, 2001.

[6] S. Haykin, Unsupervised Adaptive Filtering. New York: Wiley, 2000,
vol. 1, Blind Source Separation.

[7] A. Bell and T. Sejnowski, “An information maximization approach to
blind separation and blind deconvolution,” Neural Comput., vol. 7, pp.
1129–1159, Nov. 1995.

[8] L. Parra and C. Spence, “Convolutive blind separation for non-sta-
tionary sources,” IEEE Trans. Speech Audio Process., vol. 6, no. 3, pp.
320–327, May 2000.

[9] E. Weinstein, M. Feder, and A. V. Oppenheim, “Multi-channel signal
separation by decorrelation,” IEEE Trans. Speech Audio Process., vol.
1, no. 4, pp. 405–413, Oct. 1993.

[10] D. W. E. Schobben and P. W. Sommen, “A frequency domain blind
signal separation method based on decorrelation,” IEEE Trans. Signal
Process., vol. 50, no. 8, pp. 1855–1865, Aug. 2002.

[11] H. Buchner, R. Aichner, and W. Kellermann, “A generalization of
blind source separation algorithms for convolutive mixtures based on
second-order statistics,” IEEE Trans. Speech Audio Process., vol. 13,
no. 1, pp. 120–134, Jan. 2005.

[12] N. Grbic, X.-J. Tao, S. Nordholm, and I. Claesson, “Blind signal separa-
tion using overcomplete subband representation,” IEEE Trans. Speech
Audio Process., vol. 9, no. 5, pp. 524–533, Jul. 2001.

[13] L. Yuan, W. Wang, and J. A. Chambers, “Variable step-size sign natural
gradient algorithm for sequential blind source separation,” IEEE Signal
Process. Lett., vol. 12, no. 8, pp. 589–592, Aug. 2005.

[14] J. A. Chambers, M. G. Jafari, and S. McLaughlin, “Variable step-size
EASI algorithm for sequential blind source separation,” Electron. Lett.,
vol. 40, no. 6, pp. 393–394, Mar. 2004.

[15] S. C. Douglas and A. Cichocki, “Adaptive step size techniques for
decorrelation and blind source separation,” in Proc. Conf. Rec. 32nd
Asilomar Conf. Signals, Systems and Computers, Nov. 1998, vol. 2,
pp. 1191–1195.

[16] J.-F. Cardoso and B. H. Laheld, “Equivariant adaptive source separa-
tion,” IEEE Trans. Signal Process., vol. 44, no. 12, pp. 3017–3030,
Dec. 1996.

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 2, 2009 at 02:08 from IEEE Xplore.  Restrictions apply. 



DAM et al.: BLIND SIGNAL SEPARATION USING STEEPEST DESCENT METHOD 4207

[17] W. Wang, S. Sanei, and J. A. Chambers, “Penalty function-based
joint diagonalization approach for convolutive blind separation of
nonstationary sources,” IEEE Trans. Signal Process., vol. 53, no. 5,
pp. 1654–1669, May 2005.

[18] M. Minoux, Mathematical Programming Theory and Applications.
New York: Wiley, 1986.

[19] R. P. Brent, Algorithms for Minimization Without Derivatives. New
York: Dover, 2002.

[20] S. Y. Low, S. Nordholm, and R. Togneri, “Convolutive blind signal
separation with post-processing,” IEEE Trans. Speech Audio Process.,
vol. 12, no. 5, pp. 539–548, Sep. 2004.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[22] S. Gazor and W. Zhang, “Speech probability distribution,” IEEE Signal
Process. Lett., vol. 10, no. 7, pp. 204–207, Jul. 2003.

[23] J. E. Greenberg, “Modified LMS algorithms for speech processing with
an adaptive noise canceller,” IEEE Trans. Speech Audio Process., vol.
6, no. 4, pp. 338–350, Jun. 1998.

Hai Huyen Dam received the Bachelor’s degree
(Hons.) and the Ph.D. degree (Hons.) from Curtin
University of Technology, Perth, Australia, in 1996
and 2001, respectively.

From 1999 to 2000, she was a Visiting Research
Associate, spending one year at the Blekinge Insti-
tute of Technology, Karlskrona, Sweden. Currently,
she is a Senior Lecturer with a joint appointment
between Western Australian Telecommunications
Research Institute (WATRI) and the Department
of Mathematics and Statistics, Curtin University of

Technology, Australia. Her research interests are adaptive array processing,
optimization, equalization, and filter design.

Sven Nordholm (M’91–SM’04) received the
Dipl.Eng. and Ph.D. degrees from Lund University,
Lund, Sweden, in 1983 and 1992, respectively. From
1983 to 1986, he was a Development Engineer with
GAMBRO, Gambro, Sweden. He began his aca-
demic career at Lund University and subsequently
cofounded the Department of Signal Processing
at Blekinge Institute of Technology, Karlskrona,
Sweden.

He was appointed Professor and Director of the
Australian Telecommunications Research Institute,

Perth, Australia, in 1999. Currently, he is the Research Director for Signal
Processing Laboratories in the Western Australian Telecommunications Re-
search Institute (WATRI). His research interests are adaptive array processing,
optimization methods, blind signal separation, equalization, and filter design.
He holds several patents and has published many publications.

Siow Yong Low (S’99–M’05) received the B.E. and
Ph.D. degrees from Curtin University of Technology,
Perth, Australia, in 2001 and 2005, respectively.

He was a Research Fellow with WATRI, a joint
institute between Curtin University and the Univer-
sity of Western Australia, Nedlands, from 2005 to
2006. Since 2007, he has been an R&D Engineer with
Sensear Pty. Ltd., Perth, Australia. His research in-
terests include array and statistical signal processing
with applications to speech enhancement.

Antonio Cantoni (F’98) was born in Soliera, Italy,
on October 30, 1946. He received the B.E. (Hons.)
and the Ph.D. degrees from the University of Western
Australia, Nedlands, in 1968 and 1972, respectively.

He was a Lecturer in Computer Science at the
Australian National University, Canberra, in 1972.
He joined the Department of Electrical and Elec-
tronic Engineering at the University of Newcastle,
Shortland, Australia, in 1973, where he held the
Chair of Computer Engineering until 1986. In 1987,
he joined QPSX Communications Ltd, Perth, Aus-

tralia, as Director of the Digital and Computer Systems Design Section for the
development of the DQDB Metropolitan Area Network. From 1987 to 1990,
he was a Visiting Professor in the Department of Electrical and Electronic
Engineering at the University of Western Australia. From 1992 to 1997, he
was the Director of the Australian Telecommunications Research Institute and
Professor of Telecommunications at Curtin University of Technology. During
this period, he was the Director of the Cooperative Research Centre for Broad-
band Telecommunications and Networking. Currently, he is Chief Technology
Officer with Atmosphere Networks, Inc., and Professor of Telecommunications
at the University of Western Australia. He is interested in adaptive signal
processing, electronic system design, and networking, and regularly acts as a
Consultant to industry in these areas.

Dr. Cantoni is a Fellow of the Australian Academy of Technological Sciences
and Engineering. He has been an Associate Editor of the IEEE TRANSACTIONS

ON SIGNAL PROCESSING.

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 2, 2009 at 02:08 from IEEE Xplore.  Restrictions apply. 


