

Copyright © 2005 IEEE

Reprinted from:

2005 3rd IEEE International Conference on Industrial Informatics
(INDIN) Perth, Australia 10-12 August 2005

IEEE Catalog Number ISBN 05EX1057
ISBN 0-7803-9094-6

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Curtin University of
Technology's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195657417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract—This paper presents an overview and comparison

of three major industrial-strength enterprise application de-
velopment (and deployment) platforms. The platforms are
Microsoft.Net, Java 2 Enterprise Edition, and WebObjects.
The comparison includes discussion of the presentation tier,
application tier, persistence tier, deployment, and tools. Al-
though not a complete survey and somewhat subjective in its
final recommendations, the paper should provide a general
understanding of these three major platforms and how they
compare. The choice of development platform is a significant
one for developers and organisations (because they generally
have a significant learning curve) and should not be made
without a good understanding of the alternatives.

Index Terms — enterprise, application, development plat-

form.

I. INTRODUCTION

There are currently many enterprise-level application
development (and deployment) platforms on which to build
industrial and enterprise applications. In this paper, an
overview and comparison of three major platforms is given.
It focuses on the Java 2 Enterprise Edition, Microsoft.Net,
and WebObjects (although a brief mention of a few other
platforms is made). Knowledge of some of the available
platforms and pertinent issues related to their comparison is
important because of the investment of time (mostly in the
significant learning curve) needed to become competent in
any of these platforms.

Language versus Platform

It is also important to understand how the nature of de-
velopment has changed. In the past, the primary considera-
tion for developers was the programming language to be
used. These days, however, in industry most new develop-
ment is done using an object-oriented programming lan-
guage. Although the syntax may differ from one OO pro-
gramming language to another, the general concepts are
quite similar. So, to a certain degree the choice of which
OO programming language is no longer a primary consid-
eration. There is some distinction, however, between the
more dynamic and the more static OO programming lan-
guages (with the current trend towards more dynamic
OOPLs).

Today software development is defined more by which
software platform one is developing on (than the specific
OO programming language). A platform consists of many
things, including the programming language, the run-time
environment, and most importantly the (usually very large)

library of reusable classes. While learning a new OO pro-
gramming language should take only a few days (for some-
one who is already knowledgeable and skilled in OO pro-
gramming), it can take many months to learn the details of
a new (and large) development platform, and even longer to
become competent in its use. As a result, the choice of the
application development platform is a significant decision
and usually not a choice that can easily be changed (for an
application or a developer).

Enables versus Supports

It is important to remember that most computing plat-
forms are Turing Complete, in the sense that any software
that can be developed could (in theory) be developed on
any of the platforms. The obvious question then is, why
choose one platform over another. The reason is clear if we
contrast a platform that enables a particular system to be
developed with one that supports it [1]. A platform enables
a system to be developed if it is possible to develop that
system using the platform. Whereas, a platform supports
the development of a particular system if it assists the de-
velopment. A simple example is that assembly language
(only) enables the development of complex systems,
whereas an object-oriented programming language supports
the development of complex systems.

Contents

The first section provides an overview of the three plat-
forms, the second section introductions the area of compari-
son and provides the comparison itself, and finally the third
section provides a summary and subjective recommenda-
tions as to when it would be most appropriate to use each of
these Enterprise application development platforms.

II. OVERVIEW OF PLATFORMS

Microsoft .Net

.NET [2] represents Microsoft’s (relatively) new appli-
cation development platform for the desktop and the World
Wide Web (to eventually replace the current Windows 32
and other APIs for software development). It has been de-
veloped relatively recently, as Microsoft’s response to the
Java platform (which they were unable to “embrace and ex-
tend”), and so Microsoft was in the fortunate position to be
able to learn from issues with the Java platforms and to in-
corporate the latest focus of the Web, i.e. Web services and
XML throughout .NET. .NET is more than a platform for
Microsoft it is their focus, their strategy, and their plan to

Dr Ashley M. Aitken, Member, IEEE

1Ashley M. Aitken, School of Information Systems, Curtin University of Technology, Perth, Australia
e-mail : ashley.aitken@cbs.curtin.edu.au

An Overview and Comparison of Three Major
Enterprise Application Development Platforms

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

move from “software as product” to “software as service.”
It has not been, and will not be plain sailing for Microsoft
though, e.g. their plans to be the only gatekeeper to per-
sonal data and services with “MyServices” has received a
very poor reception from business and so been reorganised
(but not removed from) within .NET.

.NET, the platform, includes a number of parts. Firstly,
there is the Common Language Runtime (CLR), which is
similar to the Java Virtual Machine (JVM) in that it runs all
.NET managed code. Unlike the JVM, however, the CLR
works with many languages, ranging from VB.NET, C#
and C++, to Eiffel and J# (the Java language for .NET). It
should be made clear that what primarily separates these
languages is their syntax as they all compile to the CLR In-
termediate Language (IL). They all share the same object
model. As a result, VB.NET is only similar to traditional
VB in its syntax. The underlying object model is com-
pletely different (so at last VB is to become a real object-
oriented language). Code that runs on the CLR is called
managed code and, for example, this places restrictions on
what can be done with C++ in .NET. All code is compiled
(automatically) before it runs so that no code is interpreted
(as is default for the JVM).

Included in .NET with the CLR are a large number of
class libraries, ranging from foundation class libraries to
high-level GUI and Web libraries. All of these libraries
will work with any of the .NET languages (again because
they are all compiled into the IL). .NET also includes
ASP.NET and ADO.NET, the Web front-end and database
back-end integration libraries respectively. ASP.NET is
actually another application that hosts the CLR and pro-
vides Web integration. These will be discussed in more de-
tail below. Central also to .NET is the use of XML
throughout and the focus on Web services, both the provi-
sion and consumption of Web services, as a means of appli-
cation provision and integration. Further, improvements
have been made with .NET application packaging and de-
ployment, and there are provisions in .NET (that will not be
covered here) to enable development for personal digital
assistants and similar devices. The general architecture and

composition of enterprise applications in .NET can be seen
in Figure 1.

Java 2 Enterprise Edition (J2EE)

Java 2 Enterprise Edition (J2EE) [3] represents Sun Mi-
crosystems’ attempt to define a standard platform for appli-
cation development that is independent of any particular
operating system (and thus to wrestle developer’s focus
from Microsoft’s operating system Windows by enabling
applications to run on all operating systems that support the
Java platform). This is what motivated the expression
“write once, run anywhere” which has never been com-
pletely true, but surely is a different approach than Micro-
soft’s for .NET (which could be captured in a similar fash-
ion as “write in any language, run on Windows only”). It is
important to point out also that Java is not a product, but a
proprietary (but published and freely licensable) standard
originally defined by Sun but now directed through a com-
munity consultation process called the Java Community
Process (JCP). As a result there are many implementations
of the Java platform and a healthy market place of vendors
competing to produce the most innovative products at vari-
ous price-points.

Java, like .NET, also contains a number of components
(it is much more than just a programming language).
Firstly, there is the Java Virtual Machine (JVM), which in-
terprets the Java bytecode produced by Java compilers.
Unlike, .NET’s common language runtime, Java primarily
supports one language, the Java programming language.
There are, however, a number of third parties that offer
compilers (to Java bytecode) for other programming lan-
guages. Most Java developers, however, find Java to be
adequate for their development needs (as it is no longer the
programming language that is the primary focus of devel-
oper’s attention, it is the class libraries and platform tech-
nologies). As well, and secondly, Java includes a large
number (thousands) of classes within the Java standard.
Third parties have also been quick to provide a large num-
ber of complimentary and supplementary class libraries that
work with Java (for just about every area and any develop-

Figure 2 - Overview of J2EE Architecture

Figure 1 - Overview of Microsoft.Net Architecture

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

ment need).
Java consists of three different versions (primarily de-

fined by the different class libraries available by default
within each version). These are the Java 2 Micro Edition
(J2ME) for embedded or personal devices, the Java 2 Stan-
dard Edition (J2SE) for desktop applications, and the Java 2
Enterprise Edition (J2EE) for enterprise applications. The
micro edition has the requisite small footprint and a subset
of the standard class libraries. The standard edition is fo-
cussed on desktop applications (and was in previous ver-
sions the primary focus of Java). The enterprise edition has
additional class libraries to support enterprise application
infrastructure, in particular middleware services. Numer-
ous vendors (including IBM, BEA and Macromedia) have
offered competing application server products built to the
J2EE standard. The J2EE standard represents (like .NET) a
declarative application server environment where develop-
ers configure application services by way of configuration
files (as opposed to coding calls to services themselves).

Java also specifies a standard for Web front-ends, the
Java Servlet engine and the Java Servlet and Java Server
Pages libraries, and a library for connecting to relational
databases, JDBC, and directory services, JNDI, amongst
many others. Java applications and libraries can be de-
ployed as Java Archives (JARs), Web Archives (WARs) or
Enterprise Archives (EARs), although the enterprise de-
ployment situation varies somewhat from product to prod-
uct. Further, although by default Java is interpreted, there
are, again, many third party product JVMs that incorporate
Just-In-Time (JIT) compilers (e.g. the HotSpot JVM) that
compile code at runtime that is determined to be important
to the performance of an application (e.g. code in tight
loops). And, although Java has suffered from poor per-
formance in the past, mostly on the desktop where applica-
tion launch time is critical and resources are often limited
and to a lesser degree on the server where resources are of-
ten more abundant, the latest versions of Java that include
various JIT technologies sees most Java applications run at
a similar speed to native applications. The general architec-
ture and composition of enterprise applications in J2EE can
be seen in Figure 2.

Finally, with respect to the overview the of J2EE plat-
form, it is important to point out that although J2EE is a
standard with many implementations, there are also many
extensions to the standard in many areas. For example, im-
plementations of J2EE by IBM and BEA add considerably
to the standard in terms of additional libraries and frame-
works, as well as vendor-specific technologies and devel-
opment tools. There are also a large number of other third-
party (with a lot of these being free and/or open source) ex-

tensions to Java, technologies that work with Java and
products that supplement J2EE development.

WebObjects

WebObjects [4] is an award-winning Java-based Web
application server development and deployment environ-
ment. It is one of the most mature and technologically ad-
vanced Web application environments available (and yet
also one of the least advertised and, as a result, least well
known). It includes presentation, application, and persis-
tence technologies, as well as advanced rule-based devel-
opment facilities, that provide a complete solution for rapid
and high quality Web application and Web service devel-
opment. WebObjects is a commercial, industrial strength,
and fully supported application server without the high
price tag of comparable J2EE or .NET commercial prod-
ucts.

As WebObjects is Java-based, application developed
with WebObjects can be deployed on any server supporting
Java 1.4 or higher (including servers running Windows, So-
laris, Linux and Mac OS X). As well, the development
tools are available for Windows and Mac OS X. WebOb-
jects was initially developed in 1996 by NeXT and was
used by many Fortune 500 companies, particularly trading
companies. In 1998, Apple acquired the technology from
NeXT and committed to keeping the technology cross-
platform. WebObjects is a leading-edge application server
but is under-marketed by Apple, although they and many
large corporations and government bodies around the world
use it for many mission-critical Intranet and Internet Enter-
prise Web applications. The general architecture and com-
position of enterprise applications in WebObjects can be
seen in Figure 3.

Others

1) ColdFusion
Macromedia’s ColdFusion [5] has been a popular Web

application server for a number of years. It has, however,
undergone a significant change recently, making it more
suited for enterprise Web applications and services (as op-
posed to content management, which some would say was
its strength in the past). In particular, the ColdFusion of the
past used a tag-based scripting language (ColdFusion Mark-
up Language) to construct applications scripts. After the
change, ColdFusion still supports the ColdFusion Mark-up
Language (CFML) but it can now integrate with a J2EE ap-
plication server or .NET on the back-end. Macromedia will
provide their own J2EE application server (called JRun), or
any of the J2EE compatible application servers can be used
in its place (e.g. those from IBM or BEA systems). In this,

Figure 3 - Overview of WebObjects Architecture

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

regard ColdFusion is just another J2EE application server
with a different front-end scripting language.

However, this is not the entire story with regards to
ColdFusion. Macromedia is also the developer of Flash,
the leading vector-based engine for Web pages. Flash
pages allow the developer to incorporate vector graphics,
scripted dynamics, and multimedia in a Web page but re-
quires a Web browser plug-in to enable this functionality.
To date this has been used primarily for “flashy” home
pages or product overviews and demonstrations. With the
new ColdFusion Macromedia have extended this to enable
developer to make “flashy” user-interfaces, i.e. user-
interfaces using Flash, and a Flash user-interface widget
set, that connect to ColdFusion and J2EE and .Net applica-
tion servers. This technology is called Flash Remoting and
enables developers to make highly dynamic and interactive
interfaces for Java or .Net enterprise Web applications.
2) PHP

PHP [6] has stood for many things over its lifetime, from
Personal Home Pages to the current recursive acronym PHP
Hypertext Preprocessor. PHP is another tag-based Web ap-
plication scripting environment. What sets it apart from the
rest is that it is open-source and, as a result, free, and sup-
ported by a community of developers. It is not really an
application server like J2EE, .NET or WebObjects but it
does provide high-level libraries and integrated database
connectivity, that make it appropriate for small to medium-
sized Web applications. The PHP scripting language is also
evolving to be a lot like Java. PHP also has a good com-
munity and library of reusable code (PEAR).

III. COMPARISON

Unfortunately, there is not the space to include the full
details of a comparison of these platforms. As a result, only
certain key aspects of the application platforms will be con-
sidered. These include: 1) Presentation Tier - the presenta-
tion tier usually relates to that part of the enterprise applica-
tion that is most involved with the user-interface (if there is
one). Predominantly this is a Web browser, but it may also
be a thick desktop client; 2) Application Tier - the applica-
tion tier contains the application and core business logic
and data of the application. The application tier is also
where the application server (middleware software that
provides application support infrastructure and services)
resides; 3) Persistence Tier - the persistence tier usually re-
lates to the retrieving and saving of business data to a (pri-
marily relational) database. It, however, may alternatively
involve other forms of repositories (e.g. an object-oriented
database or a light-weight directory service); 4) Deploy-
ment - deployment relates to the method, tools, and com-
plexity involved with deploying enterprise applications
built within the platform. This may include deployment on
the presentation, Web, application and persistence tiers; 5)
Tools - tools relates mostly to development tools (i.e. usu-
ally integrated development environments) but also to test-
ing (e.g. unit or load testing) and deployment and monitor-
ing tools; and 6) Miscellaneous - this aspect of the compari-
son represents a “catch-all” category for other general con-
siderations.

Microsoft.Net

1) Presentation Tier
The presentation layer development facilities offered by

.NET continue in the “visual” paradigm that made Micro-
soft’s suite of Visual tools (e.g. Visual Basic) so successful
and popular. The presentation layer in .NET can, as is cur-
rently the case for Windows, be developed using drag-and-
drop of GUI elements, and event-based programming with
WinForms. Interestingly, Microsoft has extended this
paradigm to Web interface development with WebForms,
which employs a very similar drag-and-drop of Web ele-
ments, and event-based programming. Obviously, this is an
attempt to build on expertise and familiarity with such de-
velopment for the desktop. Clearly, to move event-based
programming to the Web, an inherently request-response
architecture, has required some extra work. To Microsoft’s
credit they have done this extra work (e.g. maintaining in-
put element state across trips to the server, and enabling
DHTML with browsers that support it) and provided a con-
sistent approach for developing both Web and GUI inter-
faces. As well, it is possible to download WinForm inter-
faces and run them from within the Internet Explorer Web
browser (much like Java applets but only on the Windows
platform).
2) Application Tier

Microsoft also includes in .NET a declarative application
server environment that provides many application services
and infrastructure (such as object pooling, caching and load
balancing), on an appropriately configured and resourced
Windows server(s). Use of the application server services
requires primarily that the developer subclass the
“ServiceComponent” class and declaratively states (with
annotations in the source code and configuration files) what
services are required for particular components. This is
Microsoft’s attempt to get into the enterprise server room,
which is currently dominated by more traditional enterprise
application environment (including for example, CORBA
and, more recently, J2EE). As mentioned above, Microsoft
when developing .NET was in a position to reflect on the
successes and failures of previous technology and had a
chance to start fresh, leaving behind most (although still
allowing integration with) legacy Microsoft technologies
(like ActiveX and the old Visual Basic).
3) Persistence Tier

To facilitate persistence, Microsoft provides a much re-
vamped (but similarly named) ADO.NET. Active Data Ob-
jects link certain classes within .NET applications to rela-
tional databases or other data services. Although an im-
provement over the traditional ADO, it still (at it’s lowest
level) requires the developer to send SQL to the database,
and to process the data that is returned. Admittedly links
can be created with GUI or Web tables to automatically
display the data retrieved from the data source. However,
all this is a long way from creating business objects based
on the data (which should usually be the goal in an object-
oriented environment). As a result, this is probably the
weakest leg of the .NET strategy that otherwise is fully ob-
ject-oriented and presents a high-level of abstract. That
said, there are some object-relational mapping systems that

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

are targeting .NET and so, perhaps, they can provide the
additional support needed in this area.
4) Deployment

.NET makes a significant (and desperately needed)
change to the packaging and deployment of Microsoft desk-
top and Web applications. .NET applications are now
packaged as a single unit, not spread throughout the operat-
ing system (as has been the case to date). The first result of
this is that there will be no more “DLL Hell.” The second
result is that multiple versions of the same library or appli-
cation can co-exist on the same machine. Thirdly, it now
enables applications to be run from a CD-ROM or from a
server. Microsoft has surely learnt from past mistakes in
this area, and it was about time.
5) Tools

The premier tool Microsoft provides for .NET develop-
ment is Visual Studio .NET. It represents a single devel-
opment environment for creating all .NET applications (in-
cluding desktop, Web, and enterprise applications). It rep-
resents the culmination and coordination of all Microsoft’s
previous effort in “visual’ development tools and, as such,
is a most sophisticated, advanced, and powerful integrated
development environment. On the other hand, considering
it is relatively expensive, it would be hoped that significant
productivity gains would arise from the IDE, and this seems
to be the case. It should also be said that Visual Stu-
dio.NET is not needed, in theory, for development with
.NET. However, practically speaking, to develop without it
(or an equivalent tool) on an enterprise application would
not be a sensible option.
6) Miscellaneous

One of the most successful application development en-
vironments for the Windows platform has been the Delphi
(Object Pascal-based) integrated development environment.
.NET now includes most of the powerful abstractions and
rapid development facilities that made Delphi such a pow-
erful application development environment (at least com-
pared to traditional Windows development) and adds some
more of its own, as discussed above. As a result, some re-
shuffling is was in the Delphi camp. Borland has an-
nounced Delphi.NET as their move to be a part of the .NET
future. Delphi.NET attempts to maintain the traditional
Delphi environment and components whilst compiling to
the .NET CLR and libraries. Although this is technically
successful, it is difficult to see what this provide developers
(above the continuation of legacy APIs and the Delphi de-
velopment tools) above and beyond Microsoft’s .NET of-
fering.

Java 2 Enterprise Edition

1) Presentation Tier
The primary mechanism within J2EE to facilitate the

presentation layer is the Java Servlet engine specification.
Servlets are Java classes that produce HTML (or Dynamic
HTML or XML) and run within a Java Virtual Machine in-
corporated within a Web browser. The fact that the JVM is
incorporated into the Web server allows the Web server to
respond to Web requests using Java Servlet classes without
having to start JVM for each (CGI) request. J2EE also in-

corporate a specification for Java Server Pages (JSP). Java
Server Pages are a template-based mechanism for produc-
ing Web content (HTML, DHTML or XML) that facilitates
better separation of page design and code development than
Java Servlets (that produce the HTML directly from Java
output statements). Java Server Pages are converted into
Java Servlet pages but the engine handles this automati-
cally. The standard design pattern for J2EE front-ends is to
use Java Servlets as the control classes (e.g. to respond to
submitted Web forms and to instigate business functions)
and to use Java Server Pages to produce response pages.

Java offers great flexibility in the presentation layer as
well. Java Applets (small Java programs that are down-
loaded and run in the Web browser), as discussed earlier,
allow for a much more dynamic interface within the Web
browser but have limitations (e.g. download speed and limi-
tations of the Web browser JVM). Of course, Java can also
be used for the development of desktop applications that
can work as thin or thick clients for the enterprise Web ap-
plication. Although Java on the desktop has had problems
in the past due to slow start-up time and tardy performance
(as mentioned above), the latest JVMs and other technology
has come a long way to improving the performance and re-
liability of Java on the desktop. The deployment of Java
desktop applications has also been substantially improved
with the Java WebStart technology. It enables Java appli-
cations (thin, thick, or full desktop applications) to be
downloaded and run from a Web page URL (and/or a desk-
top icon), as well as being automatically and incrementally
updated if a new version becomes available on the server.
This removes most of the difficulties associated with using
desktop client applications for an enterprise application
(but, of course, not any bandwidth problems).
2) Application Tier

J2EE incorporates the Enterprise JavaBean (EJB) model
for service components. It is a declarative application
server environment wherein developers produce EJBs and
deploy them within an EJB container. A configuration file
specifies the middleware services that the EJB requires,
leaving the EJB code to focus primarily on the business
logic. There are three types of Enterprise JavaBeans: 1)
Entity Beans that are primarily used to model business ob-
jects, 2) Session Beans that are primarily used to model
control objects, and 3) Messaged-based Beans that are used
to process asynchronous requests. Session beans may also
be stateful or stateless. While the EJB model is complex it
is also powerful and provides a high level of abstraction for
the developer. A lot of the complexity can be handled by
the developer tools (as discussed below) leaving a full-
featured serviced environment in which enterprise applica-
tions can run. The performance and quality of this envi-
ronment, however, depends upon which implementation of
the J2EE specification is being used (as is discussed below
in the Tools section).
3) Persistence Tier

To facilitate persistence, the J2EE recommends one of
two (or more) EJB-based approaches. These are bean-
based persistence and container-based persistence. In the
former, it is the bean’s responsibility to manage it’s own
persistence and in the latter it is the container’s responsibil-

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

ity to manage the persistence of beans within it. J2EE,
however, provides little in the way of a specification of how
this persistence should be implemented. J2EE does provide
the JDBC (apparently not an acronym for Java database
connectivity, but that is what it provides) and JNDI (an ac-
ronym for Java Native Directory Interface) APIs to facili-
tate persistence in a relational database or directory service.
However, all this is a long way from creating enterprise ob-
jects based on the data. As a result, this is probably the
weakest leg of the J2EE specification. That said, there are
object-relational mapping systems that are Java-based (e.g.
Hibernate and Cayenne) and so, perhaps, they can provide
the additional support needed in this area and may even be
incorporated into a future version of the specification. The
EJB standard went through a major upgrade with EJB2 and
is now in the process of being completely overhauled in
EJB3.
4) Deployment

J2EE enterprise applications are deployed as Web Ar-
chives (WARs) or Enterprise Archives (EARs). These are
similar to Java Archives (JARs) but contain configuration
files for the enterprise Web application. The details on de-
ployment, configuration, and application management de-
pends on the particular J2EE product that is used. As for
most Web applications, deployment is usually split between
the Web server and the application server. Java Server
pages and Java Servlets are deployed on the Servlet engine
(Web server with container) and the enterprise application
is deployed on the application server.
5) Tools

It is important to remember that Java is a specification
not a product itself. As a result, there is not one specific
solution for Java development; there are a number of com-
peting and mostly compatible implementations of the speci-
fication. Each of these products provides its own suite of
tools to assist with development, and these may encompass
minimal to full support for development. The industrial
strength tools like WebSphere from IBM and WebLogic
from BEA Systems provide impressive integrated devel-
opment environments that assist in all stages of the Web
application development. These products, however, are
generally quite expensive. On the other hand, there are
open source J2EE implementations (like JBoss and
OpenEJB) that provide minimal tools support for develop-
ment (but work well with open source IDEs like Eclipse)
but are free. The benefit of this variety is that the developer
has a choice and that code developed in one produce should
be (relatively) easy to move to any of the other products.
6) Miscellaneous

Although Java was developed long before Web Service
standards (such as SOAP, UDDI, and WSDL) had become
popular, Sun have taken aggressive steps to incorporate
Web Services into the J2EE standard. The current version
of J2EE now has a similar level of integration as Micro-
soft’s .NET. Of course, the different J2EE product vendors
have taken their own steps to facilitate the development of
Web Services into their products and applications devel-
oped with their products.

WebObjects

1) Presentation Tier
WebObjects provides great flexibility in the support of

the presentation tier. WebObjects applications can produce
HTML, Dynamic HTML or XML as their output. WebOb-
jects can be used to rapidly produce template-based Web
pages, components, and site-wide page layouts. WebOb-
jects also includes (what it calls) JavaClient technology,
facilitating a client-side Java application to provide a more
dynamic desktop-app-based user-interface for a Web appli-
cation. The JavaClient technology also enables thick client
applications by enabling downloading of developer-
partitioned business object to the client application via
standard HTTP (or HTTPS) protocols. This enables the
client to perform some business processing locally without
needing to contact the server and with a dynamic user-
interface. The partitioning allows only parts of the business
data or logic to be downloaded to the client, and to require
that certain business operations only be performed on the
application server itself. This is useful for protecting im-
portant data or logic from being exposed on the client. The
JavaClient technology also enables the user-interface itself
to be downloaded to the client as XML and to be con-
structed dynamically.
2) Application Tier

WebObjects was one of the first application servers on
the market. It employs two object-oriented frameworks to
provide Web integration and persistence. The first will be
discussed here, and the second in the next section. The first
framework, call the WebObjects Frameworks (WOF) en-
ables business objects to be linked to parts of a Web page,
e.g. so that a customer’s name will be displayed on a Web
page, as well as enabling form fields to be linked to busi-
ness objects, e.g. so that the address a customer enters can
be put into the customer business object. The application
server itself also provides load balancing (across multiple
instances of the application on one or more hosts) and so-
phisticated caching of objects fetched from relational data-
bases. Although not, perhaps, as full-featured or declara-
tive as the .NET or J2EE application servers, the WebOb-
jects application server is considerably less complex and
provides most of the features needed in all but the biggest
enterprise applications.
3) Persistence Tier

WebObjects includes another object-oriented frame-
work, called the Enterprise Objects Framework, that pro-
vides persistence for business and other objects within a
WebObjects enterprise application. This is an object-
relational mapping system that handles fetching and saving
objects to relational databases. It automatically generates
the SQL to fetch and update data in the database as required
by the object-oriented applications. This enables the devel-
oper to focus on the object-oriented application as opposed
to writing SQL database code. As well, the EOF automati-
cally handles fetching of related object and updating only
the data that has changed within the objects. The EOF al-
lows applications to connect to (and have relationships
across) multiple database that have JDBC drivers (which
includes all of the major relational databases), as well as

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

directory services, that have JNDI drivers (e.g. LDAP di-
rectories). It is also relatively easy to swap between differ-
ent databases protecting an organisation from vendor-
lockin.
4) Tools

WebObjects comes with a suite of tools for Web appli-
cation and service development and deployment. These
include (but are not limited to) Project Builder, EO Model-
ler, WO Builder, and JavaMonitor. Project Builder is an
integrated development environment for constructing, edit-
ing, running, and debugging projects in the direct-connect
developer mode (which does not require the application to
be installed on a Web server). Enterprise Objects (EO)
Modeller is a powerful tool for constructing object-
relational mappings that also can, amongst other things,
automatically reverse engineer an object-relational mapping
from a relational database, automatically generate the SQL
to construct tables and relationships within a relational da-
tabase from an object-relational mapping, and also auto-
matically generate skeleton Enterprise Objects Java classes
from an object-relational mapping. WebObjects (WO)
Builder is a tool for building Web pages that are linked to
business (or other) objects (as well as components to use
within other pages). Finally, JavaMonitor, is a WebObjects
application that allows an administrator to setup, track, and
manage the deployment and operation of WebObjects ap-
plications across multiple machines from a Web browser.
5) Deployment

WebObjects applications can be deployed using Java-
Monitor (as mentioned above) as standalone applications or
they can be deployed within a Java Servlet container. A
WebObjects application can scale easily by the addition of
additional instances of the application on one machine, or
multiple applications across multiple machines. The We-
bObjects adapter (which can run as a CGI application or be
linked into major Web servers) can handle load balancing
(including random, round-robin, and load-based). The
JavaMonitor tool enables the administrator to gracefully
shutdown an application, track its usage, or periodically re-
start an application. WebObjects applications can also be
set up to email an administrator when an exceptional event
occurs within the application, and to automatically restart if
the application or operating system crashes. Although not a
J2EE application server itself, WebObjects is J2EE compli-
ant, which means that WebObjects applications can be in-
stalled in a J2EE server, and integrate with a J2EE applica-
tion, for example with its Enterprise JavaBeans.
6) Miscellaneous

Finally, WebObjects also leads the Web application
server market with three additional (but similar) technolo-
gies called DirectToWeb, DirectToJavaClient and Di-
rectToWebServices. These technologies are built around a
rule-engine that allows rule-based development. Rule-
based development is an even a higher level of abstraction
than object-oriented development (in which it is imple-
mented). It enables developers to rapidly build and modify
the presentation and operation of Web applications, both
with browser-based interfaces and JavaClient desktop-
application-based interfaces. And it does this without code
generation! For this (automatic user-interface generation)

to be possible with Java desktop application, WebObjects
incorporates technology that allows partial or complete
user-interfaces to be specified in XML and generated dy-
namically by a small (base) client-side application. We-
bObjects can also apply this technology to rule-based Web
Service development. The power and productivity of these
tools is unprecedented in the Web application and service
market.

IV. SUMMARY AND RECOMMENDATIONS

In summary, we have considered three major enterprise
application development platforms. The first, Micro-
soft.Net is a proprietary product based on an unpublished
standard that works only on the Windows platform. The
second, J2EE, is a published (and freely licensable) stan-
dard with many competing product implementations (rang-
ing from free and open source products to relatively high-
priced commercial products) and an innovative community
producing a number of competing and complimentary tech-
nologies and products. The third, WebObjects, is a mature
proprietary product developed on the J2SE platform that
provides a solid foundation and a number of innovative fea-
tures that the other two platforms don’t as yet include.

Of course, which is the best platform for an organisa-
tion’s next Enterprise application development depends on
many different issues and criteria. Any final recommenda-
tions made here are mostly subjective and based on general-
ised assumptions. However, that said, it is possible to say
that if you have a Windows-only environment then Micro-
soft.Net can provide a good solution for Enterprise applica-
tions (with limited choice and limited influence on future
directions but the benefits of one source and a known sup-
plier). If, however, you are in a heterogeneous environment
then one of the Java platforms will be most appropriate.
The Java 2 Enterprise Edition platform is very large and has
something for just about any type of application from the a
simple Web tier application up to the largest of Enterprise
applications requiring a large degree of scalability, security,
reliability and robustness. Further, there are many add-ons
and third party solutions (open-source and proprietary) that
work within the J2EE space and compliment the offerings
within the official standard (e.g. Tapestry, Hibernate, and
Cayenne). Finally, if you want a well-balanced solution
(from the presentation layer to the persistence layer and be-
yond), and don’t mind (or even prefer) a relatively cheap
but proprietary/supported solution for medium to large En-
terprise application that works on the Java platform (and so
can benefit from all that is Java) and has some unsurpassed
rapid development technologies, then WebObjects is an ex-
cellent choice.

V. REFERENCES
[1] Stroustrup, B. The C++ Programming Language, New York: Ad-

dison-Wesley, 1997, 18-26.
[2] Microsoft.Net at http://www.microsoft.com/net/
[3] Java 2 Enterprise Edition at http://java.sun.com/j2ee/
[4] WebObjects at http://www.webobjects.com/
[5] ColdFusion at http://www.macromedia.com/software/coldfusion/
[6] PHP at http://www.php.net/

3rd International Conference on Industrial Informatics(INDIN 2005)
©2005 IEEE.

