1	Integrated <i>in situ</i> U-Pb age and Hf-O analyses of zircon
2	from Suixian Group in northern Yangtze: New insights into
3	the Neoproterozoic low-δ ¹⁸ O magmas in the South China
4	Block
5	
6	Ya-Nan Yang ^{a, b} , Xuan-Ce Wang ^{c, d} , Qiu-Li Li ^a , Xian-Hua Li ^{a,} *
7	
8	
9	
10	^a State Key Laboratory of Lithospheric Evolution, Institute of Geology and
11	Geophysics, Chinese Academy of Sciences, Beijing 100029, China
12	^b University of Chinese Academy of Sciences, Beijing 100049, China
13	^c The Institute for Geoscience Research (TIGeR), Department of Applied Geology,
14	Curtin University, GPO Box U1987, Perth, WA 6845, Australia
15	^d The School of Earth Science and Resources, Chang'an University, Xi'an, 710054,
16	China
17	
18	
19	
20	
21	
22	
23	
24	* Corresponding author.
25	Tel: +86 10 82998512
26	Fax: +86 10 62010846
27	E-mail address: lixh@gig.ac.cn (XH. Li).
28	

29 Abstract

The mid- to late-Neoproterozoic magmatic rocks from the northern margin of the 30 Yangtze Block are major protoliths of high-pressure (HP) and ultrahigh-pressure 31 (UHP) metamorphic rocks in the Dabie-Sulu orogenic belt along the northern margin 32 of the South China Block. Oxygen isotopic compositions of these mid- to 33 late-Neoproterozoic magmatic rocks hold a key to understanding the origin of 34 large-scale ¹⁸O-depletion in the HP and UHP metamorphic rocks. We report here the 35 integrated in situ U-Pb dating and Hf-O isotope analyses of zircon grains from 36 sedimentary and volcanic rocks in the Neoproterozoic Suixian Group along the 37 northern margin of the Yangtze Block, South China. This study shows that the Suixian 38 Group was deposited at 740-720 Ma, corresponding to late stage of the second 39 deposition cycle (820-720 Ma) of the Neoproterozoic deposition in the Yangtze Block. 40 Detrital zircon grains from the Suixian Group display age peaks at 0.73-0.74 Ga, 0.79 41 Ga, and 2.0 Ga. Zircon U-Pb ages together with Hf-O isotopic compositions indicate 42 provenance of the Suixian Group dominantly from the proximal Neoproterozoic 43 44 igneous rocks with possible contribution from Paleoproterozoic rocks along the northern margin of the South China Block. Zircon δ^{18} O values from the Suixian 45 Group have a large range from 10.5% to 1.3%. Zircon grains with negative δ^{18} O 46 values, typical index of magma-meteoric water interaction, were not identified in this 47 study. The major phase of low- δ^{18} O magmas (δ^{18} O_{zircon} < 4.6‰) initiated at ca. 800 48 Ma, long before the first glaciation event arising at about 715 Ma in the South China 49 Block, and lasted for over 100 m.y.. The $\varepsilon_{Hf}(t)$ values of the low- $\delta^{18}O$ zircon grains 50

from the Suixian Group range between -15.5 and 10.7. About seventy-four percent of 51 low- δ^{18} O zircon grains have negative $\varepsilon_{Hf}(t)$ values varying from -15.5 to -0.02. This 52 strongly argues against the possibility that the low- δ^{18} O magma was generated 53 dominantly by partial melting of high-T hydrothermally altered oceanic lower crust. 54 This study emphasizes that high-T water-rock interaction and continental rifting 55 tectonic setting are essential to produce the abundant low- δ^{18} O magmas, and confirms 56 that most of negative δ^{18} O signature identified in zircon grains from HP and UHP 57 58 metamorphic rocks may not have been inherited from their Neoproterozoic protoliths. 59

60 Keywords

61 Zircon, Low- δ^{18} O magma, U-Pb age, Lu-Hf isotopes, South China, Neoproterozoic

62

63 **1 Introduction**

Hydrothermal interaction between rocks and meteoric water offers the most 64 viable mechanism to imprint low- δ^{18} O values on the rocks (Bindeman, 2011). 65 Low- $\delta^{18}O$ magmatic zircon grains have commonly been identified in 66 high-temperature (high-T) rhyolites, A-type granites and rare arc magmas (e.g. Muñoz 67 et al., 2012). The best example of high-T rhyolites is from the Yellowstone volcanic 68 field with zircon δ^{18} O values varying from 2% to 6% (e.g., Bindeman, 2008; 69 Bindeman and Valley, 2001; Watts et al., 2010). Recent discoveries of isotopically 70 diverse minerals from the Snake River Plain, Iceland, Kamchatka Peninsula, and other 71 72 environments show that high-T water-rock interaction and subsequent recycling of hydrothermally altered subsolidus predecessors during the magma evolution are 73 important to produce low- δ^{18} O magmatic zircon grains (Bindeman and Simakin, 74 2014). Well-documented examples of low- δ^{18} O A-type granites come from western 75 Scotland and southeastern China: zircon grains from granites in western Scotland 76 have δ^{18} O values varying from ~0‰ to 7.2‰ (e.g., Monani and Valley, 2001); 77 Mesozoic A-type granites from southeastern China also have low- δ^{18} O zircon grains 78 $(\delta^{18}O = 3.1\%$ to 5.4‰, Wei et al., 2008). Thus hotspot and rift environments with 79 high magma and heat fluxes are ideal settings to produce low- δ^{18} O magmas (e.g., 80 Bindeman and Simakin, 2014; Wang et al., 2011). Partial melting of subducted 81 oceanic gabbro can also generate low- δ^{18} O magmas (Wei et al., 2002). The low- δ^{18} O 82 magmas produced by partial melting of subducted lower crust are expected to possess 83 MORB-like radiogenic isotope signatures such as positive $\varepsilon_{Hf}(t)$ and $\varepsilon_{Nd}(t)$ values. 84

Thus, combination of zircon O and Hf isotopes is crucial for examination of the origin
of low-δ¹⁸O magmas.

Large-scale ¹⁸O-depletion has been identified in HP and UHP metamorphic rocks 87 in the Dabie-Sulu orogenic belt along the northern margin of the South China Block 88 (Fu et al., 2013; Rumble et al., 2002; Yui et al., 1995; Zheng et al., 1996; Zheng et al., 89 2004). The depletion and ultra-depletion of ¹⁸O in these UP and UHP metamorphic 90 rocks has significant implications not only for understanding fluid rock interaction 91 during deep subduction of continental crust, but also for identifying the 92 Neoproterozoic Snowball Earth events (Chen et al., 2003; Rumble et al., 2002; Tang 93 94 et al., 2008; Zheng et al., 2004; Zheng et al., 2007; Zheng et al., 2003).

Oxygen isotope and U-Pb ages of detrital zircon grains from the Neoproterozoic 95 96 sedimentary sequences in the Nanhua rift basin along the Sibao orogen in the South China Block show that low- δ^{18} O magmatic zircon grains started from ca. 870 Ma. 97 This coincides with the tectonic switching from the Sibao orogenesis to post-orogenic 98 extension and is more than 150 Ma prior to the first episode of mid-Neorpoterozoic 99 100 glaciation event (Wang et al., 2011; Yang et al., 2015). Therefore, nonglacial origin for the low- δ^{18} O Neoproterozoic magmas in the South China was proposed, and a 101 two-stage mechanism with high magma and high heat flux in continental rifting 102 environment was advanced to explain the low- δ^{18} O magmas (Wang et al., 2011; Yang 103 et al., 2015). Alternative mechanisms for such a low- δ^{18} O signature may involve 104 re-melting of either low- δ^{18} O caldera collapse or seawater-hydrothermally altered 105 106 oceanic lower crust (Zhang and Zheng, 2013). Increasing evidence from the Nanhua

107	Basin (Wang et al., 2011; Yang et al., 2015) and the Dabie-Sulu UHP metamorphic
108	rocks (Chen et al., 2003; Fu et al., 2013; Rumble et al., 2002; Zheng et al., 2004;
109	Zheng et al., 2003) shows that mid-Neoproterozoic low- δ^{18} O magmatism was
110	widespread around the Yangtze Block, making it the largest ¹⁸ O-depletion magmatic
111	province worldwide. Thus, the mechanism and spatial-temporal distribution of such
112	an ¹⁸ O-depleted magmatic province are important not only for understanding fluid
113	cycling between Earth's surface and its deep crust, but also for fluid-rock interaction
114	in UHP metamorphism. Mid-Neoproterozoic magmatic rocks from the northern
115	Yangtze Block are major protoliths of the Dabie-Sulu metamorphic rocks (e.g. Liu et
116	al., 2013; Rowley et al., 1997; Zheng et al., 2003). The primary oxygen isotopic
117	compositions of these mid-Neoproterozoic magmas therefore hold a key to
118	understanding origin of extremely ¹⁸ O-depletion in UP and UHP metamorphic rocks
119	in the Dabie-Sulu orogenic belt. However, due to younger geological processes, most
120	mid-Neoproterozoic igneous rocks might have been eroded (e.g. Bindeman, 2008).
121	Fortunately, detrital zircon grains within sedimentary rocks might have preserved the
122	primary depleted ¹⁸ O signature of the eroded igneous rocks (Bindeman, 2011; Wang
123	et al., 2011; Yang et al., 2015) due to their highly refractory property, extremely slow
124	rate of oxygen diffusion and high closure temperature (Cherniak and Watson, 2003;
125	Peck et al., 2003; Valley et al., 1994; Zheng and Fu, 1998). Therefore, an alternative
126	approach to constrain the timing and scale of the Neoproterozoic low- ¹⁸ O magmas in
127	the South China Block is to conduct in situ O and U-Pb isotopic analyses on zircon
128	grains from unmetamorphosed or weakly metamorphosed sedimentary rocks.

129	In this paper, we report the U-Pb ages and Hf-O isotopes of zircon grains from
130	sedimentary and volcanic rocks along the northern margin of the Yangtze Block. The
131	integrated results provide important constraint on the temporal and spatial distribution
132	of the Neoproterozoic low- δ^{18} O magmas in the Yangtze Block and offer insights into
133	the genesis of the low- δ^{18} O Dabie-Sulu UHP metamorphic rocks. This also allows us
134	to evaluate the proposed mechanism producing the worldwide largest low- $\delta^{18}O$
135	magmatic province, which is crucial for understanding deep-Earth fluid cycling.

- 136
- 137

2 Geological setting and sampling

The South China Block (SCB) is separated from North China Craton by the Qinling-Tongbai-Dabie-Sulu orogen in the north, from the Songpan-Ganzi terrane by the Longmengshan Fault to the northwest, from the Indochina Block by the Ailaoshan-Songma suture zone in the southwest, and is bounded by the Pacific Ocean to the southeast (Fig. 1a). The SCB consists of the Yangtze Block in the northwest and the Cathaysia Block in the southeast, which amalgamated together during the early Neoproterozoic (e.g. Li et al., 2009; Li et al., 2007; Li et al., 2008; Ye et al., 2007).

The Yangtze Block consists mainly of Proterozoic rocks with sporadic outcrops of Archean rocks. Archean and Paleoproterozoic basement rocks have only been reported from the northern and southwestern parts of the Yangtze Block, e.g. 3.4-3.2 Ga and 3.0-2.9 Ga tonalite-trondjemite-granodiorite (TTG) rocks from Kongling terrane (Chen et al., 2013; Gao et al., 2011; Guo et al., 2014; Jiao et al., 2009; Qiu et al., 2000), 2.65 Ga Huji high-K granite (Zhou et al., 2015), 2.5 Ga TTG rock from 151 Douling complex (Wu et al., 2014), 2.08 Ga gray gneiss from Houhe complex (Wu et al., 2012), and Dahongshan Group with 1.68 Ga tuffaceous schist unit (Greentree and 152 Li, 2008). Voluminous Neoproterozoic magmatic rocks occurred in the Yangtze Block, 153 with the main pulses of magmatic event during 860-750 Ma (Fig. 1a; Appendix S1). 154 155 The Neoproterozoic strata can be classified into three tectonostratigraphic sequences: 156 (I) the lower part of the Neoproterozoic strata consisting dominantly of clastic sedimentary rocks with minor volcanic rocks (850-820 Ma); (II) the most widely 157 distributed Neoproterozoic volcanic sedimentary unit (820-720 Ma) that is usually 158 overlying sequence (I) with an unconformity; (III) the glacial and interglacial deposits 159 (720-635 Ma) (e.g., Lan et al., 2014; Lan et al., 2015; Wang and Li, 2003; Wang et al., 160 2012; Zhang et al., 2008). 161

162 The Tongbai area along the northern margin of the Yangtze Block is the middle segment of the Qinling-Tongbai-Dabie-Sulu orogen. It is separated from the western 163 Dabie unit in the east by the Dawu fault and from the Qinling unit in the west by the 164 Nanyang basin. The Tongbaishan unit from northeast to southwest consists of six 165 collision-related lithotectonic units: (1) the Nanwan flysch, (2) the Balifan tectonic 166 mélange, (3) the northern eclogite zone, (4) the Tongbai Complex, (5) the southern 167 eclogite zone, and (6) the blueschist-greenschist zone (Liu et al., 2010; Liu et al., 168 2008). The blueschist-greenschist zone, equivalent to the Mulanshan unit of western 169 Dabie, is composed mainly of metamorphic bimodal volcanics and some 170 metasedimentary rocks (Liu et al., 2008). The studied Suixian Group is part of the 171 blueschist-greenschist zone of the Tongbai unit. The studied area is bounded by the 172

Xiangfan-Guangji fault to the northeast and Xincheng-Huangpi fault to the southwest, 173 respectively (Fig. 1b). Although the original deposition sequences of the Suixian 174 Group had been disturbed during the Phanerozoic orogeny, reconstruction of the strata 175 divided the group into the Guijing, Liulin and Yuanziwan formations from bottom to 176 top (Fig. 2; HGB, 1982). The lower part of Gujing Formation consists of 177 178 sericite-albite-quartz schist, sericite-quartz-albite schist, and actinolite schist while the upper part of the Gujing formation is characterized by sedimentary rocks mainly of 179 meta-feldspar quartz sandstone, sandstone, and siltstone. The Liulin Formation is 180 181 composed mainly of metasedimentary rocks such as pebbled sandstone and quartz sandstone in the lower part and albite-quartz-sericite schist, sericite-albite-quartz 182 schist with metarhyolite and siltstone layers in the upper part. The Yuanziwan 183 184 Formation is made up mostly of albite-quartz-sericite schist, sericite-quartz-albite schist and siltstone (HGB, 1982). Low-grade metamorphism at greenschist facies to 185 blueschist facies has been identified for the Suixian Group and equivalents (Liu et al., 186 2011). The Gujing, Liulin, and Yuanziwan formations were all intruded by 187 mafic-ultramafic intrusions with U-Pb age of ca. 630 Ma (Xue et al., 2011) (Fig. 1). 188 The Suixian Group is conformably overlain by muddy slate from Chahe Formation 189 190 (Fig.2). The Chahe Formation is assumed to be correlated with Doushantuo Formation (HGB, 1982). 191

Eleven samples were collected from the Suixian Group (Fig. 2) for secondary ion mass spectrometry (SIMS) oxygen and U-Pb analyses and LA-MC-ICPMS hafnium isotopic measurements. Three samples 12SZ20 (31°21'11.7"N, 113°42'41.5"E),

12SZ24 (31°28'26.7"N, 113°41'48.1"E) and 12SZ28 (31°30'55.3"N, 113°35'45.0"E) 195 were collected from the Gujing Formation. Sample 12SZ20 is a siltstone composed of 196 90% quartz and 10% sericite and sericite shows preferential orientation. Both 197 samples12SZ24 and 12SZ28 are sandstone made of irregular quartz and matrix of 198 sericites with weak preferred orientation. Six specimens 12SZ06 (31°31'45.4"N, 199 113°14'11.9"E), 12SZ07 (31°34'26.4"N, 113°21'38.3"E), 12SZ14 (31°49'10.1"N, 200 113°22'22.2"E), 12SZ17 (31°39'45.8"N, 113°34'43.8"E), 13SZ14 (31°34'59.1"N, 201 113°21'52.3"E) and 13SZ19 (31°35'19.8"N, 113°12'02.2"E) were collected from the 202 Liulin Formation. Both samples 12SZ06 and 12SZ07 are sandstone composed of 203 poorly sorted quartz. The main difference between sample 12SZ06 and sample 204 12SZ07 is that in the former the matrix mainly consists of calcite while in the latter 205 206 the matrix is made of fine-grained quartz and sericite. Samples 13SZ14 and 13SZ19 are also sandstone with irregular quartz clastic similar to sample 12SZ07. Sample 207 12SZ14 is a metarhyolite with quartz as phenocryst. The matrix of metarhyolite 208 12SZ14 reveals weak preferred orientation and was variably altered to fine sericite. 209 Sample 12SZ17 is a tuffaceous siltstone consisting mainly of orientated quartz and 210 sericite. Siltstone 12SZ10 (31°39'17.2"N, 113°21'44.9"E) and sandstone 13SZ17 211 (31°39'45.2"N, 113°15'03.3"E) were collected from the Yuanziwan Formation. 212 Sample 12SZ10 is a siltstone composed of quartz aligned with preferentially 213 orientated sericites. Sandstone 13SZ17 consists mainly of irregular quartz with fine 214 sericites as matrix. No mineral grains show preferred orientation in this sample. 215 Representative micrographs can be found in Appendix S2. 216

217

218 **3** Analytical techniques

Zircon concentrates were separated from ca. 2 kilograms of rock samples using 219 standard density and magnetic separation techniques. All zircon grains were purified 220 221 under binocular microscope for U-Pb dating, O and Hf isotope analysis. Zircon grains, 222 together with zircon standards Plešovice (Sláma et al., 2008), Penglai (Li X. H. et al., 2010), and Qinghu (Li X. H. et al., 2013), were mounted in epoxy mounts which were 223 then polished to section the crystals in half for analysis. All zircon grains were 224 documented with transmitted and reflected light micrographs as well as 225 cathodoluminescence (CL) images to reveal their internal structures, and the mount 226 was vacuum-coated with high-purity gold prior to SIMS analyses. 227

228

229 **3.1 SIMS zircon oxygen isotope measurements**

The oxygen isotopic compositions of zircon grains were measured using the 230 CAMECA IMS 1280 SIMS at the Institute of Geology and Geophysics, Chinese 231 Academy of Sciences (IGGCAS). Analytical procedures are similar to those described 232 by Li X.H. et al. (2010). The Cs⁺ primary ion beam was accelerated at 10 kV, with an 233 intensity of ca. 2 nA. The spot size is about 20 µm in diameter. The normal incidence 234 electron flood gun was used to compensate for sample charging during analysis. 235 Oxygen isotopes were measured using multi-collection mode on two off-axis Faraday 236 cups with mass revolution of ~ 2500 (#slit 2). The intensity of ¹⁶O was typically no 237 less than 1×10^9 counts per second (cps). The nuclear magnetic resonance (NMR) 238

probe was used for magnetic field control. Each analysis takes less than 4 minutes consisting of pre-sputtering (ca. 60 s), automatic beam centering (ca. 60 s) and integration of oxygen isotopes (20 cycles \times 4 s). Uncertainty on individual analysis is usually better than 0.2‰ - 0.3‰ (2 σ).

Measured ¹⁸O/¹⁶O ratios are reported as δ^{18} O per mil (‰) values, calculated 243 relative to oxygen isotopic composition of Vienna Standard Mean Ocean Water 244 $(^{18}O/^{16}O)_{VSMOW} = 0.0020052$ (Baertschi, 1976). The instrumental mass fractionation 245 factor (IMF) is corrected using zircon standard Penglai with a δ^{18} O value of 5.3 ± 246 0.1% (2 σ) (Li X.H. et al., 2010). The standard data were collected regularly 247 throughout the analytical session as the IMF drifted with time. Qinghu zircon was 248 measured as an unknown to yield a standard deviation of 0.4 per mil (2σ) , which is 249 used for least uncertainty for individual analysis. Low- δ^{18} O zircon grains in this study 250 are defined as those whose δ^{18} O values are no greater than those of mantle zircon (5.3 251 \pm 0.6, 2SD; Valley et al., 1998; Valley et al., 2005). Statistically, a variable x with 252 uncertainty of α is significantly different from another variable y with uncertainty of β 253 if $|x - y| > \sqrt{\alpha^2 + \beta^2}$. Following this philosophy, zircon SIMS δ^{18} O value < 4.6‰ 254 is distinctively lower than $5.3 \pm 0.6\%$ at significance level of 0.05, considering 255 analytical uncertainty of 0.4. Therefore, zircon grains with δ^{18} O values < 4.6% are 256 categorized as low- δ^{18} O zircon crystals in this study. 257

258

259 3.2 SIMS U-Pb zircon dating

260 Measurements of U, Th, and Pb isotopes were carried out by the CAMECA IMS

1280 SIMS at the IGGCAS. Analytical procedures are referred to those described by 261 Li X.H.et al. (2009). The O_2^- primary bean with an intensity of ca. 10 nA was 262 accelerated at - 13 kV. The ellipsoidal spot is about 20 μ m \times 30 μ m in size. Oxygen 263 flooding was used to increase the O₂ pressure to ca. 5×10^{-6} torr in the sample 264 chamber, enhancing Pb^+ sensitivity by a factor of >2 to a value of ca. 25-28 265 cps/nA/ppm for zircon (Li X. H. et al., 2009). A single electron multiplier with a mass 266 resolution of ca. 5400 (defined at 10% peak height) was used on ion-counting mode to 267 measure secondary ion beam intensities by peak jumping sequences. 268

269 Measured Pb/U ratios were calibrated with power law relationship between Pb^{+}/U^{+} and UO_{2}^{+}/U^{+} relative to the standard zircon Plešovice dated at 337 Ma (Sláma 270 et al., 2008). A long-term uncertainty of 1.5% (1 RSD) for ²⁰⁶Pb/²³⁸U measurements 271 272 of the Plešovice standard was propagated to the unknowns, despite that the measured 206 Pb/ 238 U error in a specific session is generally around 1% (1 RSD) or less (Li Q. L. 273 et al., 2010; Yang et al., 2014). The measured Pb isotopic compositions were 274 corrected for common Pb using non-radiogenic²⁰⁴Pb. An average present-day crustal 275 Pb composition (Stacey and Kramers, 1975) was used for the common Pb assuming 276 that the common Pb was largely due to surface contamination introduced during 277 sample preparation. Uncertainties in the isotopic ratios and ages in the tables are 278 reported at 1σ level, but unless otherwise stated, whereas the final weighted mean 279 ages are reported at 95% confidence level. The data were reduced with the Isoplot 280 3.75 program Ludwig (2012). Fifty-five analyses of the Qinghu U-Pb working 281 reference zircon give a weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 159.9 ± 0.7 Ma (MSWD = 282

1.2, n = 55), which agrees well with the recommended 206 Pb/ 238 U age of 159.5 ± 0.2 Ma (2SE) (Li X. H. et al., 2009) within analytical errors.

285

286 **3.3 LA-MC-ICPMS zircon Lu-Hf isotope analysis**

Zircon Hf isotopic analysis was carried out on a Neptune multi-collector ICP-MS 287 equipped with a Geolas-193 laser ablation system (LA-MC-ICPMS) at the IGGCAS. 288 Lu-Hf isotopic measurements were made on the same zircon grains previously 289 analyzed for O and U-Pb isotopes, with repetition rate of 8-10 Hz, laser beam energy 290 density of 10 J/cm², and ablation time of 26 s. The detailed analytical procedures were 291 similar to those described by Wu et al. (2006). Data were routinely acquired by 292 ablating 60µm diameter laser spots, but 44µm diameter laser spots were adopted 293 294 occasionally in case of small zircon grains. Contribution of isobaric interferences by ¹⁷⁶Lu and ¹⁷⁶Yb on the ¹⁷⁶Hf signal was subtracted by monitoring the intensity of 295 175 Lu and 172 Yb signals, using 176 Lu/ 175 Lu = 0.02655 and 176 Yb/ 172 Yb = 0.5886 (Chu 296 et al., 2002). The measured ¹⁷⁶Hf/¹⁷⁷Hf ratios for zircon standards Mud Tank, GJ-1, 297 and Qinghu are 0.282505 ± 28 (2SD), 0.282014 ± 37 (2SD), and 0.282994 ± 39 (2SD), 298 respectively, which are consistent with reference 176 Hf/ 177 Hf values of 0.282507 ± 299 $0.000006, 0.282000 \pm 0.000005, and 0.283002 \pm 0.000004$, respectively (Li X. H. et 300 al., 2013; Morel et al., 2008; Woodhead and Hergt, 2005). 301

Initial Hf isotope composition were calculated with the reference to the chondritic ratios of 176 Hf/ 177 Hf = 0.282772 and 176 Lu/ 177 Hf = 0.0332 (Blichert-Toft and Albarède, 1997) and the U-Pb ages of the dated zircon crystals. A decay constant for 176 Lu of $1.867 \times 10^{-11} \text{ yr}^{-1}$ (Söderlund et al., 2004) was adopted. The results were donated as the conventional $\varepsilon_{\text{Hf}}(t)$ values that represent the 0.1‰ difference between the sample and the chondritic reservoir at the time of crystallization.

308

309 4 Results

310 4.1 SIMS Zircon U-Pb ages

Two hundred and ninety-five zircon grains from eleven samples of the Suixian Group were collected for SIMS U-Pb dating (Fig. 2; Appendix S3). 206 Pb/ 238 U age and its uncertainty are taken as the final U-Pb age if 206 Pb/ 238 U age is less than 1000 Ma for single analysis; otherwise, 207 Pb/ 206 Pb age and accompanying uncertainty are adopted. Age discordance is defined as percent deviation of 206 Pb/ 238 U age from 207 Pb/ 206 Pb age.

317

318 4.1.1 Gujing Formation, lower part of the Suixian Group

Forty-eight zircon grains from three samples of upper part of the Gujing 319 Formation (siltstone 12SZ20, sandstone 12SZ24, and sandstone 12SZ28, Fig. 2) were 320 selected for SIMS U-Pb isotope analyses. Zircon grains in these samples are mostly 321 322 euhedral and range in length from 30 to 150 µm with aspect ratios of 1:1 to 3:1. Cathodoluminescence (CL) images reveal clear oscillatory zoning or homogenous 323 illuminating, which together with Th/U ratios varying from 0.6 to 3.9 suggest 324 magmatic origin (Appendix S4). Of the forty-eight analyses on 48 zircon grains, 45 325 analyses are concordant within uncertainties (Appendix S3). The measured U-Pb ages 326

327	are between 718 and 1740 Ma, and the main age population peaks at 739 ± 4 Ma (Fig.
328	3a). In addition, two minor peaks at 830 Ma and 1840 Ma are also present. The
329	youngest population age of 740 Ma provides a maximum constraint on the deposition
330	time of the Gujing Formation (Fig. 2).

331

332 4.1.2 Liulin Formation, middle part of the Suixian Group

Four sandstone samples (12SZ06, 12SZ07, 13SZ14, and 13SZ19) were collected from the lower part of the Liulin Formation and one metarhyolite (12SZ14) and tuffaceous siltstone (12SZ17) from the upper part of the Liulin Formation (Fig. 2) for SIMS zircon U-Pb dating.

Zircon grains from the four sandstone samples (12SZ06, 12SZ07, 13SZ14, and 337 338 13SZ19) are represented by subrounded to rounded grains in addition to some being euhedral and prismatic in shape (Appendix S4). They range in length from 50 to 260 339 μ m, with aspect ratios of 1:1 to 4:1. Their CL images reveal that most of them show 340 clear oscillatory zoning, indicating provenance of igneous rocks (Corfu et al., 2003). 341 One hundred and forty-four U-Pb analyses were conducted on 144 zircon grains for 342 these sandstones. The results show relative large variations of U contents (26 to 1919 343 ppm) and Th contents (7 to 1486 ppm). This gives Th/U ratios 0.1 to 2.0 which is 344 typical of magmatic zircon. One hundred and thirty-six out of the 144 analyses are 345 concordant within uncertainties. The U-Pb ages vary from 709 to 2739 Ma, and the 346 main population ranges from 742 to 878 Ma (accounting for 74% of the total analyzed 347 grains) with a peak of 789 ± 5 Ma (Fig. 3b). There is one obvious subordinate age 348

group peaking at about 2.02 Ga. Minor peaks at 1.0 Ga and 1.6 Ga are also revealed.

Most zircon grains recovered from metarhyolite 12SZ14 are euhedral and 350 prismatic (Appendix S4). They range in length from 50 to 200 µm, and have length to 351 width ratios of 1:1 to 3:1. In CL images, most of them exhibit clear fine or broad 352 oscillatory zoning, a typical characteristic of magmatic zircon (Corfu et al., 2003). 353 354 Twenty-four analyses were carried out on 24 grains. The results exhibit U and Th contents of 31 to 205 ppm and 46 to 279 ppm, respectively. They give U/Th ratios of 355 0.4 to 2.0, consistent with their igneous origin. Except for one zircon core with 356 207 Pb/ 206 Pb age of 999 ± 19 Ma (12SZ14@21), the remaining analyses form a 357 coherent group with a weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 742 ± 6 Ma (MSWD = 1.7, n 358 = 22) (Fig. 4a and 4a'). This was interpreted to represent the crystallization age of this 359 360 metarhyolite.

Zircon grains from tuffaceous siltstone 12SZ17 are euhedral, prismatic and 361 translucent. Their lengths range from 50 to 250 µm, with aspect ratios of 1:1 to 3.5:1. 362 Their CL images reveal that most of them show relatively broad oscillatory zoning 363 (Appendix S4). Twenty-seven analyses were conducted on 27 grains. The results 364 show variable contents of U and Th of 84 to 670 ppm and 27 to 757 ppm, respectively. 365 They yield relatively high Th/U ratios of 0.3 to 1.1, consistent with their igneous 366 origin. Except for one older grain having a 206 Pb/ 238 U age of 831 ± 12 Ma, the other 367 analyses yield a weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 727 ± 5 Ma (MSWD = 1.16, n = 26) 368 (Fig. 4b and 4b'), representing the maximum deposition age of the tuffaceous 369 siltstone. 370

371

372 4.1.3 Yuanziwan Formation, upper part of the Suixian Group

Zircon grains of siltstone 12SZ10 and sandstone 13SZ17 from the upper part of 373 Yuanziwan Formation (Fig. 2) are euhedral and prismatic. Their CL images are 374 characterized by relative broad oscillatory zoning, typical of magmatic zircon grains 375 376 (Appendix S4). Fifty-two analyses were done on 52 zircon grains for these two samples. The result reveals U and Th contents of 30 to 626 ppm and 36 to 1258 ppm, 377 respectively. This gives Th/U ratios of 0.4 to 3.1, which is consistent with magmatic 378 origin. The U-Pb ages range from 709 to 799 Ma and form one single population with 379 the peak age at ca. 730 Ma. Since siltstone 12SZ10 and sandstone 13SZ17 are located 380 to the uppermost part of the Yuanziwan Group (Fig. 2), the peak age of 734 ± 3 Ma 381 382 provides a maximum timing constraint on the end of the deposition of the Suixian Group (Fig. 3c). 383

384

385 4.2 In situ zircon oxygen and hafnium isotopes

All the zircon grains dated were selected for *in situ* oxygen and hafnium isotopic analyses. A total of 295 O-isotope measurements had been conducted on 295 zircon grains (Appendix S3). With the exception of fifteen O-isotope analyses that have discordant ages, the remaining data are adopted in the following discussion. Among them, two hundred and seventy isotopic compositions were obtained on 270 zircon grains (Appendix S3).

393	vary from 1.4‰ to 7.6‰ with ca. 64% of low- δ^{18} O zircon grains (Fig. 5). Zircon
394	grains from the Liulin Formation (middle part of the Suixian Group) reveal highly
395	variable δ^{18} O values from 10.5‰ to 1.4‰. Pre-1.5 Ga zircon crystals from the Liulin
396	group show δ^{18} O values of 7.5‰ to 5.9‰ while maximum δ^{18} O values of the post-1.0
397	Ga zircon grains climbed from 5.3‰ at ca. 930 Ma up to highest δ^{18} O value of 10.5‰
398	at ca. 820 Ma (Fig. 5b). Also noteworthy is the abrupt occurrence of low- δ^{18} O zircon
399	grains at ca. 780 Ma (Fig. 5b). The zircon δ^{18} O values from the Yuanziwan Formation
400	range from 8.6‰ to 1.3‰. Sandstone 13SZ17 from the Yuanziwan Formation is
401	characterized by large amount of low- δ^{18} O zircon grains (19 out of 24 grains).
402	The zircon $\epsilon_{Hf}(t)$ values from the Gujing Formation range from 9.7 to -16.0, and
403	36 out of 43 zircon grains bear negative $\epsilon_{Hf}(t)$ values peaking at ca6.8 (Fig. 6a). The
404	$\epsilon_{\rm Hf}(t)$ values of zircon grains from the Liulin Formation vary from 12.4 to -18.1, and
405	59% of the zircon $\varepsilon_{Hf}(t)$ values are positive (Fig. 6b). The Hf isotopic compositions
406	form two major populations with $\epsilon_{\rm Hf}(t)$ peaks at ca. 5.9 and -9.2. Besides, zircon
407	grains older than 1.5 Ga from the Liulin Formation are dominated by negative $\epsilon_{\rm Hf}(t)$
408	values from -1.1 to -12.2 (Fig. 7a). The zircon grains from the Yuanziwan Formation
409	reveal $\varepsilon_{Hf}(t)$ values from 6.3 to -15.5 (Fig. 6c). Ninety-three percent of zircon grains
410	give negative $\epsilon_{Hf}(t)$ values with the dominant group peaking at about -5.9. Two minor
411	peaks at ca12.5 and 6.3 are also present.

412 To sum up, oxygen isotopes of Neoproterozoic magmatic zircon grains from the 413 Tongbai low-grade sedimentary and meta-volcanic rocks along the northern margin of 414 the South China Block display the following characteristics. First, their δ^{18} O values

415	show a large variation from 1.3‰ to 10.5‰, but no negative δ^{18} O values are
416	identified in this study (Fig.5a). Second, low- δ^{18} O zircon grains started sporadically
417	since ca. 840 Ma, and culminated at ca. 780-700 Ma (Fig.5b). These zircon grains
418	reveal a wide range of $\epsilon_{Hf}(t)$ values from -18.1 to 12.4. Particularly, Neoproterozoic
419	positive- $\epsilon_{Hf}(t)$ zircon grains make up 38% of total analyses (Fig. 7b). The pre-1.0 Ga
420	zircon grains are dominated by negative- $\varepsilon_{Hf}(t)$ values (Fig. 7a).

421

```
422 5 Discussion
```

423 5.1 Timing and provenance of the Suixian Group sedimentary rocks

The youngest group of ages from detrital zircon grains could be used to constrain 424 the maximum depositional age of sedimentary rocks (e.g. Dickinson and Gehrels, 425 426 2009; Gehrels, 2014). Detrital zircon U-Pb ages from the upper part of the Gujing Formation (siltstone 12SZ20, sandstone 12SZ24, and sandstone 12SZ28, Fig. 2) 427 display one dominant group with a weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 739 ± 4 Ma, 428 providing a maximum depositional timing of the upper part of the Gujing Formation 429 and onset age for the Liulin Formation. Zircon grains from the metarhyolite 12SZ14 430 and tuffaceous siltstone 12SZ17 (Fig. 2) from the upper part of the Liulin Formation 431 give weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ ages of 742 ± 6 Ma and 727 ± 5 Ma (Fig. 3c), 432 respectively, pinning the ending of the deposition of the Liulin Formation and 433 initiating of the Yuanziwan Formation at ca. 740-720 Ma. Zircon U-Pb measurements 434 for siltstone 12SZ10 and sandstone 13SZ17 from the upper part of Yuanziwan 435 Formation (Fig.2) yield a consistent Neoproterozoic population peaking at 734 ± 3 436

437	Ma, which constrains the ending of Yuanziwan Formation deposition $< 734 \pm 3$ Ma.
438	Therefore, the onset deposition of the Suixian Group is approximately 739 ± 4 Ma
439	constrained by zircon U-Pb dating results from the Gujing Formation, consistent with
440	the SHRIMP U-Pb zircon age of 741 ± 7 Ma for a meta-trachandesite from the Gujing
441	Formation (Xue et al., 2011). The 632 ± 6 Ma troctolite (Xue et al., 2011) that
442	intruded the Suixian Group (Fig.1 b) serves as a minimum age for the deposition for
443	this group (Fig. 2). Considering the lack of glacial deposits similar to diamictite of
444	either Nantuo Formation (650-635 Ma; Liu et al., 2015) or Jiangkou glaciation (<715
445	Ma; Lan et al. 2014; Zhang et al., 2008), the Suixian Group is supposed to be
446	correlated with the Liantuo Formation (780-714 Ma; Lan et al., 2015) in the Yangtze
447	Block. Thus, we tentatively set the ending deposition of the Suixian Group at ca. 720
448	Ma, which is in accordance with the deposition time of the Yuanziwan Formation less
449	than 734 ± 3 Ma (Figs. 2, 3). In conclusion, the deposition age of the Suixian Group is
450	constrained between 740 and 720 Ma. If the stratigraphic reconstruction (HGB, 1982)
451	is valid, the short duration of the deposition and at least one kilometer of sediments
452	(Fig. 2) might indicate a high rate of deposition.

Detrital zircon grains from the Suixian Group display a U-Pb age pattern with multiple peaks at ca. 0.73-0.74 Ga, 0.79 Ga, and 2.0 Ga (Fig. 3). The zircon grains of the 0.73-0.74 Ga population are mainly from the Gujing and Yuanziwan formations (Fig. 3a and 3c). These zircon grains have similar oxygen and hafnium isotopic compositions, with dominantly negative $\varepsilon_{Hf}(t)$ values and ca. 67% of low- δ^{18} O zircon grains (Fig. 8). Such zircon Hf and O isotopic characteristics are consistent with those

459	of 742 ± 6 Ma metarhyolite and 727 ± 5 Ma tuffaceous siltstone from the Liulin
460	Formation (Fig. 8). This, together with their euhedral and subhedral morphology
461	(Appendix S4) and widespread coeval magmatic events along the northern margin of
462	the Yangtze Block (Fig.1a), indicate that the ca. 0.73-0.74 Ga detrital zircon grains
463	from the Gujing and Yuanziwan formations most likely derived from locally exposed
464	Neoproterozoic rocks in this region. Zircon grains with a peak at 0.79 Ga mainly
465	come from the 4 sandstone samples (12SZ06, 12SZ07, 13SZ14 and 13SZ19) of the
466	Liulin Formation (Fig. 3b). These zircon grains show large variation of $\epsilon_{Hf}(t)$ values
467	from 11.1 to -17.5 (Fig. 6b) and δ^{18} O values between 7.6‰ and 3.0‰ (Fig. 5b).
468	Neoproterozoic 730-820 Ma magmatic rocks are widely occurred along the northern
469	margin of the Yangtze Block (Fig. 1a), which are likely sources for those
470	mid-Neoproterozoic zircon grains.

Seventeen zircon grains with ²⁰⁷Pb/²⁰⁶Pb age ranging from 1960 to 2050 Ma from 471 the Liulin Formation (Fig. 3b) form a consistent population with a weighted mean age 472 of 2005 \pm 10 Ma (MSWD = 0.97). These grains have a limited variation of $\varepsilon_{Hf}(t)$ 473 between -12.2 and -8.1 and a narrow range of δ^{18} O values from 7.5% to 6.4%. 474 Paleoproterozoic magmatic rocks dated at ca. 2.0 Ga in the Yangtze Block is only 475 reported for gray gneisses from the Houhe complex (Wu et al., 2012) and a felsic 476 gneiss at Huangtuling from the northern Dabie unit (Wu et al., 2008). However, the 477 age of gray gneiss from the Houhe complex is constrained by LA-ICPMS zircon U-Pb 478 analyses at 2081 ± 9 Ma (Wu et al., 2012), which is older than the ca. 2.0 Ga zircon 479 grains from the Liulin Formation. In addition, the $\varepsilon_{Hf}(t)$ values (-5.9 to 0.7) for the 480

481	zircon grains from the Houhe gneiss (Wu et al., 2012) are consistently higher than
482	those for ca. 2.0 Ga zircon grains from this study. Thus the gneiss from the Houhe
483	complex is precluded as the source of the ca. 2.0 Ga zircon grains from the Suixian
484	Group. As no Hf or O isotopic composition was reported for the 1984 \pm 14 Ma
485	Huangtuling gneiss (Wu et al., 2008), we assume it as one possible candidate from
486	which the ca. 2.0 Ga zircon grains of the Suixian Group were derived. The 2.08 Ga
487	Houhe complex, 1.98 Ga Huanglingling gneiss together with ca. 2.0 Ga
488	metamorphism as confirmed by the Huangtuling granulite (Sun et al., 2008; Wu et al.,
489	2008) and metasedimentary rocks, amphibolites and migmatites from the Kongling
490	terrane (Wu et al., 2009; Zhang et al., 2006a; Zhang et al., 2006b) suggested that the
491	Yangtze Block experienced a Paleoproterozoic high-grade metamorphic event at ca.
492	2.0 Ga during the assembly of the supercontinent Columbia. Magmatic rocks
493	generated during this process likely served as the source for the zircon grains with age
494	of 1960 to 2050 Ma. This is supported by the 2.02 Ga zircon xenocrysts with $\epsilon_{\rm Hf}(t)$
495	values between -22.5 to -6.1 (recalculated using the ¹⁷⁶ Lu decay constant value of
496	1.867×10^{-11} yr ⁻¹ ; Söderlund et al., 2004) separated from lamproite at Jingshan
497	(Zheng et al., 2006), 30 km south to the study area in this research (Fig.1b). Therefore,
498	Paleoproterozoic rocks (ca. 2.0 Ga) along the northern margin of the South China
499	Block might serve as an important provenance contributor to the Suixian Group.

5.2 Origin of Neoproterozoic low-\delta^{18}O magmas

502 Unusually ¹⁸O-depletion in HP and UHP metamorphic rocks in the Dabie-Sulu

orogenic belt have been reported to cover an overall area of more than 20,000 km² 503 and volume of likely 60,000 km³ (Zheng et al., 2004). The low to negative δ^{18} O 504 values are proposed to be inherited from their protoliths (700 to 880 Ma) through 505 high-T hydrothermal alteration with near surface meteoric water (Yui et al., 1995; 506 Zheng et al., 1996). It is significant that the UHP metamorphic rocks still retain 507 508 pre-metamorphic oxygen isotopic composition after subduction to at least 120 km deep and subsequent exhumation to the upper crustal level (Okay et al., 1989; Wang 509 et al., 1989; Xu et al., 1992; Ye et al., 2000). This is of importance to enlighten the 510 geodynamics of continental crust subduction and provides critical evidence for the 511 proposed fast in, very short stay and fast out of subducted continental crust into the 512 upper mantle (i.e. ice cream-frying model) (Zheng et al., 1997; Zheng et al., 2003). 513 Thus the occurrence of 870-700 Ma low- δ^{18} O zircon grains around the Yangtze Block 514 provides us the chance to constrain the primary oxygen isotopic compositions of the 515 protoliths for the HP-UHP metamorphic rocks and explore the origin of such 516 large-scale low- δ^{18} O magmas. 517

⁵¹⁸ Non-metamict zircon grains can preserve their initial δ^{18} O values from the time ⁵¹⁹ of crystallization, even after going through subsequent high-grade metamorphism, ⁵²⁰ subsolidus hydrothermal alteration, and likely magmatic assimilation or anataxis ⁵²¹ (Gilliam and Valley, 1997; Valley, 2003; Zheng et al., 2004), while zircon grains with ⁵²² high U contents are usually associated with ¹⁸O depletion (Booth et al., 2005; Gao et ⁵²³ al., 2014; Wang et al., 2015). The majority of zircon grains from this study exhibit ⁵²⁴ euhedral morphology and zoned textures (Appendix S4) with Th/U ratios no less than 525 0.1 (Fig. 9a), which is typical of magmatic origin (e.g., Corfu et al., 2003). The fresh, 526 crack-free crystalline zircon grains from the Suixian Group do not display any 527 correlation between zircon δ^{18} O values and their U contents (Fig. 9b). This suggests 528 that these grains retain their primary oxygen isotopic composition after crystallization 529 from magmas. Therefore, occurrence of low- δ^{18} O zircon grains from the Suixian 530 Group points to Neoproterozoic low- δ^{18} O magmas in the South China Block.

Zircon oxygen and U-Pb isotopic data from this study reveal that abundant 531 occurrence of low- δ^{18} O zircon grains started at >780 Ma, which is at least 60 Ma prior 532 to the earliest known glacigenic diamictites in South China (i.e. Jiangkou glaciation of 533 <715 Ma; Lan et al., 2014; Zhang et al., 2008) (Fig. 10). Such observation is 534 supported by SIMS oxygen isotope and U-Pb dating analyses from coeval 535 sedimentary and igneous rocks across the Yangtze Block (Fig. 10). Low- δ^{18} O zircon 536 grains sprung along northwestern Yangtze Block at ca. 800 Ma and started 537 sporadically at the northern Yangtze at as early as ca. 840 Ma (Fig. 11; Liu and Zhang, 538 2013; Liu et al., 2013; Fu et al., 2013). Along the southeastern Yangtze Block, 539 low- δ^{18} O zircon grains from the Neoproterozoic sedimentary rocks can be traced back 540 to ca. 870 Ma (Fig. 11; Lan et al., 2015; Wang et al., 2011; Yang et al., 2015), even 541 earlier than the proposed first episode of climate cooling during 815-710 Ma (Huang 542 et al., 2014). Thus formation of low- δ^{18} O magmatic zircon grains was not necessarily 543 attributed to glacial events (Bindeman, 2011; Liu and Zhang, 2013; Wang et al., 544 2011). In contrast, we propose that earlier initiation of Neoproterozoic low- δ^{18} O 545 magmas along southeastern Yangtze than those along the northern and western 546

547 Yangtze Block might be due to diachronous onset of postorogenic extension and548 rifting of Rodinia supercontinent.

Negative- δ^{18} O magmatic zircon should be distinguished from low- δ^{18} O grains 549 because of their different origins. Rocks with negative- δ^{18} O values can only be 550 551 generated through high-T meteoric-hydrothermal alteration, while high-T hydrothermal alteration by sea water merely lowers the δ^{18} O values of rocks yet not 552 likely lower than 0% (Zhang and Zheng, 2013). Whether negative- δ^{18} O values 553 demand contribution from continental deglacial meltwater or could be used as the 554 proxy for cold paleoclimate depends on the degree of ¹⁸O depletion (e.g. Bindeman, 555 2011). Significantly ¹⁸O-depleted metamorphic mineral assemblages and zircon rims 556 (-25‰ to -27.3‰) of Paleoproterozoic rocks of the Belomorian Belt, Russia 557 (Bindeman and Serebryakov, 2011) and extremely negative δ^{18} O values between 558 -18.12‰ and -13.19‰ for hydrothermal zircon from an A-type granite at Baerzhe in 559 northeastern China were attributed to meteoric water under glaciation (Yang et al., 560 2013). In contrast, estimated δ^{18} O value of -11‰ for altering water of the 561 562 ¹⁸O-depleted Dabie-Sulu HP and UHP metamorphic rocks and -4‰ for garnet from Kokchetav eclogite do not necessarily require glaciation meltwater or cold climates 563 (Bindeman, 2011). The cut-off point of δ^{18} O value between meteoric water under cold 564 climate and precipitation under non-glaciation condition is around -13‰ based on the 565 δ^{18} O in precipitation for the modern distribution of land masses (Bindeman, 2011; 566 www.waterisotopes.org). Almost all the Neoproterozoic zircon O isotope 567 microanalyses reveal positive δ^{18} O values, except for three zircon grains displaying 568

569	negative δ^{18} O values of -5.3‰, -4.1‰ and -0.9‰ (Fig. 10b), which is still higher than
570	the δ^{18} O value that has to call for meteoric water under cold climate. The exact origin
571	for the garnet with $\delta^{18}O$ values between -14.4% and -10.0% from Wozicun granite,
572	Beihuaiyang zone, Dabie orogen (Zheng et al., 2007) warrants further investigation to
573	determine whether glacier meltwater or precipitation under cold climate was required.
574	Origin of low- δ^{18} O magmas has been proposed to require partial melting or
575	assimilation of ¹⁸ O-depleted rocks, which could be either high-T hydrothermally
576	altered upper continental crust in shallow extensional environments (Larson and
577	Taylor, 1986) or subducted oceanic lower crust (Wei et al., 2002). Evidence from
578	adakite, high-Mg andesite and other arc lavas that were proposed to contain high
579	proportional slab melts show that these arc magmas have no oxygen anomalies
580	(Bindeman et al., 2005). The low- δ^{18} O magmas produced by partial melting of altered
581	oceanic gabbro should have MORB-like Hf isotopes. However, as shown in Fig. 8,
582	low- δ^{18} O magmatic zircon grains in this study display diverse $\epsilon_{Hf}(t)$ values from 10.7
583	to -15.5, concentrating on negative $\epsilon_{\rm Hf}(t)values,$ in contrast with those for the
584	low- δ^{18} O magmas mainly derived from oceanic lower crust. This implies that partial
585	melting of oceanic lower crust cannot be a dominant mechanism to produce the
586	largest low- δ^{18} O magmatic province in the Yangtze Block. In contrast, hafnium
587	isotopic diversity in low- δ^{18} O zircon grains possibly indicates multiple origins for the
588	low- $\delta^{18}O$ magmas. Therefore, the predominant negative $\epsilon_{Hf}(t)$ values for the low- $\delta^{18}O$
589	zircon grains suggest that the Neoproterozoic low- δ^{18} O magmas in the South China
590	Block most likely originated from remelting of high-T hydrothermally altered upper

591 continental crust in shallow extensional environments.

Such a large and long-lived (800-700 Ma) low- δ^{18} O magma province (Fig. 11) 592 may require multiple cycles of high-T hydrothermal alteration to deplete ¹⁸O of the 593 protoliths and remelting of ¹⁸O depleted rocks. The prominent feature of low- δ^{18} O 594 felsic volcanic rocks from the Snake River Plain, Iceland, Kamchatka Peninsula, and 595 596 other environments is their isotopically diverse minerals (Bindeman et al., 2014). Diverse zircon δ^{18} O values of the low- δ^{18} O magmas indicate that magma generation 597 happens by remelting of variably hydrothermally altered protoliths. The generation of 598 zircon Hf-O isotope diversity was proposed to happen at shallow depths of a few 599 600 kilometers, where meteoric water can circulate at large water/rock ratios to imprint low δ^{18} O values on the protolith (Bindeman et al., 2014; Watts et al., 2011). Evidence 601 602 from long-lived large-volume silicic centers in the Snake River Plain and elsewhere showed that low- δ^{18} O zircon grains mainly occurred at the end of the magmatic 603 evolution (Bindeman et al., 2014; Watts et al., 2011). This evidence indicates that the 604 generation of low- δ^{18} O rhyolites by recycling hydrothermally altered subsolidus 605 606 predecessors may be a common evolutionary trend for many rhyolites worldwide, especially in hotspot and rift environments with high magma and heat fluxes 607 (Bindeman and Simakin, 2014). The time gap between initial high-T water-rock 608 interaction and occurrence of major phase of low- $\delta^{18}O$ zircon grains in long-lived 609 large-volume silicic centers from the Snake River Plain can be up to 30-40 m.y. (e.g. 610 Boroughs et al., 2005). This implies that the occurrence of major low- δ^{18} O zircon 611 grains in long-lived felsic magma provinces might be much younger than formation of 612

613	their hydrothermally altered subsolidus predecessors. The important application of the
614	study from the Yellowstone low- $\delta^{18}O$ magmas is that the timing of occurrence of
615	major phase of ca. 800-700 Ma low- δ^{18} O magmatic zircon grains cannot be simply
616	linked to the time of formation of low- δ^{18} O predecessors in the Yangtze Block. Thus,
617	we propose that early occurrence of low- δ^{18} O zircon grains at 850-870 Ma (Wang et
618	al., 2011; Yang et al., 2015) in the South China Block implies that early recycled
619	hydrothermally altered subsolidus predecessors should be formed at ≥ 870 Ma.
620	Therefore, formation of long-lasting low- δ^{18} O magmas from 870 to 700 Ma requires
621	persistent supply of high magma, heat, and water fluxes.
622	Permeable hydrogeological conditions near magma chambers in shallow
623	extensional environments, such as rifts and calderas, favor the generation of low- $\delta^{18}O$
624	magmas (Bindeman and Valley, 2001; Larson and Taylor, 1986; Wang et al., 2011;
625	Watts et al., 2011; Watts et al., 2010; Zhang and Zheng, 2011). The tectonic setting
626	along the western and northern margin of the Yangtze Block from 850 to 730 Ma is
627	highly debatable and two main schools of thoughts have been proposed. On one hand,
628	an active continental margin between 950 Ma and 700 Ma (i.e. the Panxi-Hanan arc
629	system) was suggested mainly on basis of the intrusive bodies bearing arc-like
630	geochemical features (e.g. Dong et al., 2012; Xiang et al., 2015; Zhao and Zhou, 2007;
631	Zhao and Zhou, 2008; Zhao and Zhou, 2009; Zhao et al., 2011; Zhou et al., 2002;
632	Zhou et al., 2006; Zhou et al., 2002; Zhu et al., 2014). Although low- δ^{18} O magmas
633	might be generated in a highly-extensional back-arc regime (Li Y. et al., 2015), they
634	rarely occur along subduction zones. Moreover, this model predicts linear distribution

low- δ^{18} O magma along the subduction zone, which contradicts the spatial-temporal 635 distribution of Neoproterozoic low- δ^{18} O magmas across the Yangtze Block (Fig.1a). 636 Therefore, subduction-related environments are not favorable for generation of 637 large-scale, voluminous low- δ^{18} O magmas. On the other hand, there exists evidence 638 that suggest a continental rifting setting, exemplified by the 857 ± 13 Ma anorogenic 639 Guandaoshan pluton (Li et al., 2003), rifting-related 820-800 Ma Gaojiacun and 640 Lengshuiqing mafic-ultramafic intrusions (Li et al., 2006) and stratigraphic and facies 641 analysis in the north-south trending Kangdian basin (Wang and Li, 2003), the 642 well-developed 800 Ma Suxiong bimodal volcanic successions (Li et al., 2002) in the 643 western Yangtze Block, and the 820-810 Ma Bikou Group basalt with anomalously 644 high potential temperature along the northern Yangtze Block (Wang et al., 2008). 645 Thus, the high magma production rate and heat flux along with long-lived 646 intra-continental rifting offer the ideal prerequisite to produce widespread low- δ^{18} O 647 magmas across the Yangtze Block. 648

In detail, the oxygen isotopic characteristics of Neoproterozoic zircon grains from 649 the Yangtze Block could be attributed to following processes. (1) From 870 Ma on, 650 the maximum δ^{18} O value increased and peaked with 10.5% at ca. 820 Ma (Fi.g 5b). 651 This coincided with the onset of a major rifting on the impingement of ca. 825 Ma 652 mantle plume upon the South China Block (Li et al., 2003; Li et al., 2002; Li et al., 653 2008; Li et al., 1999; Wang et al., 2009). Zircon grains formed during this episode are 654 dominated by positive $\varepsilon_{Hf}(t)$ from 12.4 to 0.5 paired with $\delta^{18}O$ values similar to or 655 higher than those of mantle zircon. While the mantle-like δ^{18} O values may indicate 656

the addition of juvenile materials to the crust, the high- δ^{18} O values possibly suggest 657 melting of juvenile material that had suffered oxygen isotope exchange near crust 658 surface. Two zircon grains with δ^{18} O values of 4.1% indicate that high-T water-rock 659 interaction was possibly rare. (2) Abrupt decrease of zircon δ^{18} O from mantle-like 660 values to less than 4.6‰ occurred at around 780 Ma for Suixian Group along the 661 662 northern margin of the Yangtze Block (Fig. 5b). This corresponded to transition from 663 the first phase of rifting to the main stage of rifting with large-scale extension in the South China Block. The brittle fractures and coeval large quantities of magma 664 eruption and intrusion provided feasible conditions that allowed generation of the 665 low- δ^{18} O magmas in the crust via remelting or assimilation of hydrothermally altered 666 rocks (Bindeman and Valley, 2000; Bindeman and Valley, 2001; Bindeman et al., 667 668 2010; Watts et al., 2011).

669

670 6 Conclusions

Integrated U-Pb, O and Hf isotopic analyses on zircon grains from the Suixian Group along the northern margin of the South China Block offer new constraints on the deposition timing of Neoproterozoic strata, and shed insights on the temporal-spatial distribution and origin of the Neoproterozoic low- δ^{18} O magmas.

Zircon SIMS U-Pb ages for the volcanic and sedimentary rocks reveal that the
Suixian Group was deposited during 740-720 Ma, coeval with the second
tectonostratigraphic sequence of the Neoproterozoic deposition in the South China
Block. The zircon U-Pb age spectrum, Hf-O and morphological features indicated

these zircon grains were likely derived from proximal igneous rocks and possiblePaleoproterozoic rocks along the northern margin of the South China Block.

Zircon δ^{18} O values started to drop abruptly to less than 4.6‰ at ~ 800 Ma, which 681 is ca. 80 Ma earlier than the first episode of mid-Neoproterozoic Jiangkou (or 682 Chang'an) glaciation in the South China Block, thus rendering the involvement of 683 water under cold climate unnecessary. Neoproterozoic low- δ^{18} O magmas in the 684 Yangtze Block developed diachronously. Initiation of low- δ^{18} O magmas in the 685 southeastern Yangtze was at ca. 870 Ma, while in northern and northwestern Yangtze, 686 low- δ^{18} O magmas did not start until ca. 840 Ma and 800 Ma, respectively. Around the 687 Yangtze Block, low- δ^{18} O magmas persisted until at ca. 700 Ma, which was most 688 likely due to remelting of high-T altered rocks under the long-lasting rifting 689 690 environments in the South China Block during the breakup of Rodinia supercontinent. 691

692 Acknowledgements

We thank Dr. Han-Wen Zhou, Dr. Zhong-Wu Lan, and Mr. Zao-Xue Liu for their 693 694 assistance during field excursion. We are grateful to Ms. Hong-Xia Ma for making SIMS mounts, Mr.Yu Liu and Mr. Guo-Qiang Tang for SIMS zircon U-Pb and O 695 isotope analyses, Dr. Yue-Heng Yang for zircon Hf isotope analyses, and Ms. 696 Sai-Hong Yang for assistance with cathodeluminescence (CL) characterization of 697 zircon grains. We are indebted to Editor Guochun Zhao and two anonymous reviewers 698 for their constructive comments. This research was supported by the National Basic 699 Research Program of China (973 Program) to Xian-Hua Li (Grant No. 700

701	013CB835005), Natural Science Foundation of China to Qiu-Li Li (Grant No.
702	1222023), and the Australian Research Council (ARC) Future Fellowship
703	FT140100826) to Xuan-Ce Wang.
704	
705	

- 706 **References**
- 707

Baertschi, P., 1976. Absolute ¹⁸O content of standard mean ocean water. Earth and Planetary Science Letters, 31(3): 341-344.

- Bindeman, I., 2008. Oxygen isotopes in mantle and crustal magmas as revealed by
 single crystal analysis. Reviews in Mineralogy and Geochemistry, 69: 445 478.
- Bindeman, I., 2011. When do we need pan-global freeze to explain ¹⁸O-depleted
 zircons and rocks? Geology, 39(8): 799 -800.
- Bindeman, I.N., Eiler, J.M., Yogodzinski, G.M., Tatsumi, Y., Stern, C.R., Grove, T.L.,
 Portnyagin, M., Hoernle, K. and Danyushevsky, L.V., 2005. Oxygen isotope
 evidence for slab melting in modern and ancient subduction zones. Earth and
 Planetary Science Letters, 235(3 -4): 480-496.
- Bindeman, I.N., Serebryakov, N.S., Schmitt, A.K., Vazquez, J.A., Guan, Y., Azimov,
 P.Ya., Astafiev, B.Yu., Palandri, J. and Dobrzhinetskaya, L., 2014. Field and
 microanalytical isotopic investigation of ultradepleted in ¹⁸O Paleoproterozoic
 "Slushball Earth" rocks from Karelia, Russia. Geosphere, 10(2): 308 -339.
- Bindeman, I.N. and Serebryakov, N. S., 2011. Geology, petrology and O and H
 isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the
 Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga. Earth
 and Planetary Science Letters, 306: 163-174.
- Bindeman, I.N. and Simakin, A.G., 2014. Rhyolites—Hard to produce, but easy to
 recycle and sequester: Integrating microgeochemical observations and numerical
 models. Geosphere, 10(5): 930 -957.
- Bindeman, I.N. and Valley, J.W., 2000. Formation of low-δ¹⁸O rhyolites after caldera
 collapse at Yellowstone, Wyoming, USA. Geology, 28(8): 719-722.
- Bindeman, I.N. and Valley, J.W., 2001. Low-δ¹⁸O rhyolites from Yellowstone:
 magmatic evolution based on analyses of zircons and individual phenocrysts.
 Journal of Petrology, 42(8): 1491 -1517.
- 734 Bindeman, I.N., Schmitt, A.K. and Evans, D.A.D., 2010. Limits of 735 hydrosphere-lithosphere interaction: Origin of the lowest-known δ^{18} O silicate

- rock on Earth in the Paleoproterozoic Karelian rift. Geology, 38(7): 631 -634.
- Blichert-Toft, J. and Albarède, F., 1997. The Lu-Hf isotope geochemistry of
 chondrites and the evolution of the mantle-crust system. Earth and Planetary
 Science Letters, 148(1 -2): 243-258.
- Booth, A.L., Kolodny, Y., Chamberlain, C. P., McWilliams, M., Schmitt, A.K. and
 Wooden, J., 2005. Oxygen isotopic composition and U-Pb discordance in zircon.
 Geochimica et Cosmochimica Acta, 69(20): 4895-4905.
- Boroughs, S., Wolff, J., Bonnichsen, B., Godchaux, M., Larson, P., 2005.
 Large-volume, low δ¹⁸O rhyolites of the central Snake River Plain, Idaho, USA.
 Geology, 33(10): 821-824.
- Cavosie, A., Kita, N. T. and Valley, J. W., 2009. Primitive oxygen-isotope recorded in
 magmatic zircon from the Mid-Atlantic Ridge. American Mineralogist, 94:
 926-934.
- Chen, D. G., Deloule, E., Cheng, H., Xia, Q. K. and Wu, Y. B., 2003. Preliminary
 study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks:
 Ion probe in situ analyses. Chinese Science Bulletin, 48(16): 1670-1678.
- Chen, K., Gao, S., Wu, Y.B., Guo, J.L., Hu, Z.C., Liu, L.S., Zong, K.Q., Liang, Z.W.
 and Geng, X.L., 2013. 2.6 2.7 Ga crustal growth in Yangtze craton, South
 China. Precambrian Research, 224: 472-490.
- Cherniak, D.J. and Watson, E.B., 2003. Diffusion in Zircon. Reviews in Mineralogy
 and Geochemistry, 53: 113 -143.
- Chu, N. C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A.,
 German, C.R., Bayon, G. and Burton, K., 2002. Hf isotope ratio analysis using
 multi-collector inductively coupled plasma mass spectrometry: an evaluation of
 isobaric interference corrections. Journal of Analytical Atomic Spectrometry,
 17(12): 1567-1574.
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P., 2003. Atlas of Zircon
 Textures. Reviews in Mineralogy and Geochemistry, 53: 469 -500.
- Dickinson, W.R. and Gehrels, G.E., 2009. Use of U Pb ages of detrital zircons to
 infer maximum depositional ages of strata: A test against a Colorado Plateau

- 766 Mesozoic database. Earth and Planetary Science Letters, 288(1-2): 115-125.
- Dong, Y. P., Liu, X.M., Santosh, M., Chen, Q., Zhang, X.N., Li, W., He, D.F. and
 Zhang, G.W., 2012. Neoproterozoic accretionary tectonics along the
 northwestern margin of the Yangtze Block, China: Constraints from zircon U-Pb
 geochronology and geochemistry. Precambrian Research, 196-197: 247-274.
- Fu, B., Kita, N.T., Wilde, S.A., Liu, X.C., Cliff, J. and Greig, A., 2013. Origin of the
 Tongbai-Dabie-Sulu Neoproterozoic low-δ¹⁸O igneous province, east-central
 China. Contributions to Mineralogy and Petrology, 165: 641-662.
- Gao, S., Yang, J., Zhou, L., Li, M., Hu, Z.C., Guo, J.L., Yuan, H.L., Gong, H.J., Xiao,
 G.Q. and Wei, J.Q., 2011. Age and growth of the Archean Kongling terrain,
 South China, with emphasis on 3.3 Ga granitoid gneisses. American Journal of
 Science, 311(2): 153 -182.
- Gao, Y. Y., Li, X. H., Griffin, W.L., O'Reilly, S.Y. and Wang, Y. F., 2014. Screening
 criteria for reliable U-Pb geochronology and oxygen isotope analysis in
 uranium-rich zircons: A case study from the Suzhou A-type granites, SE China.
 Lithos, 192-195: 180-191.
- Gehrels, G., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annual
 Review of Earth and Planetary Sciences, 42: 127-149.
- Gilliam, C.E. and Valley, J.W., 1997. Low δ^{18} O magma, Isle of Skye, Scotland: Evidence from zircons. Geochimica et Cosmochimica Acta, 61(23): 4975-4981.
- Greentree, M.R. and Li, Z. X., 2008. The oldest known rocks in south western
 China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance
 analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth
 Sciences, 33(5-6): 289-302.
- Grimes, C. B., Ushikubo, T., John, B. E., Valley, J. W., 2011. Uniformly mantle-like δ^{18} O in zircons from oceanic plagiogranites and gabbros. Contributions to Mineralogy and Petrology, 161: 13-33.
- Guo, J. L., Guo, S., Wu, Y.B., Li, M., Chen, K., Hu, Z.C., Liang, Z.W., Zhou., L.,
 Zong, K.Q., Zhang, W. and Chen, H.H., 2014. 3.45 Ga granitic gneisses from the
- 795 Yangtze Craton, South China: Implications for Early Archean crustal growth.
- 796 Precambrian Research, 242: 82-95.
- Huang, J., Feng, L.J., Lu, D.B., Zhang, Q.R., Sun, T. and Chu, X.L., 2014. Multiple
 climate cooling prior to Sturtian glaciations: Evidence from chemical index of
 alteration of sediments in South China. Scientific Report, 4, 6868; DOI:
 10.1038/srep06868.
- HGB (Hubei Geological Bureau), 1982. 1:200,000 Regional Geological Investigation
 Report for the Suixian area, Hubei Province, the People's Republic of China. 294
 pp (in Chinese).
- Jiao, W. F., Wu, Y. B., Peng, M., Wang, J. and Yang, S. H., 2009. The oldest
 basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf
 isotope composition. Science in China Series D-Earth Sciences, 52(9):
 1393-1399 (in Chinese).
- Lackey, J.S., Valley, J.W., Chen, J.H. and Stockli, D.F., 2008. Dynamic magma
 systems, crustal recycling, and alteration in the Central Sierra Nevada Batholith:
 the oxygen isotope record. Journal of Petrology, 49(7): 1397 -1426.
- Lan, Z. W., Li, X.H., Zhu, M.Y., Chen, Z.Q., Zhang, Q.R., Li, Q.L., Lu, D.B., Liu, Y.
 and Tang, G.Q., 2014. A rapid and synchronous initiation of the wide spread
 Neoproterozoic glaciations. Precambrian Research, 255: 401-411.
- Lan, Z. W., Li, X. H., Zhu, M. Y., Zhang, Q. R. and Li, Q. L., 2015. Revisiting the
 Liantuo Formation in Yangtze Block, South China: SIMS U-Pb zircon age
 constraints and regional and global significance. Precambrian Research, 263:
 123-141.
- Larson, P. and Taylor, H.P., 1986. ¹⁸O/¹⁶O ratios in ash-flow tuffs and lavas erupted from the central Nevada caldera complex and the central San Juan caldera complex, Colorado. Contributions to Mineralogy and Petrology, 92(2): 146-156.
- Li, X. H., Li, Z. X., Sinclair, J.A., Li, W. X. and Carter, G., 2006. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research, 151(1-2): 14-30.
- 824 Li, F. L., Li, Y.L., Zhou, G.H., Xu, S.Y., Li, Z.G. and Zhou, H.W., 2010. LA-ICPMS
- zircon U-Pb dating of schist from the Dalangshan Group in Suizhou City, Hubei

- Province, and its implications. Acta Petrologica Et Mineralogica, 29(5): 488-496
 (in Chinese with English abstract).
- Li, Q. L., Li, X.H., Liu, Y., Tang, G.,Q., Yang, J.H. and Zhu, W.G., 2010. Precise
 U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen
 flooding technique. Journal of Analytical Atomic Spectrometry, 25(7):
 1107-1113.
- Li, X. H., Li, Z.X., Ge, W.C., Zhou, H.W., Li, W.X., Liu, Y. and Wingate, M.T.D.,
 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle
 plume at ca. 825 Ma? Precambrian Research, 122(1-4): 45-83.
- Li, X. H., Li. Z.X., Zhou, H.W., Liu, Y., Liang, X.R. and Li, W.X., 2003. SHRIMP
 U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW
 Sichuan: Petrogenesis and tectonic significance. Science in China Series D:
 Earth Sciences, 46 supp.: 73-83.
- Li, X. H., Li, W.X., Li, Z.X., Lo, C.H., Wang, J., Ye, M.F. and Yang, Y.H., 2009.
 Amalgamation between the Yangtze and Cathaysia Blocks in South China:
 Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes
 of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2): 117-128.
- Li, X. H., Long, W.G., Li, Q.L., Liu, Y., Zheng, Y.F., Yang, Y.H., Chamberlain, K.R.,
 Wan, D.F., Guo, C.H., Wang, X.C. and Tao, H., 2010. Penglai Zircon
 Megacrysts: A Potential New Working Reference Material for Microbeam
 Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical
 Research, 34(2): 117-134.
- Li, X. H., Li, Z. X., Zhou, H. W., Liu, Y. and Kinny, P.D., 2002. U-Pb zircon
 geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal
 volcanic rocks in the Kangdian Rift of South China: implications for the initial
 rifting of Rodinia. Precambrian Research, 113(1-2): 135-154.
- Li, X. H., Liu, Y., Li, Q. L., Guo, C. H. and Chamberlain, K.R., 2009. Precise
 determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without
 external standardization. Geochemistry, Geophysics, Geosystems, 10(4):
 Q04010.

- Li, X. H., Wang, X. C., Li, W. X. and Li, Z. X., 2008. Petrogenesis and tectonic
 significance of Neoproteorozoic basaltic rokes in South China: From orogenesis
 to introcontiental rifting. Geochimica, 37(4): 382-398 (in Chinese with English
 abstract).
- Li, X. H., Tang, G.Q., Gong, B., Yang, Y.H., Hong, K.J., Hu, Z.C., Li, Q.L., Liu, Y.
 and Li, W.X., 2013. Qinghu zircon: a working reference for microbeam analysis
 of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58: 4647-4654.
- Li, Y., Ma, C.Q., Xing, G.F., Zhou, H.W., Zhang, H. and Brouwer, F.M., 2015.
 Origin of a Cretaceous low-¹⁸O granitoid complex in the active continental
 margin of SE China. Lithos, 216 217: 136-147.
- Li, Z. X., Wartho, J.A., Occhipinti, S., Zhang, C.L., Li, X.H., Wang, J. and Bao, C.M.,
 2007. Early history of the eastern Sibao Orogen (South China) during the
 assembly of Rodinia: New mica ⁴⁰Ar/³⁹Ar dating and SHRIMP U-Pb detrital
 zircon provenance constraints. Precambrian Research, 159(1-2): 79-94.
- Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E.,
- Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E.,
 Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. and Vernikovsky,
 V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis.
 Precambrian Research, 160(1-2): 179-210.
- Li, Z.X., Li, X.H., Kinny, P.D. and Wang, J., 1999. The breakup of Rodinia: did it
 start with a mantle plume beneath South China? Earth and Planetary Science
 Letters, 173(3): 171-181.
- Liu, J. B. and Zhang, L. M., 2013. Neoproterozoic low to negative δ^{18} O volcanic and intrusive rocks in the Qinling Mountains and their geological significance. Precambrian Research, 230: 138-167.
- Liu, J. B., Zhang, L.M., Ye K., Su, W. and Chen, N.F., 2013. Oxygen isotopes of
 whole rock and zircon and zircon U-Pb ages of meta-rhyolite from the
 Luzhenguan Group and associated meta-granite in the northern Dabie Mountains.

- Acta Petrologica Sinica, 29(5): 1511-1524 (in Chinese with English abstract).
- Liu P. J., Li, X.H., Chen, S.M., Lan, Z.W., Yang, B., Shang, X.D. and Yin, C.Y.,
 2015. New SIMS U-Pb zircon age and its constraint on the beginning of the
 Nantuo glaciation. Science Bulletin, 60(10): 958-963,
- Liu, X. C., Jahn, B.M., Cui, J.J., Li, S.Z., Wu, Y.B. and Li, X.H., 2010. Triassic 888 retrograded eclogites and Cretaceous gneissic granites in the Tongbai Complex, 889 890 central China: Implications for the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone. Lithos, 119(3-4): 211-237. 891
- Liu, X. C., Jahn, B.M., Li, S.Z., Cui, J.J., Liu, X., Lou, Y.X. and Qu. W., 2011. The
 Tongbai HP metamorphic terrane: Constraints on the architecture and
 subduction/exhumation of the Tongbai-Dabie-Sulu HP/UHP metamorphic belt.
 Acta Petrologica Sinica, 27(4): 1151-1162 (in Chinese with English abstract).
- Liu, X. C., Jahn, B., Dong, S., Lou, Y. and Cui, J., 2008. High-pressure metamorphic
 rocks from Tongbaishan, central China: U Pb and 40Ar/39Ar age constraints
 on the provenance of protoliths and timing of metamorphism. Lithos, 105(3-4):
 301-318.
- Liu, Y. C., Li, Y., Liu, L.X., Gu, X.F., Deng, L.P. and Liu, J., 2013. Triassic
 low-grade metamorphosed Neoproterozoic igneous rocks in Dabie orogen: slices
 detached and exhumed from subducted continental crust. Chinese Science
 Bulletin, 58(23): 2330-2337 (in Chinese).
- Ludwig, K.R., 2012. User's manual for Isoplot 3.75: a geochronological toolkit for
 Microsoft Excel. Berkeley Geochonology Centre Special Publication No.5, pp.
 75.
- 907 Monani, S. and Valley, J.W., 2001. Oxygen isotope ratios of zircon: magma genesis 908 of low δ^{18} O granites from the British Tertiary Igneous Province, western 909 Scotland. Earth and Planetary Science Letters, 184(2): 377-392.
- Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S. and Vroon, P.Z., 2008.
 Hafnium isotope characterization of the GJ-1 zircon reference material by
 solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1 2): 231-235.

- Muñoz, M., Charrier, R., Fanning, C. M., Deckart, K., 2012. Zircon trace element and
 O-Hf isotope analyses of mineralized intrusions from El Teniente ore deposit,
 Chilean Andes: constraints on the source and magmatic evolution of porphyry
 Cu-Mu related magmas. Journal of Petrology, 53(6): 1091-1122.
- Okay, A.I., Xu, S. and Sengor, A.M.C., 1989. Coesite from the Dabie Shan eclogites,
 central China. European Journal of Mineralogy, 1(4): 595 -598.
- Peck, W.H., Valley, J.W. and Graham, C.M., 2003. Slow oxygen diffusion rates in
 igneous zircons from metamorphic rocks. American Mineralogist, 88(7): 1003
 -1014.
- Qiu, Y.M., Gao, S., McNaughton, N.J., Groves, D.I. and Ling, W., 2000. First
 evidence of >3.2 Ga continental crust in the Yangtze craton of south China and
 its implications for Archean crustal evolution and Phanerozoic tectonics.
 Geology, 28: 11 -14.
- Rowley, D.B., Xue, F., Tucker, R.D., Peng, Z.X., Baker, J. and Davis, A., 1997. Ages
 of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern
 Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters,
 151(3-4): 191-203.
- 930Rumble, D., Giorgis, D., Ireland, T., Zhang, Z.M., Xu, H.F, Yui, T.F., Yang, J.S., xu,931Z.Q. and Liou, J.G., 2002. Low δ^{18} O zircons, U-Pb dating, and the age of the932Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu933Province, China. Geochimica et Cosmochimica Acta, 66(12): 2299-2306.
- Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M.,
 Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U.,
 Schoene, B., Tubrett, M.N. and Whitehouse, M.J., 2008. Plešovice zircon A
 new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical
 Geology, 249(1-2): 1-35.
- Söderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E., 2004. The 176Lu
 decay constant determined by Lu Hf and U Pb isotope systematics of
 Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4):
 311-324.

- Stacey, J.S. and Kramers, J.D., 1975. Approximation of terrestrial lead isotope
 evolution by a two-stage model. Earth and Planetary Science Letters, 26(2):
 207-221.
- Sun, M., Chen, N.S., Zhao, G.C., Wilde, S.A., Ye, K., Guo, J.H., Chen, Y. and Yuan,
 C., 2008. U-Pb Zircon and Sm-Nd isotopic study of the huangtuling granulite,
 dabie-sulu belt, China: Implication for the paleoproterozoic tectonic history of
 the yangtze craton. American Journal of Science, 308(4): 469 -483.
- Tang, J., Zheng, Y.F., Gong, B., Wu, Y.B., Gao, T.S., Yuan, H.L. and Wu, F.Y., 2008.
 Extreme oxygen isotope signature of meteoric water in magmatic zircon from
 metagranite in the Sulu orogen, China: Implications for Neoproterozoic rift
 magmatism. Geochimica et Cosmochimica Acta, 72(13): 3139-3169.
- Valley, J.W., 2003. Oxygen Isotopes in Zircon. Reviews in Mineralogy and
 Geochemistry, 53(1): 343 -385.
- Valley, J.W., Chiarenzelli, J.R. and McLelland, J.M., 1994. Oxygen isotope
 geochemistry of zircon. Earth and Planetary Science Letters, 126(4): 187-206.
- Valley, J.W., Kinny, P.D., Schulze, D.J. and Spicuzza, M.J., 1998. Zircon megacrysts
 from kimberlite: oxygen isotope variability among mantle melts. Contributions
 to Mineralogy and Petrology, 133: 1-11.
- 961 Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei,
- A.S., Bindeman, I.N., Ferreira, V.P., Sial., A.N., King, E.M., Peck, W.H., Sinha,
 A.K. and Wei, C.S., 2005. 4.4 billion years of crustal maturation: oxygen isotope
 ratios of magmatic zircon. Contributions ot Mineralogy and Petrology, 150:
 561-580.
- Wang, J. and Li, Z., 2003. History of Neoproterozoic rift basins in South China:
 implications for Rodinia break-up. Precambrian Research, 122(1-4): 141-158.
- Wang, X. C., Li, X.H., Li, W.X., Li, Z.X., Liu, Y., Yang, Y.H., Liang, X.R. and Tu,
 X.L., 2008. The Bikou basalts in the northwestern Yangtze block, South China:
- 970 Remnants of 820-810 Ma continental flood basalts? Geological Society of
 971 America Bulletin, 120(11-12): 1478 -1492.
- 972 Wang, X. C., Li, X.H., Li, Z.X., Li, Q.L., Tang, G.Q., Gao, Y.Y., Zhang, Q.R. and

- Liu, Y., 2012. Episodic Precambrian crust growth: Evidence from U-Pb ages and
 Hf-O isotopes of zircon in the Nanhua Basin, central South China. Precambrian
 Research, 222-223: 386-403.
- Wang, X. C., Li, X. H., Li, W. X. and Li, Z. X., 2009. Variable involvements of
 mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South
 China: A review. Gondwana Research, 15(3-4): 381-395.
- Wang, X. M., Liou, J.G. and Mao, H.K., 1989. Coesite-bearing eclogite from the
 Dabie Mountains in central China. Geology, 17(12): 1085 -1088.
- Wang, X.C., Li, Z.X., Li, X.H., Li, Q.L., Tang, G.Q., Zhang, Q.R. and Liu, Y., 2011.
 Nonglacial origin for low-δ¹⁸O Neoproterozoic magmas in the South China
 Block: Evidence from new in-situ oxygen isotope analyses using SIMS. Geology,
 39(8): 735-738.
- Wang, X. L., Zhou, J.C., Wan, Y.S., Kitajima, K., Wang, D., Bonamici, C., Qiu, J.S.
 and Sun, Tao., 2013. Magmatic evolution and crustal recycling for
 Neoproterozoic strongly peraluminous granitoids from south China: Hf and O
 isotopes in zircon. Earth and Planetary Science Letters, 366: 71-82.
- Wang, Y.F., Li, X.H., Jin, W., Zhang, J.H., 2015. Eoarchean ultra-depleted mantle
 domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China
 Craton. Precambrian Research 263, 88-107.
- Watts, K.E., Bindeman, I.N. and Schmitt, A.K., 2011. Large-volume Rhyolite Genesis
 in Caldera Complexes of the Snake River Plain: Insights from the Kilgore Tuff
 of the Heise Volcanic Field, Idaho, with Comparison to Yellowstone and
 Bruneau-Jarbidge Rhyolites. Journal of Petrology, 52(5): 857 -890.
- 996Watts, K.E., Leeman, W.P., Bindeman, I.N. and Larson, P.B., 2010. Supercruptions997of the Snake River Plain: Two-stage derivation of low- δ ¹⁸O rhyolites from998normal- δ ¹⁸O crust as constrained by Archean xenoliths. Geology, 38(6): 503999-506.
- Wei, C. S., Zhao, Z. F. and Spicuzza, M.J., 2008. Zircon oxygen isotopic constraint
 on the sources of late Mesozoic A-type granites in eastern China. Chemical
 Geology, 250(1-4): 1-15.

- Wei, C. S., Zheng, Y. F., Zhao, Z. F. and Valley, J.W., 2002. Oxygen and neodymium
 isotope evidence for recycling of juvenile crust in northeast China. Geology,
 30(4): 375 378.
- Woodhead, J.D. and Hergt, J.M., 2005. A preliminary appraisal of seven natural
 zircon reference materials for in situ Hf isotope determination. Geostandards and
 Geoanalytical Research, 29(2): 183-195.
- Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. and Xu, P., 2006. Hf isotopic
 compositions of the standard zircons and baddeleyites used in U Pb
 geochronology. Chemical Geology, 234(1-2): 105-126.
- Wu, Y. B., Gao, S., Zhang, H.F., Zheng, J.P., Liu, X.C., Wang, H., Gong, H.J., Zhou,
 L. and Yuan, H.L., 2012. Geochemistry and zircon U-Pb geochronology of
 Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its
 geological implications. Precambrian Research, 200-203: 26-37.
- Wu, Y. B., Zhou, G.Y., Gao, S., Liu, X.C., Qin, Z.W., Wang, H., Yang, J.Z. and Yang,
 S.H., 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its
 implication for the formation of Archean TTGs. Precambrian Research, 254:
 73-86.
- Wu, Y. B., Zheng, Y. F., Gao, S., Jiao, W. F. and Liu, Y. S., 2008. Zircon U-Pb age
 and trace element evidence for Paleoproterozoic granulite-facies metamorphism
 and Archean crustal rocks in the Dabie Orogen. Lithos, 101(3-4): 308-322.
- Wu, Y.B., Gao, S., Gong, H.J., Xiang, H., Jiao, W.F., Yang, S.H., Liu, Y.S. and Yuan,
 H.L., 2009. Zircon U-Pb age, trace element and Hf isotope composition of
 Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic
 high-grade metamorphism. Journal of Metamorphic Geology, 27(6): 461-477.
- 1027 Xiang, Z. J., Yan, Q. R., White, J.D.L., Song, B. and Wang, Z. Q., 2015. Geochemical
 1028 constraints on the provenance and depositional setting of Neoproterozoic
 1029 volcaniclastic rocks on the northern margin of the Yangtze Block, China:
 1030 Implications for the tectonic evolution of the northern margin of the Yangtze
 1031 Block. Precambrian Research, 264: 140-155.
- 1032 Xu, S. T. Su, W., Liu, Y.C., Jiang, L.X., Ji, S.Y., Okay, A.I. and Sengör, A.M.C.,

- 1033 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for
 1034 Tectonic Setting. Science, 256(5053): 80 -82.
- Xue, H. M. and Ma, F., 2013. Detrital-zircon geochronology from the
 metasedimentary rocks of the Suizhou Group in the southern foot of the
 Tongbaishan Orogen and their geological significance. Acta Petrologica Sinica,
 29(2): 564-580 (in Chinese with English abstract).
- Xue, H. M., Ma, F. and Song, Y. Q., 2011. Geochemistry and SHRIMP zircon U-Pb
 data of Neoproterozoic meta-magamtic rocks in the Suizhou-Zaoyang area,
 northern margin of the Yangtze Craton, Cental China. Acta Petrologica Sinica,
 27(4): 1116-1130 (in Chinese with English abstract).
- Yang, C., Li, X. H., Wang, X. C. and Lan, Z. W., 2015. Mid-Neoproterozoic angular
 unconformity in the Yangtze Block revisited: Insights from detrital zircon U-Pb
 age and Hf-O isotopes. Precambrian Research, 266: 165-178.
- Yang, Y.N., Li, Q.L., Liu, Y., Tang, G.Q., Ling, X.X. and Li, X.H., 2014. Zircon
 U-Pb dating by secondary ion mass spectrometry (in Chinese with English
 abstract). Earth Science Frontiers, 21(2): 81-92.
- Yang W. B., Niu, H.C., Sun, W.D., Shan, Q., Zheng, Y.F., Li, N.B., Li, C.Y., Arndt,
 N.T., Xu, X., Jiang, Y.H. and Yu, X.Y., 2013. Isotopic evidence for continental
 ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous.
 Scientific Report, 3, 2732; DOI: 10.1038/ srep02732.
- Ye, K., Cong, B. L. and Ye, D. N., 2000. The possible subduction of continental
 material to depths greater than 200[thinsp]km., 407(6805): 734-736.
- Ye, M. F., Li, X. H., Li, W. X., Liu, Y. and Li, Z. X., 2007. SHRIMP zircon U Pb
 geochronological and whole-rock geochemical evidence for an early
 Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the
 Yangtze Block. Gondwana Research, 12(1-2): 144-156.
- 1059 Yui, T., Rumble III, D. and Lo, C., 1995. Unusually low δ^{18} O ultra-high-pressure 1060 metamorphic rocks from the Sulu Terrain, eastern China. Geochimica et 1061 Cosmochimica Acta, 59(13): 2859-2864.
- 1062 Zhang, Q. R., Li, X. H., Feng, L. J., Huang, J. and Song, B., 2008. A new age

- 1063 constraint on the onset of the Neoproterozoic glaciations in the Yangtze Platform,
 1064 South China. The Journal of Geology, 116(4): 423-429.
- Zhang, S. B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S. and Wu. F.Y., 2006a.
 Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic
 event in South China. Precambrian Research, 151(3-4): 265-288.
- Zhang, S. B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S. and Wu. F.Y., 2006b.
 Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of
 China. Precambrian Research, 146(1-2): 16-34.
- 1071 Zhang, S.B. and Zheng, Y. F., 2011. On the genesis of low- δ^{18} O magmatic rocks. 1072 Acta Petrologica Sinica, 27(2): 520-530 (in Chinese with English abstract).
- I073 Zhang, S. B. and Zheng, Y. F., 2013. Spatial and temporal distribution of
 Neoproterozoic low-δ¹⁸O magmas in the South China Block. Chinese Science
 Bulletin, 58(23): 2344-2350 (in Chinese).
- I076 Zhao, J. H. and Zhou, M. F., 2007. Neoproterozoic Adakitic Plutons and Arc
 I077 Magmatism along the western margin of Yangtze Block, South China. The
 I078 Journal of Geology, 115: 675-689.
- Zhao, J. H. and Zhou, M. F., 2008. Neoproterozoic adakitic plutons in the northern
 margin of the Yangtze Block, China: Partial melting of a thickened lower crust
 and implications for secular crustal evolution. Lithos, 104(1-4): 231-248.
- Zhao, J. H. and Zhou, M. F., 2009. Secular evolution of the Neoproterozoic
 lithospheric mantle underneath the northern margin of the Yangtze Block, South
 China. Lithos, 107(3-4): 152-168.
- Zhao, J. H., Zhou, M. F., Yan, D. P., Zheng, J. P. and Li, J. W., 2011. Reappraisal of
 the ages of Neoproterozoic strata in South China: No connection with the
 Grenvillian orogeny. Geology, 39(4): 299 -302.
- Zhao, J. H., Zhou, M. F., Zheng, J.P., 2013. Constraints from zircon U-Pb ages, O and
 Hf isotopic compositions on the origin of Neoproterozoic peraluminous
 granitoids from the Jiangnan Fold Belt, South China. Contributions to
 Mineralogy and Petrology, 166(5): 1505-1519.
- 1092 Zheng, J. P., Griffin, W.L., O'Reilly, S.Y., Zhang, M. Pearson, N. and Pan, Y.M.,

- 2006. Widespread Archean basement beneath the Yangtze craton. Geology,
 34(6): 417 420.
- Zheng, Y. F., Fu, B., Xiao, Y.L., Gong, B., Ge, N.J. and Li, S.G., 1997. Hydrogen and
 oxygen isotopic composition of the Dabie eclogites and their geodynamic
 significance. Science In China (Series D), 27(2): 121-126 (in Chinese).
- Zheng, Y.F., Wu. Y.B., Chen, F.K., Gong, B., Li, L. and Zhao, Z.F., 2004. Zircon
 U-Pb and oxygen isotope evidence for a large-scale ¹⁸O depletion event in
 igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta,
 68(20): 4145-4165.
- Zheng, Y. F., Wu, Y.B., Gong, B., Chen, R.X., Tang, J. and Zhao, Z.F., 2007.
 Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen
 isotope signature of meteoric water in granite. Earth and Planetary Science
 Letters, 256(1-2): 196-210.
- Illo6 Zheng, Y. F. and Fu, B., 1998. Estimation of oxygen diffusivity from anion porosity
 in minerals. Geochemical Journal, 32(2): 71-89.
- Zheng, Y. F., Fu, B., Gong, B. and Li, L., 2003. Stable isotope geochemistry of
 ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:
 implications for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2):
 105-161.
- Zheng, Y. F., Fu, B., Gong, B. and Li, S. G., 1996. Extreme ¹⁸O depletion in eclogite
 from the Su-Lu terrane in East China. European Journal of Mineralogy, 8(2):
 317-324.
- Zhou, G. Y., Wu, Y.B, Gao, S., Yang, J.Z., Zheng, J.P., Qin, Z.W., Wang., H. and
 Yang, S.H., 2015. The 2.65 Ga A-type granite in the northeastern Yangtze craton:
 Petrogenesis and geological implications. Precambrian Research, 258: 247-259.
- 1118 Zhou, M. F., Yan, D. P., Kennedy, A.K., Li, Y. Q. and Ding, J., 2002. SHRIMP U -
- Pb zircon geochronological and geochemical evidence for Neoproterozoic
 arc-magmatism along the western margin of the Yangtze Block, South China.
 Earth and Planetary Science Letters, 196(1-2): 51-67.
- 1122 Zhou, M. F., Yan, D. P., Wang, C. L, Qi, L. and Kennedy, A., 2006.

- Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan
 Province, China): Implications for the tectonic setting of the giant
 Neoproterozoic magmatic event in South China. Earth and Planetary Science
 Letters, 248(1-2): 286-300.
- Zhou, M.F., Kennedy, A.K., Sun, M., Malpas, J. and Lesher, C.M., 2002.
 Neoproterozoic arc related mafic intrusions along the northern margin of South
 China: implications for the accretion of rodinia. The Journal of geology, 110(5):
 611-618.
- Zhu, X. Y., Chen, F.K., Nie, H. Siebel, W., Yang, Y.Z., Xue, Y.Y. and Zhai, M.G.,
 2014. Neoproterozoic tectonic evolution of South Qinling, China: Evidence from
- 1133 zircon ages and geochemistry of the Yaolinghe volcanic rocks. Precambrian
- 1134 Research, 245: 115-130.

1135 Figure Captions

Fig.1. (a) Distribution of Neoproterozoic igneous rocks and mid-Neoproterozoic 1136 1137 strata with geochronological results for key outcrops (modified after Wang et al., 2012; 1138 Li et al., 2014; Yang et al., 2015). The inset shows a tectonic sketch of China. Please refer to Appendix S1 for references for cited ages. Filled hexagons show the sample 1139 positions of low- δ^{18} O zircon grains identified by SIMS analyses. (b) A simplified 1140 geological map showing of the studied area. Filled stars represent the locations of 1141 1142 dated samples in this study. F1 and F2 represent Xiangfan-Guangji fault and Xincheng-Huangpin fault, respectively. Ages shown near the sample site indicate 1143 1144 either the crystallization age of rhyolite (i.e. 12SZ14) or the youngest group of ages of 1145 detrital zircon grains for sedimentary rocks (all samples except sample 12SZ14).

1146

Fig.2. Generalized stratigraphic column and sampling site in the Suixian Group. The lithologic column is modified after the 1: 200,000 geological map of the Suixian area by the HGB (1982). Source for the quoted ages: A1, A2, and A3 - Xue et al., 2011. Relative positions of samples in this study and quoted ages within each formation are based on dating results as no detailed strata correlation is available to allow for precisely locating each sample along the stratigraphic column.

1153

1154 Fig.3. Relative probability diagram of U-Pb ages for zircon grains from Suixian 1155 Group. (a) Detrital zircon crystals from Gujing Formation (siltstone 12SZ20, 1156 sandstone 12SZ24 and sandstone 12SZ28); (b) Detrital zircon crystals from lower part 1157 of Liulin Formation (sandstone 12SZ06, sandstone 12SZ07, sandstone 13SZ14 and sandstone 13SZ19); (c) Detrital zircon grains from Yuanziwan Formation (12SZ10 1158 siltstone and 13SZ17 sandstone). Fm represents Formation. Relative probability 1159 1160 diagrams were constructed using Isoplot 3.75 (Ludwig, 2012). Bin width was set at 10 Ma approximate to the 1σ U-Pb age uncertainty. 1161

1162

Fig.4. U-Pb concordia diagrams showing SIMS U-Pb dating results for zircon grains from metarhyolite 12SZ14 (a) and tuffaceous siltstone 12SZ17 (b), respectively. (a')

and (b') are weighted mean of 206 Pb/ 238 U ages for the consistent population of zircon U-Pb analyses for metarhyolite 12SZ14 and tuffaceous siltstone 12SZ17, respectively. Data-point error symbols in U-Pb concordia diagrams (a) and (b) are 2σ . Error bars in (a') and (b') are 2σ . Fm stands for Formation.

1169

Fig.5. δ^{18} O value versus U-Pb age for zircon grains from the Suixian Group. (a) For all analyzed grains; (b) For 950-650 Ma grains. The reference δ^{18} O value for mantle zircon is from the recommended value of 5.3 ± 0.6‰ (2 SD) by Valley et al. (1998) and Valley et al. (2005).

1174

1175 **Fig.6.** Relative probability diagram for zircon $\varepsilon_{Hf}(t)$ values from the Gujing (a), Liulin 1176 (b) and Yuanziwan (c) formations, Suixian Group. Bar width was set as 2.

1177

Fig.7. $ε_{Hf}(t)$ value versus U-Pb age for zircon grains from the Suixian Group. (a) For all analyzed grains; (b) For 950-650 Ma grains. The depleted mantle evolution curve was based on the average modern-day values of ¹⁷⁶Hf/¹⁷⁷Hf of 0.28325 and ¹⁷⁶Lu/¹⁷⁷Hf of 0.0384 (Griffin et al., 2002). CHUR refers to CHondritic Uniform Reservoir.

1183

Fig.8. $\varepsilon_{Hf}(t)$ value versus δ^{18} O value for 700-800 Ma zircon grains with U-Pb ages 1184 peaking at ca. 0.73 Ga (a) and 0.79 Ga (b). $\varepsilon_{Hf}(t)$ and $\delta^{18}O$ values for magmatic zircon 1185 grains from metarhyolite 12SZ14 and tuffaceous siltstone 12SZ17 are shown for 1186 comparison in (a). Gray field in (a) and (b) represents range of low- δ^{18} O zircon grains 1187 (<4.6‰) from this study. Rectangle field filled with dotted line in (a) indicates 1188 1189 estimated Hf and O isotopic range of zircon grains crystalized from magmas supposed 1190 to be partial melts of subducted oceanic crust. O isotopic composition for the field filled with dotted lines is taken as $5.3 \pm 0.8\%$ (2SD) (Valley et al., 1998; Valley et al., 1191 1192 2005).

1193

1194 **Fig.9.** δ^{18} O value versus Th/U ratio (a) and U content for zircon grains from the

1195 Suixian Group.

1196

1197 Fig.10. Compilation of SIMS O isotope data for Neoproterozoic zircon grains from(a) 1198 the Suixian Group from this study, northern Yangtze, (b) the tuff and granitoid from 1199 the Beihuaiyang unit of Dabie orogen (Liu et al., 2013) and south Qinling (Fu et al., 2013; Liu and Zhang, 2013), northern Yangtze Block, (c) the diorite from Hannan 1200 massif and granitoids from the Baoxing complex, northwestern Yangtze Block (Fu et 1201 1202 al., 2013), and (d) the Neoproterozoic sedimentary rocks (Lan et al., 2015; Wang et al., 1203 2011; Yang et al., 2015) and granitoids (Wang et al., 2013; Zhao et al., 2013), southeastern Yangtze Block. Vertical gray fields with age range of 715-670 Ma (e.g. 1204 1205 Lan et al., 2015; Zhang et al., 2008) and 650-635 Ma (e.g. Liu et al., 2015) indicate 1206 time interval of Jiangkou glaciation and Nantuo glaciation in the South China Block. Dash line infers the upper limit δ^{18} O value for low- δ^{18} O zircon (i.e. < 4.6‰). Only 1207 concordant age are adopted here. "Concordant" here is defined as discordance 1208 (percent deviation of ²⁰⁶Pb/²³⁸U age from ²⁰⁷Pb/²⁰⁶Pb age) less than 12% referring to 1209 Wang et al. (2011). 1210

1211

Fig.11. Zircon U-Pb age histogram for the Neoproterozoic low- δ^{18} O zircon grains in the Yangtze Block. Data source: Granitoids and sedimentary rocks, southeastern Yangtze: Wang et al., 2013; Lan et al., 2015; Wang et al., 2011; Yang et al., 2015; Zhao et al., 2013. Igneous intrusions, northwestern Yangtze: Fu et al., 2013. Tuff and grantoids, northern Yangtze: Liu and Zhang, 2013; Liu et al., 2013. Suixian Group, norther Yangtze: this study. Bin width was set at 10 Ma approximate to the 1σ U-Pb age uncertainty.

Fig.2

Erathem	Rock unit		Thickness (m)	Lithology	Sampling	Dating
Neoproterozoic	Chahe Fm					Correlated to Doushantuo Formation
	Suixian Gr	Yuanziwan Fm	437 - 2422	$ \begin{array}{c c} (1,1) \\ (2,1$	13SZ17 12SZ10	13SZ17 sandstone 12SZ10 siltstone - <734 ± 3 Ma
		Liulin Fm	269 - 2622	$ \begin{array}{c} \left(\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	12SZ17 12SZ14 	12SZ17 tuffaceous siltstone 727 \pm 5 Ma 12SZ14 metarhyolite 742 \pm 6 Ma 12SZ06 sandstone 12SZ07 sandstone 13SZ14 sandstone 13SZ19 sandstone A2: troctolite 632 \pm 6 Ma
		Gujing Fm	486 - 2802	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12SZ20 12SZ28 12SZ24 <i>A1</i>	12SZ20 silttone 12SZ28 sandstone 12SZ24 sandstone A1: meta-trachandesite 741 ± 7 Ma
i pebbled sandstone i i feldspar quratz sandstone i silttone silttone silttone i i silttone i i silttone i						

Fig. 10

Fig.11

Appendix S1. References for U-Pb ages cited in Fig. 1(a)

Southeastern Margin of the Yangtze Craton

The Shengwu doleritic dyke $(849 \pm 7 \text{ Ma})$ and the Daolingshan granite-diabase $(794 \pm 9 \text{ Ma})$ (Li et al., 2008); Xucun granidiorite $(823 \pm 8 \text{ Ma})$ (Li et al., 2003) and $(827 \pm 7 \text{ Ma}; 823 \pm 7 \text{ Ma})$ (Wu et al., 2006); Xiuning granidiorite $(824 \pm 7 \text{ Ma}; 825 \pm 7 \text{ Ma})$ (Wu et al., 2006); Shexian granidiorite $(823 \pm 9 \text{ Ma}; 824 \pm 6 \text{ Ma})$ (Wu et al., 2006); Lianhuashan granite $(771 \pm 17 \text{ Ma}; 777 \pm 7 \text{ Ma})$ (Zheng et al., 2008); Qixitain granite $(775 \pm 5 \text{ Ma})$ (Zheng et al., 2008); Jiuling granodiorite $(819 \pm 9 \text{ Ma})$ (Li et al., 2003); Yiyang komatiitic lava $(826 \pm 3 \text{ Ma})$ (Wang et al., 2007); Bendong granodiorite $(818 \pm 10 \text{ Ma})$, Sanfang granite $(827 \pm 15 \text{ Ma})$, and Yuanbaoshan grantie $(824 \pm 4 \text{ Ma})$ (Li, 1999).

Western Margin of the Yangtze Craton

Eshan porphyritic granite (819 ± 8 Ma) (Li et al., 2003); Datian diorite (760 ± 4 Ma) (Zhao and Zhou, 2007) ; Dadukou olivine gabbro (746 ± 10 Ma; 738 ± 23 Ma) (Zhao and Zhou, 2007); Tongde picritic dyke (796 ± 5 Ma) (Zhu et al., 2010); Tongde gabbro (820 ± 13 Ma) and diorite (813 ± 14 Ma) (Sinclair, 2001); Lengshuiqing diorite (812 ± 3 Ma) and Gaojiacun (806 ± 4 Ma) (Zhou et al., 2006); Guandaoshan granite (857 ± 13 Ma) (Li et al., 2003); Shaba gabbroic rocks (752 ± 12 Ma; 752 ± 11 Ma) (Li et al., 2003); Suxiong bimodal volcanics (803 ± 12 Ma) (Li et al., 2002a); Lengqi gabbro (808 ± 12 Ma) (Li et al., 2002b); Kangting diorite (768 ± 7 Ma), granodiorite (755 ± 6 Ma), and granitic rock (751 ± 10 Ma) (Li et al., 2003) and Kangting ganitoids (797 ± 10 Ma; 796 ± 13 Ma; 795 ± 11 Ma) (Zhou et al., 2002); Xuelongbao tonalite (748 ± 7 Ma) (Zhou et al., 2006); Baoxing complex (790-720 Ma) (Fu et al., 2013).

Northern Magrin of the Yangtze Craton

Bikou basalts (821 ± 7 Ma; 811 ± 12 Ma) (Wang et al., 2008); Xixiang dacite (950 ± 4 Ma), Xixiang rhyolite (897 ± 3 Ma), and Tiechuanshan rhyolite (817 ± 5 Ma) (Ling et al., 2003); Beiba gabbro (814 ± 9 Ma) and Luojiaba hornblende gabbro (746 ± 4 Ma) (Zhao and Zhou, 2009); Erliba granodiorite (730 ± 6 Ma) and Wudumen granodiorite (735 ± 8 Ma) (Zhao and Zhou, 2008); Wangjiangshan diorite (819 ± 10 Ma) and gabbro (808 ± 14 Ma), Bijigou gabbro (782 ± 10 Ma) (Zhou et al., 2002); Xixia granite (718 ± 12 Ma; 714 ± 7 Ma; 721 ± 9 Ma), granodiorite (718 ± 33 Ma) and diorite (827 ± 8 Ma) (Liu and Zhang, 2013); Wudang mafic dyke (651 ± 5 Ma) (Zhu et al., 2014); Zhouan Iherzolite (637 ± 4 Ma) (Wang et al., 2013); Duchongshan troctolite (632 ± 6 Ma) (Xue et al., 2011); Hualingmiao trondhjemite-granodiorite suite (819 ± 7 Ma) (Ma et al., 1989); Xiaofeng dykes (802 ± 10 Ma) (Li et al., 2003); Wangmuguan olivine-gabbro (635 ± 5 Ma) (Liu et al., 2006); Luzhenguan granite (782 ± 3 Ma) (Zheng et al., 2007), granite (741 ± 7 Ma; 754 ± 5 Ma; 746 ± 6 Ma) (Wu et al., 2007), and gabbro-diorite (744 ± 13 Ma; 739 ± 8 Ma; 746 ± 6 Ma) (Wu et al., 2007).

References

- Fu, B. et al., 2013. Origin of the Tongbai-Dabie-Sulu Neoproterozoic low- δ^{18} O igneous province, east-central China. Contributions to Mineralogy and Petrology, 165: 641-662.
- Li, X., 1999. U Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Research, 97(1 - 2): 43-57.

- Li, X. et al., 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research, 122(1 4): 45-83.
- Li, X. et al., 2003. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: Petrogenesis and tectonic significance. Science in China Series D: Earth Sciences, 46 supp.: 73-83.
- Li, X., Li, W., Li, Z. and Liu, Y., 2008. 850 790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1 - 2): 341-357.
- Li, X., Li, Z., Zhou, H., Liu, Y. and Kinny, P. D., 2002a. U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 113: 135-154.
- Li, X., Li, Z., Zhou, H., Liu, Y. and Liang, X., 2002b. U-Pb zircon geochronological, geochemical and Nd isotopic study of Neoproterozoic basaltic magmatism in western Sichuan: petrogenesis and geodynamic implications., 9(4): 329-338 (in Chinese with English abstract).
- Li, Z.X. et al., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1 - 4): 85-109.
- Ling, W. et al., 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research, 122(1 - 4): 111-140.
- Liu, J. and Zhang, L., 2013. Neoproterozoic low to negative δ^{18} O volcanic and intrusive rocks in the Qinling Mountains and their geological significance. Precambrian Research, 230(0): 138-167.
- Liu, Y., Li, S., Gu, X. and Hou, Z., 2006. Zircon SHRIMP U-Pb age of Wangmuguan olivine-gabbro in Beihuanyang unit of Dabie orogen and its significance. Chinese Science Bulletin, 51(18): 2175-2180 (in Chinese).
- Ma, G., Zhang, Z., Li, H., Chen, P. and Huang, Z., 1989. A geochronological study of the Sinian System in Yangtze Platform. Bulletin of Yichang Institute of Geology and Mineral Resources, 14: 83-124 (in Chinese with English abstract).
- Sinclair, J.A., 2001. Petrology, geochemistry, and geochronology of the Mesoproterozoic Yanbian "ophiolite", western Sichuan Province, South China. Honours Thesis, The University of Western Australia, Perth.
- Wang, M., Wang, C. and Zhao, J., 2013. Zircon U/Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the Yangtze Block, SW China: Constraints on the nature of mantle source and timing of the supercontinent Rodinia breakup. Chinese Science Bulletin, 58(7): 777-787.
- Wang, X. et al., 2008. The Bikou basalts in the northwestern Yangtze block, South China: Remnants of 820 - 810 Ma continental flood basalts? Geological Society of America Bulletin, 120(11-12): 1478 -1492.
- Wang, X., Li, X., Li, W. and Li, Z., 2007. Ca. 825 Ma komatiitic basalts in South China: First evidence for >1500 °C mantle melts by a Rodinian mantle plume. Geology, 35(12): 1103 -1106.
- Wu, R. et al., 2006. Reworking of juvenile crust: Element and isotope evidence from

Neoproterozoic granodiorite in South China. Precambrian Research, 146(3 - 4): 179-212.

- Wu, Y. et al., 2007. Zircon U Pb dating of water rock interaction during Neoproterozoic rift magmatism in South China. Chemical Geology, 246(1 - 2): 65-86.
- Xue, H., Ma, F. and Song, Y., 2011. Geochemistry and SHRIMP zircon U-Pb data of Neoproterozoic meta-magamtic rocks in the Suizhou-Zaoyang area, northern margin of the Yangtze Craton, Cental China. Acta Petrologica Sinica, 27(4): 1116-1130 (in Chinese with English abstract).
- Zhao, J. and Zhou, M., 2007. Neoproterozoic Adakitic Plutons and Arc Magmatism along the western margin of Yangtze Block, South China. The Journal of Geology, 115: 675-689.
- Zhao, J. and Zhou, M., 2008. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: Partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos, 104(1 4): 231-248.
- Zhao, J. and Zhou, M., 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos, 107(3 4): 152-168.
- Zheng, Y. et al., 2007. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth and Planetary Science Letters, 256(1 - 2): 196-210.
- Zheng, Y. et al., 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3 4): 351-383.
- Zhou, M. et al., 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Research, 144(1 2): 19-38.
- Zhou, M., Yan, D., Kennedy, A.K., Li, Y. and Ding, J., 2002. SHRIMP U Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1 2): 51-67.
- Zhou, M., Yan, D., Wang, C., Qi, L. and Kennedy, A., 2006. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth and Planetary Science Letters, 248(1 - 2): 286-300.
- Zhou, M.F., Kennedy, A.K., Sun, M., Malpas, J. and Lesher, C.M., 2002. Neoproterozoic arc related mafic intrusions along the northern margin of South China: implications for the accretion of rodinia. The Journal of geology, 110(5): 611-618.
- Zhu, W. et al., 2010. The Tongde Picritic Dikes in the Western Yangtze Block: Evidence for Ca. 800-Ma Mantle Plume Magmatism in South China during the Breakup of Rodinia. The Journal of Geology, 118(5): 509-522.
- Zhu, X., Chen, F., Liu, B., Zhang, H. and Zhai, M., 2014. Geochemistry and zircon ages of mafic dikes in the South Qinling, central China: evidence for late Neoproterozoic continental rifting in the northern Yangtze block. International Journal of Earth Sciences: 1-18.

Appendix S2 Micrographs for samples in this study

12SZ20 siltstone Gujing Formation, lower part of Suixian Group

12SZ24 sandstone Gujing Formation, lower part of Suixian Group

12SZ28 sandstone Gujing Formation, lower part of Suixian Group

12SZ07 sandstone Liulin Formation, middle part of Suixian Group

13SZ19 sandstone Liulin Formation, middle part of Suixian Group

12SZ14 metarhyolite Liulin Formation, middle part of Suixian Group

12SZ17 tuffaceous siltstone Liulin Formation, middle part of Suixian Group

12SZ10 siltstone Yuanziwan Formation, upper part of Suixian Group

13SZ17 sandstone Yuanziwan Formation, upper part of Suixian Group

Appendix S3

				Арр	endix S	3 SIMS	S Zirc	on SIM	18 U-1	'b datii	ng res	ults							
Sample spot	U	Th	Th/II —	²⁰⁴ Pb ^a	f ₂₀₆ ^b	²⁰⁷ Pb	±lσ	²⁰⁷ Pb	±1σ	²⁰⁶ Pb	±1σ	ρ ^c	t _{206/207}	±1 σ	t _{207/235}	±1 σ	t _{206/238}	±1 σ	Discord
			11.0	²⁰⁶ Pbm		²⁰⁶ Pb	(%)	²³⁵ U	(%)	²³⁸ U	(%)		(Ma)		(Ma)		(Ma)		(%)
Gujing Formation	n, lower pa	art of Suix	ian Group																
12SZ20 (siltstone,	31°21'11.	65"N, 113°	42'41.54''E)																
12SZ20@01	273	334	1.2	0	0	0.0642	1.29	1.1222	2.04	0.1267	1.58	0.77	749	27	764	11	769	11	-2.7
12SZ20@02	283	622	2.2	1.95E-05	0.04	0.0643	1.28	1.0923	1.98	0.1233	1.51	0.76	751	27	750	11	749	11	0.2
12SZ20@03	349	1114	3.2	0	0	0.0655	1.15	1.1087	1.90	0.1228	1.51	0.79	790	24	758	10	746	11	5.6
12SZ20@04	140	245	1.8	0	0	0.0648	2.01	1.0766	2.54	0.1205	1.56	0.61	767	42	742	13	734	11	4.4
12SZ20@05	195	280	1.4	2.87E-05	0.05	0.0670	1.75	1.1083	2.31	0.1199	1.50	0.65	839	36	757	12	730	10	13.0
12SZ20@07	187	360	1.9	8.62E-05	0.16	0.0643	1.83	1.0471	2.36	0.1181	1.50	0.63	753	38	727	12	719	10	4.4
12SZ20@08	326	510	1.6	1.25E-04	0.23	0.0643	1.27	1.0768	1.97	0.1215	1.51	0.76	750	27	742	10	739	11	1.4
12SZ20@09	160	148	0.9	2.96E-05	0.06	0.0619	1.60	1.0471	2.20	0.1227	1.51	0.68	670	34	727	12	746	11	-11.3
12SZ20@10	186	336	1.8	0	0	0.0647	1.47	1.0745	2.10	0.1204	1.51	0.72	765	31	741	11	733	10	4.2
12SZ20@11	638	1646	2.6	7.62E-06	0.01	0.0636	0.83	1.0737	1.72	0.1224	1.50	0.87	728	18	741	9	745	11	-2.3
12SZ20@12	104	75	0.7	6.62E-05	0.12	0.0645	2.10	1.0929	2.58	0.1229	1.50	0.58	758	44	750	14	747	11	1.5
12SZ20@13	261	408	1.6	6.43E-05	0.12	0.0633	1.38	1.0572	2.05	0.1212	1.52	0.74	718	29	732	11	737	11	-2.7
12SZ20@14	257	307	1.2	4.00E-05	0.07	0.0641	1.61	1.0408	2.20	0.1178	1.50	0.68	744	34	724	11	718	10	3.5
12SZ20@15	300	342	1.1	4.82E-05	0.09	0.0633	1.32	1.0284	2.00	0.1178	1.50	0.75	718	28	718	10	718	10	0.0
12SZ20@16	95	99	1.0	7.79E-05	0.15	0.0648	2.72	1.0960	3.11	0.1227	1.50	0.48	767	56	751	17	746	11	2.7
12SZ24 (sandston	ne. 31°28'2	6.73"N. 11	3°41'48.10"E	Ξ)															
12SZ24@01	440	363	0.8	-,		0.0636	0.92	1.0812	1.77	0.1233	1.51	0.85	728	19	744	9	750	11	-3.0
12SZ24@02	211	323	1.5	1.33E-04	0.25	0.0636	1.62	1.0656	2.20	0.1215	1.50	0.68	729	34	737	12	739	10	-1.3
128724@03	51	131	2.6	7.01E-05	0.13	0.0654	2 14	1 1489	2.62	0 1273	1 50	0.57	788	44	777	14	773	11	2.0
12SZ24@04	284	264	0.9	1.94E-04	0.36	0.0679	0.88	1.3094	1.74	0.1398	1.50	0.86	867	18	850	10	843	12	27
12SZ24@05	868	1819	2.1	3.49E-05	0.07	0.0639	4.74	1.0515	4.98	0.1193	1.52	0.31	738	97	730	26	727	10	
				1.18E-03	2.20														

CIMC II Dh datha a maarila J ... C2 CIMC 7:.. ۸.

12SZ24@06	168	118	0.7	1.27E-04	0.24	0.0652	1.89	1.1422	2.42	0.1271	1.51	0.62	781	39	774	13	771	11	1.2
12SZ24@07	448	805	1.8	2.04E-04	0.38	0.0650	1.07	1.1689	1.85	0.1305	1.50	0.81	773	22	786	10	791	11	-2.2
12SZ24@08	141	161	1.1	1.72E-04	0.32	0.0643	1.35	1.1177	2.02	0.1260	1.50	0.74	752	28	762	11	765	11	-1.8
12SZ24@09	59	37	0.6	1.14E-04	0.21	0.0619	2.00	1.0854	2.50	0.1272	1.51	0.60	670	42	746	13	772	11	-15.3
12SZ24@10	130	198	1.5	4.47E-05	0.08	0.0638	1.84	1.0599	2.38	0.1204	1.50	0.63	736	39	734	12	733	10	0.4
12SZ24@11	157	210	1.3	0	0	0.0647	1.25	1.0631	1.96	0.1192	1.51	0.77	764	26	735	10	726	10	4.9
12SZ24@12	162	635	3.9	3.39E-05	0.06	0.0639	1.27	1.0768	1.98	0.1221	1.53	0.77	740	27	742	11	743	11	-0.4
12SZ24@13	65	101	1.6	4.81E-05	0.09	0.0639	1.98	1.0878	2.49	0.1235	1.50	0.60	738	41	747	13	751	11	-1.7
12SZ24@14	186	226	1.2	4.37E-05	0.08	0.0645	1.18	1.1440	1.92	0.1286	1.51	0.79	758	25	774	10	780	11	-2.9
12SZ28 (sandsto	ne, 31°30'55	5.29"N, 113	°35'44.97"I	E)															
12SZ28@01	187	134	0.7	4.10E-05	0.08	0.0644	1.56	1.1084	2.16	0.1248	1.50	0.69	756	33	757	12	758	11	-0.2
12SZ28@02	85	59	0.7	0	0	0.0658	2.23	1.1002	2.69	0.1212	1.51	0.56	800	46	753	14	738	11	7.8
12SZ28@03	139	157	1.1	5.43E-05	0.10	0.0662	1.86	1.1614	2.42	0.1272	1.55	0.64	814	38	783	13	772	11	5.2
12SZ28@04	267	403	1.5	1.95E-05	0.04	0.0642	1.28	1.0846	1.97	0.1224	1.50	0.76	750	27	746	10	745	11	0.7
12SZ28@05	203	414	2.0	0	0	0.0643	1.98	1.0810	2.48	0.1220	1.50	0.60	751	41	744	13	742	11	1.2
12SZ28@06	163	248	1.5	5.32E-04	0.99	0.0642	2.61	1.1051	3.03	0.1248	1.54	0.51	749	54	756	16	758	11	-1.3
12SZ28@07	507	312	0.6	1.57E-05	0.03	0.0647	0.96	1.0742	1.78	0.1205	1.51	0.84	763	20	741	9	733	10	3.9
12SZ28@08	146	125	0.9	0	0	0.1125	0.81	5.1278	1.71	0.3306	1.50	0.88	1840	15	1841	15	1841	24	0.0
12SZ28@09	190	495	2.6	0	0	0.0638	1.51	1.0783	2.13	0.1225	1.50	0.70	736	32	743	11	745	11	-1.2
12SZ28@10	232	194	0.8	3.36E-05	0.06	0.0641	1.44	1.0614	2.08	0.1202	1.50	0.72	744	30	735	11	732	10	1.6
12SZ28@11	190	227	1.2	9.59E-05	0.18	0.0611	1.88	1.0114	2.41	0.1200	1.50	0.62	644	40	710	12	730	10	-13.4
12SZ28@13	169	370	2.2	4.62E-05	0.09	0.0646	1.72	1.0718	2.31	0.1203	1.55	0.67	763	36	740	12	732	11	4.0
12SZ28@14	92	95	1.0	1.81E-04	0.34	0.0638	2.98	1.0941	3.45	0.1244	1.73	0.50	735	62	750	18	756	12	-2.8
12SZ28@15	74	57	0.8	1.37E-04	0.26	0.0653	2.89	1.1154	3.25	0.1239	1.50	0.46	784	60	761	18	753	11	3.9
12SZ28@16	151	147	1.0	3.26E-05	0.06	0.0668	1.79	1.1213	2.34	0.1217	1.50	0.64	833	37	764	13	740	10	11.1
12SZ28@17	136	155	1.1	5.35E-05	0.10	0.0646	1.87	1.0939	2.40	0.1227	1.50	0.63	763	39	750	13	746	11	2.2

12SZ28@18	139	122	0.9	1.10E-04	0.21	0.0632	1.77	1.0303	2.33	0.1183	1.51	0.65	714	37	719	12	721	10	-0.9
12SZ28@19	135	182	1.3	3.71E-05	0.07	0.0634	1.78	1.1033	2.33	0.1262	1.50	0.64	721	37	755	12	766	11	-6.2
12SZ28@20	141	183	1.3	3.17E-05	0.06	0.0647	1.63	1.2112	2.23	0.1357	1.52	0.68	765	34	806	12	820	12	-7.2
Liulin Formation	ı, middle pa	rt of Suixia	an Group																
12SZ06 (sandstor	ne, 31°31'45	5.39"N, 113	°14'11.91"I	Ξ)															
12SZ06@01	154	155	1.0	3.48E-05	0.07	0.0642	1.47	1.1329	2.13	0.1279	1.55	0.73	749	31	769	12	776	11	-3.6
12SZ06@02	133	143	1.1	3.06E-05	0.06	0.0659	1.53	1.1920	2.14	0.1312	1.51	0.70	803	32	797	12	795	11	1.1
12SZ06@03	151	159	1.0	0	0	0.0679	1.37	1.1922	2.03	0.1273	1.50	0.74	866	28	797	11	772	11	10.9
12SZ06@04	68	38	0.6	7.72E-05	0.14	0.0680	2.17	1.2021	2.64	0.1283	1.50	0.57	868	44	802	15	778	11	10.3
12SZ06@05	287	134	0.5	0	0	0.0677	0.98	1.2419	1.81	0.1330	1.52	0.84	860	20	820	10	805	12	6.4
12SZ06@06	95	64	0.7	0	0	0.0699	1.55	1.4949	2.22	0.1550	1.59	0.72	926	31	928	14	929	14	-0.3
12SZ06@07	252	108	0.4	1.37E-05	0.03	0.0661	1.06	1.1913	1.84	0.1307	1.50	0.82	810	22	797	10	792	11	2.2
12SZ06@08	131	62	0.5	0	0	0.0671	1.49	1.1613	2.12	0.1255	1.51	0.71	842	31	783	12	762	11	9.5
12SZ06@09	97	52	0.5	0	0	0.0656	1.74	1.1215	2.30	0.1240	1.51	0.65	793	36	764	12	754	11	5.0
12SZ06@10	102	87	0.8	6.69E-05	0.13	0.0656	1.91	1.1690	2.48	0.1292	1.59	0.64	794	39	786	14	783	12	1.4
12SZ06@11	148	113	0.8	4.42E-05	0.08	0.0666	1.43	1.2304	2.09	0.1339	1.52	0.73	827	30	815	12	810	12	2.0
12SZ06@12	186	180	1.0	0	0	0.0656	1.22	1.1914	1.94	0.1318	1.50	0.77	793	25	797	11	798	11	-0.6
12SZ06@13	549	279	0.5	8.95E-06	0.02	0.0661	0.96	1.2396	1.78	0.1360	1.50	0.84	809	20	819	10	822	12	-1.6
12SZ06@14	156	103	0.7	0	0	0.0658	1.32	1.2119	2.00	0.1336	1.51	0.75	800	27	806	11	808	11	-1.1
12SZ06@15	200	176	0.9	1.67E-05	0.03	0.0640	1.39	1.1694	2.04	0.1324	1.50	0.73	743	29	786	11	802	11	-7.9
12SZ06@16	205	135	0.7	3.25E-05	0.06	0.0661	1.21	1.2038	1.93	0.1320	1.50	0.78	810	25	802	11	799	11	1.4
12SZ06@17	437	453	1.0	1.46E-05	0.03	0.0659	0.80	1.2459	1.70	0.1370	1.50	0.88	805	17	822	10	828	12	-2.9
12SZ06@18	77	58	0.8	1.58E-05	0.03	0.1232	0.87	6.0740	1.73	0.3575	1.50	0.87	2003	15	1987	15	1970	26	1.7
12SZ06@19	103	75	0.7	0	0	0.0645	1.68	1.1163	2.26	0.1254	1.50	0.67	759	35	761	12	762	11	-0.3
12SZ06@20	192	197	1.0	2.50E-05	0.05	0.0670	1.20	1.2584	1.93	0.1362	1.50	0.78	838	25	827	11	823	12	1.7
12SZ06@21	144	172	1.2	0	0	0.0652	1.50	1.1886	2.12	0.1321	1.50	0.71	782	31	795	12	800	11	-2.3
12SZ06@22	53	31	0.6	0	0	0.0675	2.24	1.2051	2.70	0.1296	1.51	0.56	852	46	803	15	785	11	7.8

12SZ06@23	143	206	1.4	2.41E-05	0.05	0.0656	1.45	1.1399	2.09	0.1260	1.50	0.72	793	30	772	11	765	11	3.5
12SZ06@24	189	209	1.1	4.76E-05	0.09	0.0637	1.36	1.0705	2.06	0.1219	1.55	0.75	731	28	739	11	742	11	-1.4
12SZ06@25	662	197	0.3	1.11E-05	0.02	0.0651	1.16	1.2607	2.10	0.1404	1.76	0.83	778	24	828	12	847	14	-8.9
12SZ06@26	248	241	1.0	1.54E-05	0.03	0.0667	1.06	1.2139	1.85	0.1319	1.52	0.82	829	22	807	10	799	11	3.7
12SZ06@27	752	488	0.6	1.46E-05	0.03	0.0663	0.60	1.2606	1.62	0.1378	1.51	0.93	817	12	828	9	832	12	-1.9
12SZ06@28	32	18	0.6	1.06E-04	0.20	0.0671	3.61	1.1694	3.93	0.1264	1.54	0.39	841	73	786	22	767	11	8.7
12SZ07(sandst	one, 31°34'26	6.46"N, 113	°21'38.28"E	E)															
12SZ07@01	174	121	0.7	4.33E-05	0.08	0.0689	1.75	1.3525	2.31	0.1425	1.51	0.65	894	36	869	14	859	12	4.0
12SZ07@02	206	180	0.9	2.51E-05	0.05	0.0646	1.63	1.1827	2.21	0.1327	1.50	0.68	762	34	793	12	803	11	-5.4
12SZ07@03	378	143	0.4	0	0	0.0654	0.89	1.1321	1.75	0.1255	1.51	0.86	788	19	769	9	762	11	3.3
12SZ07@04	59	61	1.0	0	0	0.1221	1.12	6.1520	1.88	0.3653	1.51	0.80	1988	20	1998	17	2007	26	-1.0
12SZ07@05	85	52	0.6	6.13E-05	0.11	0.0650	1.99	1.1738	2.50	0.1309	1.50	0.60	775	41	788	14	793	11	-2.3
12SZ07@06	80	85	1.1	0	0	0.1237	1.20	6.0200	1.92	0.3529	1.51	0.78	2011	21	1979	17	1948	25	3.1
12SZ07@07	201	170	0.8	1.68E-05	0.03	0.0678	1.16	1.2631	1.90	0.1352	1.51	0.79	862	24	829	11	817	12	5.2
12SZ07@08	92	95	1.0	4.75E-05	0.09	0.1243	0.90	6.1997	1.76	0.3616	1.51	0.86	2019	16	2004	15	1990	26	1.5
12SZ07@09	153	280	1.8	3.64E-05	0.07	0.0650	1.49	1.0923	2.13	0.1219	1.52	0.71	773	31	750	11	742	11	4.1
12SZ07@10	677	1167	1.7	0	0	0.0665	1.01	1.2306	1.81	0.1342	1.50	0.83	823	21	815	10	812	11	1.4
12SZ07@11	353	250	0.7	1.46E-05	0.03	0.0660	0.91	1.2037	1.76	0.1323	1.50	0.85	806	19	802	10	801	11	0.6
12SZ07@12	114	131	1.1	3.52E-05	0.07	0.0648	1.78	1.1583	2.33	0.1297	1.51	0.65	768	37	781	13	786	11	-2.4
12SZ07@13	212	203	1.0	2.96E-04	0.55	0.0652	1.68	1.1072	2.26	0.1232	1.52	0.67	781	35	757	12	749	11	4.1
12SZ07@14	159	228	1.4	2.29E-05	0.04	0.0650	1.37	1.1393	2.03	0.1271	1.50	0.74	775	29	772	11	771	11	0.5
12SZ07@15	176	132	0.8	0	0	0.0656	1.42	1.1910	2.06	0.1317	1.50	0.73	793	29	796	11	798	11	-0.6
12SZ07@16	252	241	1.0	0	0	0.0659	1.07	1.2034	1.84	0.1325	1.50	0.82	802	22	802	10	802	11	0.0
12SZ07@17	594	670	1.1	1.01E-05	0.02	0.0622	1.07	0.9969	1.85	0.1162	1.50	0.81	682	23	702	9	709	10	-4.0
12SZ07@18	60	104	1.7	1.82E-04	0.34	0.0624	3.18	1.0496	3.55	0.1219	1.57	0.44	689	66	729	19	742	11	-7.6
12SZ07@19	615	859	1.4	8.59E-06	0.02	0.0658	0.89	1.1955	1.75	0.1317	1.51	0.86	801	19	799	10	798	11	0.4

12SZ07@20	362	419	1.2	1.75E-05	0.03	0.0680	0.86	1.3582	1.73	0.1449	1.50	0.87	868	18	871	10	872	12	-0.6
12SZ07@21	37	26	0.7	8.35E-05	0.16	0.1028	1.63	4.2431	2.33	0.2994	1.66	0.71	1675	30	1682	19	1688	25	-0.8
12SZ07@22	138	171	1.2	0	0	0.0651	1.50	1.1691	2.12	0.1303	1.50	0.71	777	31	786	12	789	11	-1.6
12SZ07@23	93	104	1.1	0	0	0.1244	0.92	6.1489	1.79	0.3586	1.53	0.86	2020	16	1997	16	1975	26	2.2
12SZ07@24	168	199	1.2	2.09E-05	0.04	0.0643	1.33	1.1764	2.00	0.1327	1.50	0.75	751	28	790	11	804	11	-7.0
12SZ07@25	371	531	1.4	2.44E-05	0.05	0.0641	0.94	1.1328	1.77	0.1281	1.50	0.85	746	20	769	10	777	11	-4.1
12SZ07@26	205	153	0.7	0	0	0.0663	1.20	1.1753	1.93	0.1286	1.51	0.78	815	25	789	11	780	11	4.3
12SZ07@27	44	33	0.7	5.78E-05	0.11	0.1215	1.69	6.0634	2.29	0.3619	1.55	0.68	1979	30	1985	20	1991	27	-0.6
12SZ07@28	45	50	1.1	0	0	0.1219	1.16	6.0729	1.91	0.3613	1.51	0.79	1984	21	1986	17	1988	26	-0.2
12SZ07@29	86	78	0.9	0	0	0.0644	2.02	1.1514	2.51	0.1296	1.50	0.60	756	42	778	14	786	11	-4.0
12SZ07@30	110	212	1.9	3.25E-05	0.06	0.0647	2.41	1.1483	2.85	0.1288	1.51	0.53	763	50	776	16	781	11	-2.4
12SZ07@31	111	220	2.0	3.24E-05	0.06	0.0673	1.62	1.2004	2.22	0.1293	1.53	0.69	847	33	801	12	784	11	7.5
12SZ07@32	63	44	0.7	0	0	0.1214	1.06	6.0925	1.84	0.3639	1.51	0.82	1977	19	1989	16	2001	26	-1.2
12SZ07@33	137	161	1.2	0	0	0.0640	1.48	1.1437	2.11	0.1296	1.51	0.71	742	31	774	12	785	11	-5.8
12SZ07@34	231	326	1.4	3.05E-05	0.06	0.0653	1.17	1.1849	1.91	0.1316	1.50	0.79	783	24	794	11	797	11	-1.8
12SZ07@35	41	31	0.8	4.94E-05	0.09	0.1248	1.28	6.0469	2.02	0.3515	1.57	0.78	2025	22	1983	18	1942	26	4.1
12SZ07@36	139	161	1.2	8.66E-05	0.16	0.0687	1.56	1.3790	2.17	0.1455	1.51	0.69	891	32	880	13	876	12	1.7
12SZ07@37	219	299	1.4	3.57E-05	0.07	0.0645	1.29	1.1179	1.98	0.1257	1.51	0.76	758	27	762	11	763	11	-0.6
12SZ07@38	127	125	1.0	0	0	0.0665	1.54	1.2208	2.15	0.1331	1.50	0.70	823	32	810	12	805	11	2.2
12SZ07@39	372	255	0.7	1.55E-05	0.03	0.0645	0.95	1.1419	1.78	0.1284	1.50	0.84	758	20	773	10	779	11	-2.8
12SZ07@40	201	181	0.9	1.82E-05	0.03	0.0659	1.81	1.2165	2.35	0.1340	1.50	0.64	802	38	808	13	811	11	-1.1
12SZ07@41	217	138	0.6	4.19E-06	0.01	0.1896	0.59	13.929 5	1.61	0.5328	1.50	0.93	2739	10	2745	15	2753	34	-0.5
12SZ07@42	190	141	0.7	3.93E-05	0.07	0.0659	2.35	1.1995	2.79	0.1319	1.51	0.54	804	48	800	16	799	11	0.7
12SZ07@43	212	135	0.6	9.76E-06	0.02	0.1648	0.43	10.483 4	1.57	0.4613	1.51	0.96	2506	7	2478	15	2445	31	2.4
12SZ07@44	1919	1486	0.8	2.37E-04	0.44	0.0639	0.63	1.1040	1.63	0.1252	1.50	0.92	739	13	755	9	761	11	-2.9
12SZ07@45	356	189	0.5	4.55E-05	0.09	0.0656	1.38	1.2194	2.04	0.1349	1.50	0.74	792	29	810	11	816	12	-2.9
12SZ07@46	77	45	0.6	0	0	0.1247	0.90	6.2073	1.75	0.3610	1.50	0.86	2025	16	2005	15	1987	26	1.9

12SZ07@47	70	77	1.1	1.04E-04	0.19	0.0617	2.46	1.1104	2.88	0.1306	1.50	0.52	662	52	758	16	791	11	-19.5
139714 (condete	21°34'50	0 09"NI 113	°21'52 34"E	-															
	nie, 51 54 58	9.00 N, 113	2102.04 L	-)															
13SZ14@01	303	172	0.6	3.89E-05	0.07	0.0658	1.13	1.2509	1.89	0.1380	1.51	0.80	799	24	824	11	833	12	-4.3
13SZ14@02	459	52	0.1	1.56E-05	0.03	0.0731	0.95	1.7781	1.77	0.1763	1.50	0.85	1018	19	1037	12	1047	15	-2.9
13SZ14@03	187	162	0.9	4.90E-05	0.09	0.0661	1.53	1.2394	2.18	0.1361	1.55	0.71	808	32	819	12	822	12	-1.8
13SZ14@04	312	244	0.8	1.60E-05	0.03	0.0638	1.20	1.1293	1.97	0.1283	1.56	0.79	736	25	767	11	778	11	-5.8
13SZ14@05	240	392	1.6	3.80E-05	0.07	0.0661	1.56	1.1230	2.18	0.1231	1.52	0.70	811	32	764	12	749	11	7.7
13SZ14@06	76	89	1.2	2.26E-04	0.42	0.0642	3.71	1.1363	4.01	0.1283	1.52	0.38	749	76	771	22	778	11	-4.0
13SZ14@07	108	75	0.7	0	0	0.0673	2.03	1.2906	2.59	0.1391	1.60	0.62	847	42	842	15	839	13	0.9
13SZ14@08	109	80	0.7	1.58E-04	0.29	0.0655	2.11	1.2217	2.59	0.1352	1.50	0.58	791	44	811	15	818	12	-3.4
13SZ14@09	58	54	0.9	9.28E-05	0.17	0.0702	2.97	1.3002	3.33	0.1343	1.50	0.45	935	60	846	19	812	11	13.1
13SZ14@10	234	221	0.9	2.90E-05	0.05	0.0674	1.54	1.2784	2.29	0.1376	1.70	0.74	850	32	836	13	831	13	2.3
13SZ14@11	117	100	0.9	7.76E-05	0.15	0.0661	2.17	1.1683	2.68	0.1283	1.57	0.59	808	45	786	15	778	12	3.7
13SZ14@12	107	84	0.8	7.86E-05	0.15	0.0653	2.38	1.1781	2.82	0.1308	1.51	0.53	785	49	790	16	792	11	-0.9
13SZ14@13	90	66	0.7	9.35E-05	0.17	0.0668	3.49	1.2225	3.80	0.1328	1.50	0.40	831	71	811	21	804	11	3.2
13SZ14@14	193	120	0.6	2.97E-05	0.06	0.0628	1.61	1.0955	2.20	0.1266	1.50	0.68	700	34	751	12	768	11	-9.7
13SZ14@15	176	107	0.6	3.25E-05	0.06	0.0673	1.95	1.2061	2.48	0.1300	1.52	0.61	847	40	803	14	788	11	7.1
13SZ14@16	92	54	0.6	0	0	0.0692	2.11	1.3920	2.59	0.1459	1.50	0.58	904	43	886	15	878	12	2.8
13SZ14@17	98	47	0.5	8.55E-05	0.16	0.0653	3.97	1.2002	4.25	0.1334	1.50	0.35	783	81	801	24	807	11	-3.1
13SZ14@18	130	102	0.8	0	0	0.0663	2.26	1.1770	2.71	0.1287	1.50	0.55	817	47	790	15	780	11	4.5
13SZ14@19	65	52	0.8	4.11E-04	0.77	0.0607	4.68	1.0746	4.94	0.1284	1.59	0.32	629	98	741	26	779	12	-23.9
13SZ14@20	72	147	2.0	1.97E-04	0.37	0.0634	2.61	1.1648	3.01	0.1331	1.51	0.50	723	54	784	17	806	11	-11.4
13SZ14@21	67	82	1.2	1.76E-04	0.33	0.0646	3.43	1.1485	3.75	0.1290	1.50	0.40	760	71	777	21	782	11	-3.0
13SZ14@22	156	217	1.4	3.08E-05	0.06	0.0668	2.55	1.2217	3.10	0.1326	1.75	0.57	832	52	811	17	803	13	3.5
13SZ14@23	39	26	0.7	1.21E-04	0.23	0.0675	3.14	1.1895	3.49	0.1278	1.51	0.43	853	64	796	19	775	11	9.2
13SZ14@24	43	34	0.8	0	0	0.1247	1.71	6.1139	2.29	0.3555	1.51	0.66	2025	30	1992	20	1961	26	3.2

13SZ14@25	41	22	0.5	2.96E-05	0.06	0.1757	1.03	11.821 4	1.85	0.4880	1.53	0.83	2613	17	2590	17	2562	32	1.9
13SZ14@26	30	44	1.5	0	0	0.0687	4.13	1.2080	4.43	0.1275	1.60	0.36	890	83	804	25	773	12	13.1
13SZ14@27	46	36	0.8	0	0	0.0684	2.75	1.1999	3.14	0.1272	1.50	0.48	881	56	801	18	772	11	12.4
13SZ14@28	89	81	0.9	4.94E-05	0.09	0.0643	2.23	1.1106	2.68	0.1252	1.50	0.56	752	46	758	14	761	11	-1.2
13SZ14@29	55	60	1.1	0	0	0.0645	2.61	1.0929	3.06	0.1229	1.60	0.52	758	54	750	16	747	11	1.4
13SZ14@30	68	41	0.6	4.48E-05	0.08	0.0727	1.85	1.7572	2.38	0.1754	1.50	0.63	1004	37	1030	16	1042	14	-3.7
13SZ19 (sandsto	one, 31°35'19	0.81"N,113°	°12'2.19"E)																
13SZ19@01	97	76	0.8	1.45E-04	0.27	0.0629	2.45	1.0590	2.88	0.1221	1.50	0.52	706	51	733	15	742	11	-5.2
13SZ19@02	126	99	0.8	1.86E-05	0.03	0.1226	0.78	5.9494	1.71	0.3519	1.52	0.89	1995	14	1968	15	1944	26	2.6
13SZ19@03	48	52	1.1	7.95E-05	0.15	0.1223	1.40	6.0561	2.05	0.3590	1.50	0.73	1991	25	1984	18	1977	26	0.7
13SZ19@04	68	56	0.8	0	0	0.0650	2.90	1.1690	3.29	0.1304	1.56	0.48	774	60	786	18	790	12	-2.1
13SZ19@05	137	138	1.0	6.26E-05	0.12	0.0637	1.78	1.0888	2.35	0.1239	1.53	0.65	733	37	748	13	753	11	-2.8
13SZ19@06	229	143	0.6	1.94E-04	0.36	0.0657	1.31	1.1333	2.03	0.1252	1.54	0.76	795	27	769	11	760	11	4.4
13SZ19@07	55	69	1.2	3.27E-05	0.06	0.1052	1.48	4.3123	2.15	0.2972	1.56	0.72	1719	27	1696	18	1677	23	2.4
13SZ19@08	213	137	0.6	3.78E-05	0.07	0.0664	1.33	1.2462	2.01	0.1361	1.51	0.75	819	28	822	11	823	12	-0.4
13SZ19@09	194	107	0.6	3.06E-05	0.06	0.0673	1.35	1.1923	2.05	0.1286	1.54	0.75	846	28	797	11	780	11	7.9
13SZ19@10	154	201	1.3	5.08E-05	0.09	0.0653	1.57	1.1918	2.17	0.1324	1.50	0.69	783	33	797	12	802	11	-2.4
13SZ19@11	57	77	1.3	7.10E-05	0.13	0.0624	2.47	1.0670	2.91	0.1241	1.54	0.53	687	52	737	15	754	11	-9.8
13SZ19@12	89	74	0.8	4.30E-05	0.08	0.0695	2.20	1.2910	2.67	0.1347	1.51	0.57	914	45	842	15	815	12	10.8
13SZ19@13	102	103	1.0	3.95E-05	0.07	0.0652	1.81	1.1719	2.35	0.1304	1.51	0.64	780	38	788	13	790	11	-1.2
13SZ19@14	516	534	1.0	5.11E-04	0.96	0.0641	1.43	1.0487	2.09	0.1187	1.52	0.73	744	30	728	11	723	10	2.7
13SZ19@15	54	47	0.9	0	0	0.1244	1.40	6.0957	2.05	0.3554	1.50	0.73	2020	25	1990	18	1960	25	3.0
13SZ19@16	110	79	0.7	0	0	0.0661	1.83	1.1739	2.37	0.1288	1.50	0.63	810	38	788	13	781	11	3.5
13SZ19@17	34	29	0.9	5.32E-05	0.10	0.1265	1.78	6.2314	2.38	0.3573	1.58	0.66	2050	31	2009	21	1969	27	3.9
13SZ19@18	227	189	0.8	2.04E-05	0.04	0.0643	1.32	1.1018	2.01	0.1244	1.52	0.76	750	28	754	11	756	11	-0.7
13SZ19@19	43	36	0.8	1.52E-04	0.29	0.1202	1.51	5.9461	2.13	0.3587	1.50	0.70	1960	27	1968	19	1976	26	-0.8

13SZ19@20	222	92	0.4	1.06E-04	0.20	0.0646	1.27	1.2048	2.03	0.1353	1.58	0.78	761	27	803	11	818	12	-7.5
13SZ19@21	60	27	0.4	1.52E-04	0.29	0.0632	2.55	1.0987	2.96	0.1262	1.52	0.51	714	53	753	16	766	11	-7.3
13SZ19@22	267	211	0.8	1.57E-05	0.03	0.0668	1.32	1.2678	2.03	0.1377	1.54	0.76	831	27	831	12	831	12	0.0
13SZ19@23	168	97	0.6	2.61E-05	0.05	0.1670	0.80	10.971 4	1.71	0.4766	1.51	0.88	2527	13	2521	16	2512	31	0.6
13SZ19@24	79	81	1.0	1.13E-04	0.21	0.0660	2.47	1.1733	2.90	0.1290	1.51	0.52	805	51	788	16	782	11	2.8
13SZ19@25	69	59	0.9	1.68E-04	0.31	0.0642	2.67	1.1739	3.06	0.1326	1.50	0.49	749	55	788	17	803	11	-7.2
13SZ19@26	107	89	0.8	1.54E-04	0.29	0.0638	2.77	1.1923	3.15	0.1356	1.50	0.48	735	57	797	18	819	12	-11.5
13SZ19@27	35	21	0.6	2.12E-04	0.40	0.0598	5.06	1.0344	5.28	0.1255	1.52	0.29	596	10 6	721	28	762	11	-28.0
13SZ19@28	107	109	1.0	0	0	0.0656	1.90	1.1979	2.57	0.1324	1.73	0.67	794	39	800	14	802	13	-1.0
13SZ19@29	240	184	0.8	3.86E-05	0.07	0.0652	1.28	1.2498	1.97	0.1389	1.50	0.76	782	27	823	11	839	12	-7.2
13SZ19@30	33	7	0.2	2.47E-05	0.05	0.1559	2.29	9.7319	2.74	0.4528	1.50	0.55	2412	38	2410	26	2408	30	0.2
13SZ19@31	78	64	0.8	1.56E-04	0.29	0.0637	2.91	1.1568	3.31	0.1317	1.57	0.47	731	61	780	18	798	12	-9.1
13SZ19@32	116	91	0.8	0	0	0.0671	1.79	1.2810	2.34	0.1384	1.50	0.64	842	37	837	13	836	12	0.7
13SZ19@33	78	42	0.5	0	0	0.0642	2.37	1.1207	2.81	0.1266	1.50	0.54	748	49	763	15	769	11	-2.8
13SZ19@34	83	64	0.8	1.18E-04	0.22	0.0656	2.74	1.1973	3.13	0.1324	1.51	0.48	793	56	799	17	802	11	-1.0
13SZ19@35	86	65	0.8	0	0	0.0636	2.20	1.1893	2.78	0.1357	1.70	0.61	727	46	796	15	820	13	-12.9
13SZ19@36	60	52	0.9	1.28E-04	0.24	0.0629	3.20	1.1513	3.54	0.1328	1.52	0.43	704	67	778	19	804	12	-14.3
13SZ19@37	26	26	1.0	7.27E-05	0.14	0.1238	3.07	6.3265	3.47	0.3708	1.62	0.47	2011	54	2022	31	2033	28	-1.1
13SZ19@38	72	130	1.8	1.06E-04	0.20	0.0651	3.74	1.2072	4.04	0.1345	1.54	0.38	777	77	804	23	814	12	-4.8
13SZ19@39	152	185	1.2	5.55E-05	0.10	0.0649	1.91	1.1265	2.43	0.1258	1.50	0.62	772	40	766	13	764	11	1.1
12SZ14 (metaryo	olite, 31°49'1	0.09"N, 113	3°22'22.17'	E)															
12SZ14@01	70	51	0.7	0	0	0.0631	1.72	1.0470	2.28	0.1204	1.50	0.66	711	36	727	12	733	10	-3.1
12SZ14@02	132	138	1.0	2.78E-05	0.05	0.0638	2.06	1.0511	2.55	0.1194	1.50	0.59	736	43	729	13	727	10	1.1
12SZ14@03	55	92	1.7	2.59E-05	0.05	0.0648	1.93	1.0714	2.46	0.1199	1.54	0.62	768	40	739	13	730	11	4.9
12SZ14@04	140	191	1.4	2.50E-05	0.05	0.0640	1.73	1.0821	2.29	0.1227	1.50	0.66	741	36	745	12	746	11	-0.7
12SZ14@05	112	97	0.9	3 18E-05	0.06	0.0634	1.43	1.0624	2.08	0.1215	1.51	0.72	721	30	735	11	739	11	-2.5

12SZ14@06	71	123	1.7	3.44E-04	0.64	0.0651	1.76	1.0871	2.31	0.1211	1.50	0.65	779	37	747	12	737	10	5.4
12SZ14@07	73	46	0.6	0	0	0.0651	1.64	1.0829	2.24	0.1207	1.52	0.68	777	34	745	12	734	11	5.5
12SZ14@08	137	154	1.1	1.01E-05	0.02	0.0628	1.22	1.0550	1.94	0.1218	1.50	0.77	701	26	731	10	741	11	-5.7
12SZ14@09	108	124	1.2	5.33E-05	0.10	0.0644	1.62	1.1105	2.21	0.1251	1.50	0.68	755	34	758	12	760	11	-0.6
12SZ14@10	205	224	1.1	2.81E-05	0.05	0.0631	1.53	1.0842	2.14	0.1246	1.51	0.70	711	32	746	11	757	11	-6.4
12SZ14@11	31	46	1.5	2.13E-04	0.40	0.0636	2.46	1.1118	2.88	0.1268	1.50	0.52	728	51	759	16	770	11	-5.7
12SZ14@12	90	152	1.7	7.58E-05	0.14	0.0641	1.46	1.1221	2.09	0.1269	1.50	0.72	746	31	764	11	770	11	-3.2
12SZ14@13	136	279	2.0	4.19E-05	0.08	0.0642	1.19	1.0985	1.92	0.1241	1.50	0.78	749	25	753	10	754	11	-0.7
12SZ14@14	68	57	0.8	8.64E-05	0.16	0.0637	1.71	1.0553	2.28	0.1201	1.50	0.66	733	36	732	12	731	10	0.2
12SZ14@15	66	79	1.2	7.24E-05	0.14	0.0638	2.15	1.0331	2.62	0.1174	1.50	0.57	736	45	720	14	716	10	2.8
12SZ14@16	50	83	1.7	9.33E-05	0.17	0.0627	2.00	1.0561	2.50	0.1222	1.50	0.60	698	42	732	13	743	11	-6.4
12SZ14@17	107	157	1.5	2.21E-05	0.04	0.0640	1.42	1.0705	2.08	0.1214	1.51	0.73	741	30	739	11	738	11	0.3
12SZ14@18	91	93	1.0	1.60E-04	0.30	0.0658	1.42	1.1331	2.07	0.1249	1.50	0.73	800	30	769	11	759	11	5.1
12SZ14@19	80	162	2.0	6.82E-05	0.13	0.0633	1.53	1.1133	2.15	0.1277	1.51	0.70	717	32	760	12	774	11	-8.1
12SZ14@20	111	197	1.8	2.12E-05	0.04	0.0646	1.32	1.0831	2.00	0.1216	1.50	0.75	761	28	745	11	740	11	2.9
12SZ14@21	144	58	0.4	1.74E-05	0.03	0.0725	0.93	1.7090	1.79	0.1710	1.52	0.85	999	19	1012	12	1018	14	-1.9
12SZ14@22	131	127	1.0	2.65E-05	0.05	0.0642	1.27	1.0761	1.96	0.1216	1.50	0.76	747	27	742	10	740	11	0.9
12SZ14@23	113	86	0.8	2.09E-05	0.04	0.0629	1.46	1.0485	2.09	0.1209	1.50	0.72	705	31	728	11	736	10	-4.3
12SZ14@25	178	245	1.4	5.32E-05	0.10	0.0635	1.31	1.0682	1.99	0.1220	1.50	0.75	725	28	738	11	742	11	-2.3
12SZ17(tuffaced	ous siltstone,	31°39'45.8	3"N, 113°3₄	4'43.75''E)															
12SZ17@01	364	244	0.7	9.28E-06	0.02	0.0635	0.89	1.0659	1.75	0.1217	1.50	0.86	726	19	737	9	740	11	-2.0
12SZ17@02	283	183	0.6	1.86E-05	0.03	0.0628	1.07	1.0266	1.85	0.1185	1.51	0.82	703	23	717	10	722	10	-2.6
12SZ17@03	232	122	0.5	2.26E-05	0.04	0.0632	1.31	1.0424	1.99	0.1196	1.50	0.75	716	28	725	10	728	10	-1.7
12SZ17@04	670	757	1.1	3.45E-05	0.06	0.0632	0.71	1.0287	1.66	0.1181	1.50	0.90	714	15	718	9	720	10	-0.9
12SZ17@05	315	193	0.6	3.39E-05	0.06	0.0653	1.02	1.0558	1.82	0.1172	1.51	0.83	785	21	732	10	715	10	9.0
12SZ17@06	303	188	0.6	1.13E-05	0.02	0.0630	0.99	1.0585	1.81	0.1218	1.51	0.84	710	21	733	9	741	11	-4.4

	12SZ17@07	257	119	0.5	2.78E-05	0.05	0.0627	1.15	1.0211	1.89	0.1181	1.50	0.79	699	24	714	10	719	10	-3.0
	12SZ17@08	201	122	0.6	5.06E-05	0.09	0.0633	1.29	1.0417	1.98	0.1194	1.50	0.76	717	27	725	10	727	10	-1.5
	12SZ17@09	271	130	0.5	1.31E-05	0.02	0.0633	1.13	1.0396	1.89	0.1191	1.51	0.80	719	24	724	10	725	10	-0.8
	12SZ17@10	400	237	0.6	1.71E-05	0.03	0.0631	0.88	1.0482	1.74	0.1204	1.50	0.86	713	19	728	9	733	10	-2.8
	12SZ17@11	314	173	0.6	2.80E-05	0.05	0.0628	1.12	1.0032	1.87	0.1158	1.50	0.80	702	24	705	10	706	10	-0.6
	12SZ17@12	402	303	0.8	8.55E-06	0.02	0.0633	0.85	1.0447	1.73	0.1196	1.50	0.87	719	18	726	9	729	10	-1.3
	12SZ17@13	492	375	0.8	3.89E-05	0.07	0.0649	0.83	1.0596	1.71	0.1185	1.50	0.87	769	17	734	9	722	10	6.2
	12SZ17@14	308	139	0.5	1.13E-05	0.02	0.0641	0.98	1.0477	1.79	0.1186	1.50	0.84	745	21	728	9	722	10	3.0
	12SZ17@15	386	277	0.7	8.71E-06	0.02	0.0637	0.86	1.0685	1.73	0.1216	1.50	0.87	733	18	738	9	740	11	-1.0
	12SZ17@16	161	78	0.5	0	0	0.0653	1.31	1.1076	2.00	0.1230	1.51	0.76	785	27	757	11	748	11	4.7
	12SZ17@17	163	52	0.3	5.09E-05	0.10	0.0618	1.44	1.0200	2.08	0.1198	1.50	0.72	666	31	714	11	729	10	-9.6
	12SZ17@19	291	145	0.5	0	0	0.0630	0.98	1.0565	1.80	0.1216	1.51	0.84	709	21	732	9	740	11	-4.4
	12SZ17@20	84	27	0.3	0.00E+00	0.00	0.0634	2.48	1.0528	2.90	0.1204	1.50	0.52	723	52	730	15	733	10	-1.4
	12SZ17@21	398	310	0.8	4.18E-05	0.08	0.0633	0.90	1.0596	1.76	0.1214	1.50	0.86	718	19	734	9	739	11	-2.9
	12SZ17@22	129	67	0.5	0	0	0.0644	2.13	1.0510	2.60	0.1183	1.50	0.58	756	44	729	14	721	10	4.7
	12SZ17@23	187	73	0.4	1.80E-05	0.03	0.0649	1.23	1.0551	1.94	0.1180	1.50	0.77	770	26	731	10	719	10	6.6
	12SZ17@24	176	78	0.4	5.72E-05	0.11	0.0643	1.43	1.0521	2.07	0.1186	1.50	0.72	753	30	730	11	722	10	4.1
	12SZ17@25	133	56	0.4	2.08E-04	0.39	0.0625	1.95	0.9904	2.48	0.1150	1.52	0.61	690	41	699	13	702	10	-1.7
	12SZ17@26	245	146	0.6	0	0	0.0641	1.07	1.0565	1.85	0.1196	1.50	0.81	743	23	732	10	728	10	2.0
	12SZ17@27	145	56	0.4	4.54E-05	0.08	0.0624	1.51	1.0520	2.16	0.1222	1.54	0.71	690	32	730	11	743	11	-7.8
_	12SZ17@28	433	165	0.4	6.72E-06	0.01	0.0668	0.74	1.2668	1.68	0.1376	1.51	0.90	831	15	831	10	831	12	0.0
	Yuanziwan Format Group	ion, upper	part of Suiz	xian																
	12SZ10 (siltstone, 3	1°39'17.21	"N, 113°21'4	44.9"E)																
	12SZ10@01	90	126	1.4	7.71E-05	0.14	0.0652	1.99	1.1137	2.49	0.1238	1.50	0.60	782	41	760	13	752	11	3.8
	12SZ10@02	139	186	1.3	1.64E-04	0.31	0.0604	2.10	1.0225	2.62	0.1228	1.57	0.60	617	45	715	14	747	11	-21.0
	12SZ10@03	137	189	1.4	2.52E-05	0.05	0.0643	1.74	1.1139	2.30	0.1256	1.50	0.65	753	36	760	12	763	11	-1.3
	12SZ10@04	100	115	1.1	0	0	0.0627	1.77	1.0373	2.33	0.1200	1.52	0.65	698	37	723	12	730	10	-4.6

12SZ10@05	392	600	1.5	4.18E-05	0.08	0.0646	1.21	1.0787	1.94	0.1211	1.52	0.78	762	25	743	10	737	11	3.3
12SZ10@06	207	207	1.0	3.62E-04	0.68	0.0621	4.56	1.0590	4.80	0.1238	1.50	0.31	676	95	733	25	752	11	-11.3
12SZ10@07	80	140	1.7	1.09E-04	0.20	0.0626	2.25	1.0632	2.71	0.1232	1.50	0.55	695	47	735	14	749	11	-7.8
12SZ10@08	122	176	1.4	0	0	0.0640	1.62	1.0707	2.21	0.1214	1.50	0.68	741	34	739	12	738	10	0.4
12SZ10@09	273	313	1.1	1.29E-05	0.02	0.0642	1.04	1.0670	1.84	0.1205	1.52	0.83	749	22	737	10	734	11	2.0
12SZ10@10	228	199	0.9	5.74E-05	0.11	0.0648	1.32	1.0634	2.00	0.1190	1.50	0.75	768	28	735	11	725	10	5.5
12SZ10@11	175	104	0.6	3.05E-05	0.06	0.0637	1.64	1.0585	2.22	0.1204	1.50	0.68	733	34	733	12	733	10	0.0
12SZ10@12	185	152	0.8	1.25E-04	0.23	0.0645	1.50	1.0827	2.12	0.1217	1.50	0.71	759	31	745	11	740	11	2.5
12SZ10@13	168	327	2.0	5.11E-05	0.10	0.0636	1.87	1.1020	2.40	0.1257	1.50	0.63	728	39	754	13	763	11	-4.9
12SZ10@14	157	222	1.4	2.26E-05	0.04	0.0635	1.47	1.0592	2.10	0.1210	1.50	0.72	724	31	733	11	736	10	-1.7
12SZ10@15	115	189	1.6	7.90E-05	0.15	0.0626	2.14	1.0169	2.62	0.1178	1.51	0.58	694	45	712	13	718	10	-3.4
12SZ10@16	218	129	0.6	4.87E-05	0.09	0.0645	1.42	1.0694	2.07	0.1202	1.50	0.73	760	30	738	11	731	10	3.7
12SZ10@17	65	97	1.5	5.58E-05	0.10	0.0662	2.14	1.0792	2.62	0.1182	1.51	0.58	813	44	743	14	720	10	11.5
12SZ10@18	69	131	1.9	9.60E-05	0.18	0.0633	2.36	1.1001	2.80	0.1260	1.50	0.54	719	49	753	15	765	11	-6.5
12SZ10@20	79	93	1.2	6.61E-05	0.12	0.0619	2.14	1.0204	2.61	0.1195	1.50	0.57	672	45	714	13	728	10	-8.4
12SZ10@22	144	78	0.5	3.69E-05	0.07	0.0631	1.56	1.0706	2.17	0.1231	1.50	0.69	710	33	739	11	749	11	-5.4
12SZ10@23	253	104	0.4	3.47E-05	0.06	0.0644	1.47	1.0808	2.11	0.1217	1.51	0.72	756	31	744	11	740	11	2.0
12SZ10@24	62	112	1.8	5.74E-05	0.11	0.0648	2.19	1.0739	2.69	0.1202	1.57	0.58	769	45	741	14	731	11	4.8
12SZ10@25	149	463	3.1	2.23E-05	0.04	0.0642	1.38	1.1339	2.04	0.1281	1.51	0.74	748	29	770	11	777	11	-3.9
12SZ10@26	90	157	1.8	3.98E-05	0.07	0.0650	1.82	1.0782	2.36	0.1203	1.50	0.64	774	38	743	13	732	10	5.4
12SZ10@27	86	124	1.4	2.28E-05	0.04	0.0673	3.45	1.1563	3.77	0.1247	1.52	0.40	846	70	780	21	757	11	10.5
12SZ10@28	87	141	1.6	0	0	0.0641	2.04	1.0902	2.53	0.1234	1.50	0.59	745	43	749	14	750	11	-0.7
13SZ17 (sandsto	one, 31°39'45	5.17"N, 113	°15'3.30"E)																
13SZ17@01	626	1258	2.0	1.25E-04	0.23	0.0631	0.99	1.0522	1.80	0.1209	1.50	0.84	712	21	730	9	736	10	-3.3
13SZ17@02	65	118	1.8	1.31E-04	0.24	0.0640	2.36	1.0579	2.79	0.1200	1.50	0.54	740	49	733	15	730	10	1.3
13SZ17@03	72	92	1.3	1.16E-04	0.22	0.0639	2.26	1.0562	2.71	0.1199	1.50	0.55	738	47	732	14	730	10	1.1

13SZ17@04	63	94	1.5	6.68E-05	0.13	0.0642	2.59	1.0391	3.00	0.1174	1.52	0.51	749	54	723	16	715	10	4.4
13SZ17@05	66	75	1.1	3.18E-04	0.59	0.0645	2.92	1.0486	3.29	0.1179	1.51	0.46	759	60	728	17	718	10	5.4
13SZ17@06	97	123	1.3	1.08E-04	0.20	0.0672	2.17	1.0780	2.64	0.1164	1.51	0.57	843	44	743	14	710	10	15.7
13SZ17@07	56	88	1.6	1.12E-04	0.21	0.0639	2.90	1.0604	3.26	0.1204	1.50	0.46	737	60	734	17	733	10	0.6
13SZ17@08	82	172	2.1	5.18E-05	0.10	0.0673	2.20	1.0836	2.67	0.1167	1.51	0.57	848	45	745	14	712	10	16.1
13SZ17@09	67	37	0.6	3.62E-05	0.07	0.0657	2.38	1.0866	2.82	0.1199	1.50	0.53	798	49	747	15	730	10	8.6
13SZ17@10	71	145	2.0	2.34E-04	0.44	0.0616	3.02	1.0084	3.37	0.1188	1.51	0.45	659	63	708	17	724	10	-9.9
13SZ17@11	123	73	0.6	1.51E-04	0.28	0.0630	1.71	1.0572	2.27	0.1217	1.50	0.66	708	36	732	12	741	11	-4.6
13SZ17@12	121	210	1.7	3.45E-05	0.06	0.0654	2.00	1.0949	2.50	0.1215	1.50	0.60	786	41	751	13	739	10	6.0
13SZ17@13	42	80	1.9	0	0	0.0663	2.87	1.1091	3.25	0.1213	1.52	0.47	816	59	758	18	738	11	9.6
13SZ17@14	50	62	1.2	1.60E-04	0.30	0.0623	3.41	1.0215	3.72	0.1188	1.50	0.40	686	71	715	19	724	10	-5.5
13SZ17@15	69	89	1.3	1.18E-04	0.22	0.0642	3.42	1.0487	3.73	0.1184	1.51	0.40	749	71	728	20	722	10	3.6
13SZ17@16	164	262	1.6	4.56E-05	0.09	0.0651	1.48	1.1756	2.11	0.1309	1.50	0.71	779	31	789	12	793	11	-1.8
13SZ17@17	95	183	1.9	1.67E-04	0.31	0.0633	1.97	1.0585	2.48	0.1213	1.50	0.61	718	41	733	13	738	10	-2.7
13SZ17@18	80	134	1.7	1.03E-04	0.19	0.0629	2.87	1.0236	3.23	0.1179	1.50	0.46	706	60	716	17	719	10	-1.7
13SZ17@19	30	36	1.2	2.60E-04	0.49	0.0644	3.32	1.0668	3.65	0.1201	1.50	0.41	755	69	737	19	731	10	3.1
13SZ17@20	195	154	0.8	0	0	0.0640	1.33	1.1642	2.02	0.1320	1.53	0.75	741	28	784	11	799	11	-7.8
13SZ17@21	110	222	2.0	6.11E-05	0.11	0.0645	2.15	1.0912	2.63	0.1227	1.52	0.58	758	45	749	14	746	11	1.5
13SZ17@22	102	217	2.1	1.10E-04	0.21	0.0637	2.25	1.0547	2.70	0.1200	1.50	0.56	732	47	731	14	731	10	0.2
13SZ17@23	79	165	2.1	1.14E-04	0.21	0.0668	2.52	1.0989	2.93	0.1193	1.50	0.51	832	52	753	16	727	10	12.6
13SZ17@24	69	83	1.2	0	0	0.0663	2.31	1.1083	2.76	0.1212	1.51	0.55	816	47	757	15	738	11	9.6
13SZ17@25	77	142	1.8	1.47E-04	0.27	0.0634	2.73	1.0352	3.11	0.1183	1.50	0.48	723	57	722	16	721	10	0.3
13SZ17@26	95	189	2.0	4.33E-05	0.08	0.0639	2.32	1.0233	2.77	0.1162	1.50	0.54	737	48	716	14	709	10	3.9
Qinghu U-Pb we	orking referer	nce zircon																	
Qinghu@01	862	350	0.405	0.00008	0.16	0.0492	2.27	0.1614	2.82	0.0238	1.67	0.59	156	52	152	4	152	3	
Qinghu@02	1952	1151	0.590	0.00001	0.02	0.0492	1.05	0.1776	2.03	0.0262	1.73	0.86	159	24	166	3	167	3	
Qinghu@03	1176	556	0.473	0.00018	0.34	0.0493	1.92	0.1687	2.44	0.0248	1.50	0.62	164	44	158	4	158	2	

Cinghu@05 213 123 0.533 0.0001 0.02 0.049 1.16 0.178 1.82 0.024 1.51 0.83 1.74 24 160 3 155 Oinghu@07 2076 114 0.573 0.0001 0.02 0.0491 1.16 0.168 1.90 0.0244 1.51 0.83 1.72 23 152 34 153 0.83 1.73 182 0.0244 1.51 0.84 1.47 23 150 34 150 0.83 1.73 180 2.30 150 0.43 1.50 0.83 1.73 180 2.50 150 0.81 147 2.5 160 1.50 161 1.50 0.11 171 141 33 150 1.50 0.168 1.50 0.168 1.50 0.255 0.251 1.51 0.17 1.51 0.171 1.51 0.171 1.51 0.121 1.51 0.121 1.51 0.121 1.51 0.	Qinghu@04	1794	1215	0.677	0.00001	0.02	0.0491	1.14	0.1741	1.88	0.0257	1.50	0.80	155	26	163	3	164	2
Cinghu@g6 1728 756 0.437 0.00001 0.02 0.498 1.00 0.789 1.50 0.79 1.51 27 1.58 3 1.56 Cinghu@g0 2076 194 0.575 0.00001 0.02 0.490 0.99 0.169 1.80 0.225 1.51 0.84 1.47 2.3 1.56 2.3 1.51 0.84 1.47 2.3 1.50 2.3 1.51 0.84 1.47 2.3 1.50 2.3 1.51 0.84 1.47 2.3 1.56 2.3 1.51 0.84 1.51 0.84 1.51 0.34 1.51 0.34 1.51 0.73 1.47 0.31 1.55 0.33 1.56 0.33 1.56 0.32 0.42 0.0001 0.02 0.499 0.170 1.85 0.024 1.50 0.73 1.47 3.3 1.58 3.4 1.50 Cinghu@13 1077 4.48 0.40001 <th0.42< th=""> 0.4047 <th1.40< td="" th<=""><td>Qinghu@05</td><td>2213</td><td>1223</td><td>0.553</td><td>0.00001</td><td>0.02</td><td>0.0496</td><td>1.02</td><td>0.1709</td><td>1.82</td><td>0.0250</td><td>1.51</td><td>0.83</td><td>174</td><td>24</td><td>160</td><td>3</td><td>159</td><td>2</td></th1.40<></th0.42<>	Qinghu@05	2213	1223	0.553	0.00001	0.02	0.0496	1.02	0.1709	1.82	0.0250	1.51	0.83	174	24	160	3	159	2
Cinghu@y7 276 1194 0.575 0.0001 0.02 0.4945 0.00 0.1735 1.82 0.0224 1.51 0.83 173 23 152 3< 155 Cinghu@y0 1777 797 0.433 0.0001 0.02 0.0499 1.67 0.1733 1.85 0.0248 1.51 0.84 1.65 2.3 150 3 155 Cinghu@y1 1.077 0.433 0.0001 0.02 0.049 0.80 0.773 1.85 0.0248 1.51 0.84 1.65 2.5 160 3 155 3 1.65 3 1.65 3 1.65 3 1.65 3 1.65 3 1.65 3 1.65 1.60 1.50 0.724 1.50 0.724 1.50 0.73 1.67 0.725 1.50 0.73 1.67 0.725 1.50 0.73 1.77 0.43 1.50 0.745 1.50 0.745 1.50 0.747 1.73	Qinghu@06	1728	756	0.437	0.00001	0.02	0.0491	1.16	0.1688	1.90	0.0249	1.50	0.79	151	27	158	3	159	2
Cinghu@08 278 664 0.464 0.0001 0.02 0.460 0.89 0.1600 1.80 0.228 1.51 0.84 147 23 159 3 156 Oinghu@09 1757 777 0.453 0.00001 0.02 0.499 1.60 1.84 0.0244 1.51 0.84 168 23 156 3 156 Oinghu@12 107 445 0.407 0.0003 0.06 0.481 1.43 0.1662 2.08 0.024 1.51 0.73 1.40 3 156 3 156 0.31 147 2.3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3 156 3	Qinghu@07	2076	1194	0.575	0.00001	0.02	0.0495	1.00	0.1735	1.82	0.0254	1.51	0.83	173	23	162	3	162	2
Cinghu@09 1757 797 0.453 0.0001 0.02 0.049 1.07 0.1703 1.86 0.024 1.51 0.82 188 25 160 3 155 Oinghu@10 2030 1068 0.536 0.03001 0.042 0.999 0.1661 1.84 0.0261 1.51 0.73 104 33 156 3 156 Oinghu@11 1107 448 0.445 0.00002 0.049 1.68 0.1704 1.85 0.0247 1.50 0.73 147 33 158 3 156 Oinghu@13 1007 448 0.445 0.00001 0.02 0.0486 1.51 0.171 1.39 0.502 1.50 0.78 130 28 160 3 162 Oinghu@14 172 1441 0.6001 0.02 0.0481 1.51 0.171 1.49 0.025 1.50 0.78 1.30 1.58 0.78 1.30 1.58 0.78 1.50 0.78 1.59 0.78 1.59 1.51 0.171 1.51	Qinghu@08	2078	964	0.464	0.00001	0.02	0.0490	0.99	0.1690	1.80	0.0250	1.51	0.84	147	23	159	3	159	2
Cinghu@10 2030 1088 0.538 0.00011 0.02 0.492 0.99 0.1681 1.44 0.0249 1.56 0.84 156 23 159 3< 155 Oinghu@11 1107 451 0.407 0.0003 0.000 0.049 1.43 0.1682 2.08 0.021 1.50 0.73 1.47 33 156 3 156 Oinghu@14 1712 1041 0.608 0.0002 0.04 0.448 1.21 0.1724 1.33 0.025 1.50 0.73 147 33 158 3 156 Oinghu@15 1304 555 0.425 0.00001 0.02 0.048 1.21 0.1721 1.34 0.025 1.50 0.78 1.32 28 161 3 162 Oinghu@15 1304 555 0.425 0.0001 0.02 0.0481 1.21 0.1713 1.49 0.252 1.50 0.78 1.33 1.68 1.8 28 161 3 162 Oinghu@17 1666 937	Qinghu@09	1757	797	0.453	0.00001	0.02	0.0499	1.07	0.1703	1.85	0.0248	1.51	0.82	188	25	160	3	158	2
Cinghu@11 1107 451 0.407 0.0003 0.06 0.481 1.43 0.162 2.08 0.0251 1.51 0.73 104 33 156 3< 166 Cinghu@12 1627 722 0.444 0.00001 0.029 0.499 1.80 0.762 2.05 0.0247 1.50 0.73 147 33 156 3 156 Cinghu@13 1007 448 0.445 0.00002 0.049 1.40 0.1682 2.05 0.024 1.50 0.70 132 25 160 3< 162 Cinghu@15 1304 555 0.425 0.0001 0.02 0.486 1.21 0.172 1.30 0.025 1.50 0.70 132 25 161 3 162 Cinghu@16 1514 750 0.562 0.0001 0.02 0.488 1.10 0.172 1.81 0.025 1.50 1.61 8.16 1.61 3.6 1.61 3.6 1.61 3.6 1.61 3.6 1.61 3.6 1.61 <t< td=""><td>Qinghu@10</td><td>2030</td><td>1088</td><td>0.536</td><td>0.00001</td><td>0.02</td><td>0.0492</td><td>0.99</td><td>0.1691</td><td>1.84</td><td>0.0249</td><td>1.56</td><td>0.84</td><td>156</td><td>23</td><td>159</td><td>3</td><td>159</td><td>2</td></t<>	Qinghu@10	2030	1088	0.536	0.00001	0.02	0.0492	0.99	0.1691	1.84	0.0249	1.56	0.84	156	23	159	3	159	2
Qinghu@12 1627 722 0.444 0.0001 0.02 0.049 1.08 0.1704 1.85 0.0247 1.50 0.81 192 25 160 3 156 Qinghu@13 1070 448 0.445 0.00002 0.03 0.049 1.40 0.162 2.05 0.0249 1.50 0.73 147 33 158 3 156 Qinghu@14 1712 1041 0.655 0.425 0.00001 0.02 0.048 1.21 0.1741 2.13 0.025 1.50 0.78 130 28 161 3< 162 Qinghu@17 1666 337 0.429 0.0001 0.02 0.448 1.20 0.171 1.34 0.025 1.50 0.81 130 28 161 3 161 3 161 3 161 3 161 3 161 3 161 3 161 3 162 161 163 161 3 162 161 3 161 3 162 161 3 161	Qinghu@11	1107	451	0.407	0.00003	0.06	0.0481	1.43	0.1662	2.08	0.0251	1.51	0.73	104	33	156	3	160	2
Qinghu@13 1007 448 0.445 0.00002 0.03 0.0490 1.40 0.1682 2.05 0.0249 1.50 0.73 147 33 158 3 156 Qinghu@14 1712 1041 0.608 0.00002 0.04 0.0487 1.51 0.1741 2.13 0.0254 1.50 0.78 130 28 161 3 162 Qinghu@15 1324 555 0.425 0.0001 0.02 0.048 1.21 0.1702 1.93 0.0253 1.50 0.78 137 2.8 161 3 161 Qinghu@14 1514 760 0.502 0.0001 0.01 0.0484 1.10 0.1722 1.87 0.028 1.51 0.81 1.88 0.82 1.51 0.8 1.51 0.84 1.55 0.024 1.50 0.82 1.51 0.8 1.51 0.81 1.68 0.82 1.51 0.82 1.51 0.8 1.51 0.82 1.51 0.8 1.51 0.82 1.51 0.82 1.51 0.8	Qinghu@12	1627	722	0.444	0.00001	0.02	0.0499	1.08	0.1704	1.85	0.0247	1.50	0.81	192	25	160	3	158	2
Qinghu@14 1712 1041 0.608 0.0002 0.04 0.487 1.51 0.1741 2.13 0.0259 1.50 0.70 132 35 163 3 166 Qinghu@15 1304 555 0.425 0.0001 0.02 0.048 1.21 0.170 1.93 0.025 1.50 0.78 130 28 161 3< 162 Qinghu@16 1514 537 0.429 0.0001 0.03 0.0483 1.10 0.168 1.92 0.0253 1.51 0.78 132 28 161 3 161 Qinghu@17 1666 937 0.502 0.0001 0.01 0.448 1.10 0.172 1.87 0.025 1.51 0.81 188 26 161 3 161 3 162 3 163 3 163 3 161 3 163 3 163 3 163 3 163 3 163 3 163 3 163 3 163 3 163 3 163	Qinghu@13	1007	448	0.445	0.00002	0.03	0.0490	1.40	0.1682	2.05	0.0249	1.50	0.73	147	33	158	3	159	2
Qinghu@15 1304 555 0.425 0.0001 0.02 0.0486 1.21 0.1702 1.93 0.025 1.50 0.78 130 28 160 3 162 Qinghu@16 1251 537 0.429 0.00001 0.02 0.0483 1.10 0.1702 1.83 0.0253 1.50 0.78 137 28 161 3 166 Qinghu@17 1666 937 0.562 0.0001 0.01 0.0483 1.10 0.1722 1.87 0.0253 1.51 0.81 168 28 166 4 165 Qinghu@21 1679 804 0.479 0.0001 0.02 0.442 1.09 0.1712 1.87 0.0254 1.50 0.82 167 25 159 3 162 Qinghu@22 156 0.84 0.479 0.0001 0.02 0.442 1.60 0.1710 1.76 0.249 1.51 0.82 167 25 157 25 159 3 162 167 163 0.252 1.51 0	Qinghu@14	1712	1041	0.608	0.00002	0.04	0.0487	1.51	0.1741	2.13	0.0259	1.50	0.70	132	35	163	3	165	2
Qinghu@16 1251 537 0.429 0.00001 0.02 0.0488 1.22 0.1713 1.94 0.0255 1.50 0.78 137 28 161 3 162 Qinghu@17 1666 937 0.562 0.0001 0.03 0.0483 1.10 0.1666 1.92 0.0253 1.51 0.81 168 26 161 3 161 Qinghu@19 458 156 0.341 0.00001 0.02 0.0487 2.09 0.161 2.1 0.0253 1.51 0.81 186 26 161 3 161 Qinghu@20 1679 804 0.479 0.0001 0.02 0.0492 1.06 0.1699 1.84 0.0256 1.50 0.82 157 25 159 3 162 Qinghu@22 2558 1596 0.624 0.0001 0.02 0.0492 1.61 0.76 1.63 0.82 1.61 3 1.62 0.161 3 1.62 Qinghu@24 1086 0.474 0.3001 0.02 0.448 <td>Qinghu@15</td> <td>1304</td> <td>555</td> <td>0.425</td> <td>0.00001</td> <td>0.02</td> <td>0.0486</td> <td>1.21</td> <td>0.1702</td> <td>1.93</td> <td>0.0254</td> <td>1.50</td> <td>0.78</td> <td>130</td> <td>28</td> <td>160</td> <td>3</td> <td>162</td> <td>2</td>	Qinghu@15	1304	555	0.425	0.00001	0.02	0.0486	1.21	0.1702	1.93	0.0254	1.50	0.78	130	28	160	3	162	2
Qinghu@17 1666 937 0.562 0.0001 0.03 0.0483 1.10 0.1686 1.92 0.0253 1.58 0.82 115 26 158 3 161 Qinghu@19 458 156 0.321 0.0001 0.01 0.0487 2.09 0.1661 2.61 0.028 1.51 0.81 188 26 161 3 161 Qinghu@19 458 156 0.341 0.00001 0.02 0.0487 2.09 0.1661 2.61 0.028 1.50 0.62 158 26 161 3 162 Qinghu@21 1546 6360 0.375 0.00001 0.02 0.0492 1.06 0.1699 1.84 0.0250 1.50 0.62 157 25 159 3 162 Qinghu@22 2558 1596 0.624 0.0001 0.02 0.0482 1.37 0.167 1.87 0.0249 1.53 0.82 140 25 157 3 162 Qinghu@24 1086 474 0.437 0.00001 <td>Qinghu@16</td> <td>1251</td> <td>537</td> <td>0.429</td> <td>0.00001</td> <td>0.02</td> <td>0.0488</td> <td>1.22</td> <td>0.1713</td> <td>1.94</td> <td>0.0255</td> <td>1.50</td> <td>0.78</td> <td>137</td> <td>28</td> <td>161</td> <td>3</td> <td>162</td> <td>2</td>	Qinghu@16	1251	537	0.429	0.00001	0.02	0.0488	1.22	0.1713	1.94	0.0255	1.50	0.78	137	28	161	3	162	2
Qinghu@18 1514 760 0.502 0.0001 0.01 0.0494 1.10 0.1722 1.87 0.0253 1.51 0.81 168 26 161 3 161 Qinghu@21 458 156 0.341 0.0001 0.02 0.0487 2.09 0.1661 2.61 0.028 1.50 0.67 148 30 161 3 166 Qinghu@21 1546 580 0.375 0.0001 0.02 0.0492 1.06 0.1699 1.84 0.0250 1.50 0.82 157 25 159 3 166 3 156 Qinghu@21 1546 580 0.375 0.0001 0.02 0.0482 1.06 0.1710 1.76 0.0248 1.51 0.86 195 21 160 3 156 Qinghu@24 1086 674 0.437 0.0001 0.02 0.0482 1.37 0.1677 1.87 0.0256 1.53 0.76 126 31 161 3 166 Qinghu@25 2264 1337	Qinghu@17	1666	937	0.562	0.00001	0.03	0.0483	1.10	0.1686	1.92	0.0253	1.58	0.82	115	26	158	3	161	3
Qinghu@19 458 156 0.341 0.0001 0.02 0.0487 2.09 0.1661 2.61 0.0248 1.56 0.60 132 48 156 4 156 Qinghu@20 1679 804 0.479 0.00001 0.03 0.0490 1.29 0.1718 1.98 0.0254 1.50 0.76 148 30 161 3 156 Qinghu@21 1546 580 0.375 0.0001 0.02 0.492 1.66 0.1699 1.84 0.0250 1.50 0.82 157 25 159 3 156 3 1.51 0.82 157 2.5 159 3 156 3 0.82 157 2.5 150 0.82 157 2.5 150 0.82 150 0.7 3 156 3 150 0.82 150 0.7 3 156 3 150 0.82 150 0.7 150 0.82 150 0.7 3 150 0.7 3 150 0.7 3 150 150 0.	Qinghu@18	1514	760	0.502	0.00001	0.01	0.0494	1.10	0.1722	1.87	0.0253	1.51	0.81	168	26	161	3	161	2
Qinghu@20 1679 804 0.479 0.0001 0.03 0.0490 1.29 0.1718 1.98 0.0254 1.50 0.76 148 30 161 3 162 Qinghu@21 1546 580 0.375 0.0001 0.02 0.0492 1.06 0.1699 1.84 0.020 1.50 0.82 157 25 159 3 155 Qinghu@22 2558 1596 0.624 0.0001 0.03 0.050 0.91 0.1710 1.76 0.0248 1.51 0.86 195 21 160 3 156 Qinghu@23 1918 1026 0.535 0.00001 0.02 0.0482 1.37 0.1677 1.87 0.024 1.53 0.82 140 25 157 3 167 Qinghu@25 2264 1337 0.500 0.0001 0.02 0.048 1.31 0.171 1.85 0.025 1.52 0.82 212 24 166 3 162 Qinghu@25 1940 988 0.509 0.00001	Qinghu@19	458	156	0.341	0.00001	0.02	0.0487	2.09	0.1661	2.61	0.0248	1.56	0.60	132	48	156	4	158	2
Qinghu@21 1546 580 0.375 0.0001 0.02 0.492 1.06 0.1699 1.84 0.0250 1.50 0.82 157 25 159 3 156 Qinghu@22 2558 1596 0.624 0.0001 0.03 0.0500 0.91 0.1710 1.76 0.024 1.51 0.86 195 21 160 3 156 Qinghu@23 1918 1026 0.535 0.0002 0.03 0.488 1.08 0.1677 1.87 0.024 1.51 0.82 140 25 157 3 166 Qinghu@24 1086 474 0.437 0.0001 0.02 0.488 1.32 0.1674 2.04 0.025 1.51 0.74 111 32 157 3 166 Qinghu@25 2264 1337 0.590 0.0001 0.02 0.0486 1.32 0.171 1.85 0.025 1.52 0.82 212 24 166 3 1662 Qinghu@26 1940 988 0.509 0.0001	Qinghu@20	1679	804	0.479	0.00001	0.03	0.0490	1.29	0.1718	1.98	0.0254	1.50	0.76	148	30	161	3	162	2
Qinghu@22 2558 1596 0.624 0.0001 0.03 0.0500 0.91 0.1710 1.76 0.0248 1.51 0.86 195 21 160 3 155 Qinghu@23 1918 1026 0.535 0.00002 0.03 0.0488 1.08 0.1677 1.87 0.0249 1.53 0.82 140 25 157 3 166 Qinghu@24 1086 474 0.437 0.0001 0.02 0.0482 1.37 0.1674 2.04 0.0252 1.51 0.76 111 32 157 3 166 Qinghu@25 2264 1337 0.590 0.0001 0.02 0.0486 1.32 0.1717 1.85 0.025 1.52 0.82 212 24 166 3 1662 Qinghu@27 1295 667 0.515 0.0002 0.04 0.478 1.31 0.1700 1.99 0.258 1.50 0.75 90 31 159 3 164 Qinghu@28 1670 991 0.593 0.0003 <td>Qinghu@21</td> <td>1546</td> <td>580</td> <td>0.375</td> <td>0.00001</td> <td>0.02</td> <td>0.0492</td> <td>1.06</td> <td>0.1699</td> <td>1.84</td> <td>0.0250</td> <td>1.50</td> <td>0.82</td> <td>157</td> <td>25</td> <td>159</td> <td>3</td> <td>159</td> <td>2</td>	Qinghu@21	1546	580	0.375	0.00001	0.02	0.0492	1.06	0.1699	1.84	0.0250	1.50	0.82	157	25	159	3	159	2
Qinghu@23 1918 1026 0.535 0.00002 0.03 0.0488 1.08 0.1677 1.87 0.0249 1.53 0.82 140 25 157 3 156 Qinghu@24 1086 474 0.437 0.0001 0.02 0.0482 1.37 0.1674 2.04 0.0252 1.51 0.74 111 32 157 3 166 Qinghu@25 2264 1337 0.590 0.0001 0.02 0.0486 1.32 0.1715 2.02 0.0256 1.53 0.76 126 31 161 3 166 3 <t< td=""><td>Qinghu@22</td><td>2558</td><td>1596</td><td>0.624</td><td>0.00001</td><td>0.03</td><td>0.0500</td><td>0.91</td><td>0.1710</td><td>1.76</td><td>0.0248</td><td>1.51</td><td>0.86</td><td>195</td><td>21</td><td>160</td><td>3</td><td>158</td><td>2</td></t<>	Qinghu@22	2558	1596	0.624	0.00001	0.03	0.0500	0.91	0.1710	1.76	0.0248	1.51	0.86	195	21	160	3	158	2
Qinghu@24 1086 474 0.437 0.0001 0.02 0.0482 1.37 0.1674 2.04 0.0252 1.51 0.74 111 32 157 3 160 Qinghu@25 2264 1337 0.590 0.0001 0.02 0.0486 1.32 0.1715 2.02 0.0256 1.53 0.76 126 31 161 3 163 Qinghu@26 1940 988 0.509 0.0001 0.02 0.054 1.06 0.1771 1.85 0.0255 1.52 0.82 212 24 166 3 166 Qinghu@27 1295 667 0.515 0.0002 0.04 0.0478 1.31 0.1700 1.99 0.0288 1.50 0.75 90 31 159 3 166 Qinghu@28 1670 991 0.593 0.0003 0.06 0.0491 1.84 0.1700 2.37 0.0251 1.50 0.63 154 42 159 4 166 Qinghu@30 2329 1261 0.541 0.0001 <td>Qinghu@23</td> <td>1918</td> <td>1026</td> <td>0.535</td> <td>0.00002</td> <td>0.03</td> <td>0.0488</td> <td>1.08</td> <td>0.1677</td> <td>1.87</td> <td>0.0249</td> <td>1.53</td> <td>0.82</td> <td>140</td> <td>25</td> <td>157</td> <td>3</td> <td>159</td> <td>2</td>	Qinghu@23	1918	1026	0.535	0.00002	0.03	0.0488	1.08	0.1677	1.87	0.0249	1.53	0.82	140	25	157	3	159	2
Qinghu@25 2264 1337 0.590 0.00001 0.02 0.0486 1.32 0.1715 2.02 0.0256 1.53 0.76 126 31 161 3 166 3 167 3 167 3 167 3 167 3 167 3 167 3 167 3 167 3 168 3 168 3 168	Qinghu@24	1086	474	0.437	0.00001	0.02	0.0482	1.37	0.1674	2.04	0.0252	1.51	0.74	111	32	157	3	160	2
Qinghu@2619409880.5090.00010.020.05041.060.17711.850.02551.520.82212241663162Qinghu@2712956670.5150.00020.040.04781.310.17001.990.02581.500.7590311593164Qinghu@2816709910.5930.00030.050.04791.180.16391.920.02481.510.7996281543156Qinghu@2910525550.5280.00030.060.04911.840.17002.370.02511.500.63154421594166Qinghu@30232912610.5410.00010.010.04961.140.17791.900.02601.510.83174261663166Qinghu@3110404460.4290.00020.040.04951.630.17172.220.02521.500.68170381613166Qinghu@3213165320.4040.00010.020.04971.440.17152.080.02501.510.72182331613159Qinghu@3313316360.4780.00010.020.04891.860.16892.390.02501.510.63145431584159Qinghu@3415286990.45	Qinghu@25	2264	1337	0.590	0.00001	0.02	0.0486	1.32	0.1715	2.02	0.0256	1.53	0.76	126	31	161	3	163	2
Qinghu@2712956670.5150.00020.040.04781.310.17001.990.02581.500.7590311593164Qinghu@2816709910.5930.00030.050.04791.180.16391.920.02481.510.7590311593164Qinghu@2910525550.5280.00030.060.04911.840.17002.370.02511.500.63154421594166Qinghu@30232912610.5410.00010.010.04961.140.17791.900.02601.510.80174261663166Qinghu@3110404460.4290.00020.040.04951.630.17172.220.02521.500.68170381613159Qinghu@3213165320.4040.00010.020.04971.440.17152.080.02501.510.72182331613159Qinghu@3313316360.4780.00010.020.04891.690.17042.260.02531.510.67143391603161Qinghu@3415286990.4580.00010.020.04891.690.17042.260.02531.510.67143391603161Qinghu@3511924840.40	Qinghu@26	1940	988	0.509	0.00001	0.02	0.0504	1.06	0.1771	1.85	0.0255	1.52	0.82	212	24	166	3	162	2
Qinghu@2816709910.5930.00030.050.04791.180.16391.920.02481.510.7996281543158Qinghu@2910525550.5280.00030.060.04911.840.17002.370.02511.500.63154421594166Qinghu@30232912610.5410.00010.010.04961.140.17791.900.02601.510.80174261663166Qinghu@3110404460.4290.00020.040.04951.630.17172.220.02521.500.68170381613156Qinghu@3213165320.4040.00010.020.04971.440.17152.080.02501.510.72182331613158Qinghu@3313316360.4780.00010.020.04891.690.17042.260.02531.510.67143391603164Qinghu@3415286990.4580.00010.020.04891.690.17042.260.02531.510.67143391603164Qinghu@3511924840.4060.00020.040.04811.610.16582.200.02501.500.68106381593159Qinghu@3511924840.5	Qinghu@27	1295	667	0.515	0.00002	0.04	0.0478	1.31	0.1700	1.99	0.0258	1.50	0.75	90	31	159	3	164	2
Qinghu@2910525550.5280.00030.060.04911.840.17002.370.02511.500.63154421594160Qinghu@30232912610.5410.00010.010.04961.140.17791.900.02601.510.80174261663166Qinghu@3110404460.4290.000020.040.04951.630.17172.220.02521.500.68170381613166Qinghu@3213165320.4040.00010.020.04971.440.17152.080.02501.510.72182331613158Qinghu@3313316360.4780.00010.020.04891.860.16892.390.02501.500.63145431584159Qinghu@3415286990.4580.00010.020.04891.690.17042.260.02531.510.67143391603169Qinghu@3511924840.4060.00020.040.04811.610.16582.200.02501.500.68106381593159Qinghu@3611924840.4060.00030.050.04971.560.16962.170.02481.500.69181361593159Qinghu@3611725940	Qinghu@28	1670	991	0.593	0.00003	0.05	0.0479	1.18	0.1639	1.92	0.0248	1.51	0.79	96	28	154	3	158	2
Qinghu@30232912610.5410.00010.010.04961.140.17791.900.02601.510.80174261663166Qinghu@3110404460.4290.00020.040.04951.630.17172.220.02521.500.68170381613166Qinghu@3213165320.4040.00010.020.04971.440.17152.080.02501.510.72182331613158Qinghu@3313316360.4780.00010.020.04891.860.16892.390.02501.500.63145431584158Qinghu@3415286990.4580.00010.020.04891.690.17042.260.02531.510.67143391603161Qinghu@3511924840.4060.00020.040.04811.610.16582.200.02501.500.68106381563159Qinghu@3611725940.5070.00030.050.04971.560.16962.170.02481.500.69181361593158	Qinghu@29	1052	555	0.528	0.00003	0.06	0.0491	1.84	0.1700	2.37	0.0251	1.50	0.63	154	42	159	4	160	2
Qinghu@3110404460.4290.00020.040.04951.630.17172.220.02521.500.68170381613160Qinghu@3213165320.4040.00010.020.04971.440.17152.080.02501.510.72182331613156Qinghu@3313316360.4780.00010.020.04971.440.17152.080.02501.500.63145431584158Qinghu@3415286990.4580.00010.020.04891.690.17042.260.02531.510.67143391603161Qinghu@3511924840.4060.00020.040.04811.610.16582.200.02501.500.68106381563158Qinghu@3611725940.5070.00030.050.04971.560.16962.170.02481.500.69181361593158	Qinghu@30	2329	1261	0.541	0.00001	0.01	0.0496	1.14	0.1779	1.90	0.0260	1.51	0.80	174	26	166	3	166	2
Qinghu@32 1316 532 0.404 0.0001 0.02 0.0497 1.44 0.1715 2.08 0.0250 1.51 0.72 182 33 161 3 155 Qinghu@33 1331 636 0.478 0.0001 0.02 0.0489 1.86 0.1689 2.39 0.0250 1.50 0.63 145 43 158 4 158 Qinghu@34 1528 699 0.458 0.0001 0.02 0.0489 1.69 0.1704 2.26 0.0253 1.51 0.67 143 39 160 3 159 Qinghu@35 1192 484 0.406 0.0002 0.0481 1.61 0.1658 2.20 0.0250 1.50 0.68 106 38 159 3 159 Qinghu@36 1172 594 0.507 0.0003 0.05 0.0497 1.56 0.1696 2.17 0.0248 1.50 0.69 181 36 159 3 158	Qinghu@31	1040	446	0.429	0.00002	0.04	0.0495	1.63	0.1717	2.22	0.0252	1.50	0.68	170	38	161	3	160	2
Qinghu@3313316360.4780.00010.020.04891.860.16892.390.02501.500.63145431584158Qinghu@3415286990.4580.00010.020.04891.690.17042.260.02531.510.67143391603161Qinghu@3511924840.4060.00020.040.04811.610.16582.200.02501.500.68106381563159Qinghu@3611725940.5070.00030.050.04971.560.16962.170.02481.500.69181361593158	Qinghu@32	1316	532	0.404	0.00001	0.02	0.0497	1.44	0.1715	2.08	0.0250	1.51	0.72	182	33	161	3	159	2
Qinghu@34 1528 699 0.458 0.0001 0.02 0.0489 1.69 0.1704 2.26 0.0253 1.51 0.67 143 39 160 3 161 Qinghu@35 1192 484 0.406 0.0002 0.04 0.0481 1.61 0.1658 2.20 0.0250 1.50 0.68 106 38 156 3 158 Qinghu@36 1172 594 0.507 0.0003 0.05 0.0497 1.56 0.1696 2.17 0.0248 1.50 0.69 181 36 159 3 158	Qinghu@33	1331	636	0.478	0.00001	0.02	0.0489	1.86	0.1689	2.39	0.0250	1.50	0.63	145	43	158	4	159	2
Qinghu@35 1192 484 0.406 0.00002 0.04 0.0481 1.61 0.1658 2.20 0.0250 1.50 0.68 106 38 156 3 158 Qinghu@36 1172 594 0.507 0.0003 0.05 0.0497 1.56 0.1696 2.17 0.0248 1.50 0.69 181 36 159 3 158	Qinghu@34	1528	699	0.458	0.00001	0.02	0.0489	1.69	0.1704	2.26	0.0253	1.51	0.67	143	39	160	3	161	2
Qinghu@36 1172 594 0.507 0.00003 0.05 0.0497 1.56 0.1696 2.17 0.0248 1.50 0.69 181 36 159 3 158	Qinghu@35	1192	484	0.406	0.00002	0.04	0.0481	1.61	0.1658	2.20	0.0250	1.50	0.68	106	38	156	3	159	2
	Qinghu@36	1172	594	0.507	0.00003	0.05	0.0497	1.56	0.1696	2.17	0.0248	1.50	0.69	181	36	159	3	158	2

Qinghu@37	1316	792	0.602	0.00001	0.02	0.0503	1.35	0.1792	2.03	0.0258	1.51	0.75	211	31	167	3	164	2
Qinghu@38	1062	432	0.407	0.00001	0.02	0.0494	1.52	0.1713	2.13	0.0252	1.50	0.70	165	35	161	3	160	2
Qinghu@39	410	23	0.528	0.00005	0.10	0.0492	1.88	0.1636	2.48	0.0241	1.61	0.65	156	44	154	4	154	2
Qinghu@40	177	13	0.392	0.00059	1.11	0.0491	5.11	0.1642	5.36	0.0243	1.62	0.30	151	11 6	154	8	155	2
Qinghu@41	694	33	0.670	0.00002	0.04	0.0499	1.86	0.1742	2.44	0.0253	1.58	0.65	192	43	163	4	161	3
Qinghu@42	187	17	0.320	0.00007	0.13	0.0488	2.24	0.1671	2.71	0.0248	1.52	0.56	137	52	157	4	158	2
Qinghu@43	339	24	0.415	0.00002	0.04	0.0485	1.70	0.1667	2.27	0.0249	1.51	0.66	123	40	157	3	159	2
Qinghu@44	602	29	0.643	0.00089	1.66	0.0471	4.15	0.1628	4.48	0.0251	1.70	0.38	53	96	153	6	160	3
Qinghu@45	408	24	0.510	0.00001	0.02	0.0494	1.71	0.1709	2.31	0.0251	1.55	0.67	166	40	160	3	160	2
Qinghu@46	505	27	0.593	0.00003	0.07	0.0491	1.93	0.1707	2.46	0.0252	1.53	0.62	150	45	160	4	161	2
Qinghu@47	714	53	0.405	0.00001	0.02	0.0486	1.13	0.1702	1.89	0.0254	1.51	0.80	127	26	160	3	162	2
Qinghu@48	487	43	0.331	0.00003	0.05	0.0495	1.33	0.1729	2.02	0.0254	1.52	0.75	169	31	162	3	161	2
Qinghu@49	575	33	0.528	0.00003	0.06	0.0495	1.52	0.1691	2.28	0.0248	1.70	0.75	170	35	159	3	158	3
Qinghu@50	327	21	0.449	0.00004	0.08	0.0487	2.52	0.1676	2.94	0.0250	1.52	0.52	132	58	157	4	159	2
Qinghu@51	756	42	0.542	0.00001	0.02	0.0498	1.68	0.1706	2.30	0.0248	1.57	0.68	187	39	160	3	158	2
Qinghu@52	439	25	0.512	0.00011	0.20	0.0483	2.79	0.1644	3.21	0.0247	1.59	0.50	116	64	155	5	157	2
Qinghu@53	529	39	0.410	0.00004	0.08	0.0490	1.72	0.1737	2.29	0.0257	1.51	0.66	147	40	163	3	164	2
Qinghu@54	373	20	0.567	0.00004	0.08	0.0489	2.25	0.1685	2.79	0.0250	1.64	0.59	144	52	158	4	159	3
Qinghu@55	379	22	0.518	0.00009	0.17	0.0489	2.21	0.1676	2.73	0.0248	1.61	0.59	145	51	157	4	158	3

^a The value of ²⁰⁴Pb/²⁰⁶Pbm is the measured value;

^b f₂₀₆ is the percentage of common ²⁰⁶Pb in total ²⁰⁶Pb assuming present-day Stacey-Kramers commom Pb;

 $^{c}\,\rho$ denotes error correlation between $^{207}\text{Pb}/^{235}\text{U}$ and $^{206}\text{Pb}/^{238}\text{U}.$

Sample Spot	U-Pb age ^{&}	±1σ	δ^{18} O	2SE	Discordance ^d
	(Ma)		(‰)		(%)
Gujing Formatio	n, lower part of Suix	tian Group			
12SZ20@01	769	11	3.3	0.2	-2.7
12SZ20@02	749	11	4.3	0.2	0.2
12SZ20@03	746	11	5.3	0.3	5.6
12SZ20@04	734	11	2.5	0.3	4.4
12SZ20@05	730	10	4.6	0.3	13.0
12SZ20@07	719	10	4.7	0.2	4.4
12SZ20@08	739	11	5.1	0.2	1.4
12SZ20@09	746	11	3.4	0.3	-11.3
12SZ20@10	733	10	1.8	0.4	4.2
12SZ20@11	745	11	3.9	0.3	-2.3
12SZ20@12	747	11	3.3	0.4	1.
12SZ20@13	737	11	2.8	0.2	-2.7
12SZ20@14	718	10	3.5	0.4	3.5
12SZ20@15	718	10	4.0	0.3	0.0
12SZ20@16	746	11	5.6	0.3	2.1
12SZ24@01	750	11	4.8	0.4	-3.
12SZ24@02	739	10	5.0	0.3	-1.3
12SZ24@03	773	11	3.5	0.3	2.0
12SZ24@04	843	12	6.0	0.4	2.
12SZ24@05	727	10	2.4	0.3	1.0
12SZ24@06	771	11	5.1	0.3	1.2
12SZ24@07	791	11	3.7	0.3	-2.2
12SZ24@08	765	11	1.4	0.3	-1.8
12SZ24@09	772	11	4.9	0.3	-15.3
12SZ24@10	733	10	3.2	0.4	0.4
12SZ24@11	726	10	5.5	0.3	4.9
12SZ24@12	743	11	4.3	0.4	-0.4
12SZ24@13	751	11	1.8	0.3	-1.7
12SZ24@14	780	11	4.7	0.2	-2.9
12SZ28@01	758	11	3.9	0.3	-0.2
12SZ28@02	738	11	4.4	0.2	7.8
	772	11	1.6	0.2	5.2
12SZ28@04	745	11	5.5	0.3	0.7
- 12S728@05	742	11	2.8	0.4	1.:

12SZ28@06	758	11	3.9	0.3	-1.3
12SZ28@07	733	10	5.7	0.4	3.9
12SZ28@08	1840	15	7.6	0.3	0.0
12SZ28@09	745	11	2.8	0.2	-1.2
12SZ28@10	732	10	3.6	0.3	1.6
12SZ28@11	730	10	2.2	0.4	-13.4
12SZ28@13	732	11	3.9	0.2	4.0
12SZ28@14	756	12	4.7	0.3	-2.8
12SZ28@15	753	11	4.1	0.2	3.9
12SZ28@16	740	10	1.9	0.2	11.1
12SZ28@17	746	11	3.1	0.3	2.2
12SZ28@18	721	10	5.3	0.4	-0.9
12SZ28@19	766	11	1.7	0.2	-6.2
12SZ28@20	820	12	6.0	0.2	-7.2
Liulin Formation, m	niddle part of Suixian	Group			
12SZ06@01	776	11	6.0	0.4	-3.6
12SZ06@02	795	11	6.4	0.3	1.1
12SZ06@03	772	11	4.7	0.3	10.9
12SZ06@04	778	11	6.0	0.4	10.3
12SZ06@05	805	12	6.2	0.4	6.4
12SZ06@06	929	14	5.5	0.3	-0.3
12SZ06@07	792	11	7.3	0.3	2.2
12SZ06@08	762	11	5.7	0.4	9.5
12SZ06@09	754	11	5.1	0.2	5.0
12SZ06@10	783	12	5.4	0.4	1.4
12SZ06@11	810	12	5.0	0.2	2.0
12SZ06@12	798	11	5.2	0.3	-0.6
12SZ06@13	822	12	6.1	0.3	-1.6
12SZ06@14	808	11	5.4	0.2	-1.1
12SZ06@15	802	11	5.6	0.4	-7.9
12SZ06@16	799	11	5.8	0.3	1.4
12SZ06@17	828	12	6.9	0.4	-2.9
12SZ06@18	2003	15	7.0	0.3	1.7
12SZ06@19	762	11	4.7	0.2	-0.3
12SZ06@20	823	12	6.4	0.4	1.7
12SZ06@21	800	11	5.6	0.2	-2.3
12SZ06@22	785	11	6.0	0.3	7.8
12SZ06@23	765	11	5.4	0.2	3.5
12SZ06@24	742	11	5.2	0.3	-1.4
12SZ06@25	847	14	7.1	0.3	-8.9
12SZ06@26	799	11	6.4	0.3	3.7

12SZ06@27	832	12	6.0	0.4	-1.9
12SZ06@28	767	11	5.7	0.2	8.7
C					
12SZ07@01	859	12	6.0	0.3	4.0
12SZ07@02	803	11	6.0	0.3	-5.4
12SZ07@03	762	11	5.5	0.2	3.3
12SZ07@04	1988	20	7.0	0.3	-1.0
12SZ07@05	793	11	5.8	0.3	-2.3
12SZ07@06	2011	21	7.0	0.2	3.1
12SZ07@07	817	12	7.5	0.2	5.2
12SZ07@08	2019	16	7.0	0.2	1.5
12SZ07@09	742	11	3.0	0.2	4.1
12SZ07@10	812	11	5.4	0.2	1.4
12SZ07@11	801	11	6.6	0.3	0.6
12SZ07@12	786	11	5.5	0.3	-2.4
12SZ07@13	749	11	6.5	0.3	4.1
12SZ07@14	771	11	5.2	0.3	0.5
12SZ07@15	798	11	5.1	0.3	-0.6
12SZ07@16	802	11	7.1	0.2	0.0
12SZ07@17	709	10	5.1	0.3	-4.0
12SZ07@18	742	11	6.0	0.3	-7.6
12SZ07@19	798	11	6.0	0.3	0.4
12SZ07@20	872	12	8.4	0.3	-0.6
12SZ07@21	1675	30	6.4	0.2	-0.8
12SZ07@22	789	11	6.7	0.3	-1.6
12SZ07@23	2020	16	6.8	0.3	2.2
12SZ07@24	804	11	5.8	0.3	-7.0
12SZ07@25	777	11	3.4	0.3	-4.1
12SZ07@26	780	11	5.4	0.3	4.3
12SZ07@27	1979	30	7.0	0.3	-0.6
12SZ07@28	1984	21	7.0	0.3	-0.2
12SZ07@29	786	11	5.6	0.2	-4.0
12SZ07@30	781	11	5.7	0.3	-2.4
12SZ07@31	784	11	3.7	0.3	7.5
12SZ07@32	1977	19	6.5	0.4	-1.2
12SZ07@33	785	11	6.1	0.2	-5.8
12SZ07@34	797	11	5.8	0.3	-1.8
12SZ07@35	2025	22	6.6	0.3	4.1
12SZ07@36	876	12	5.8	0.4	1.7
12SZ07@37	763	11	4.6	0.4	-0.6
12SZ07@38	805	11	5.6	0.3	2.2

12SZ07@39	779	11	6.0	0.4	-2.8
12SZ07@40	811	11	6.7	0.4	-1.1
12SZ07@41	2739	10	6.0	0.5	-0.5
12SZ07@42	799	11	6.7	0.3	0.7
12SZ07@43	2506	7	6.0	0.4	2.4
12SZ07@44	761	11	6.4	0.3	-2.9
12SZ07@45	816	12	10.5	0.3	-2.9
12SZ07@46	2025	16	7.1	0.3	1.9
12SZ07@47	791	11	4.8	0.4	-19.5
13SZ14@01	833	12	6.3	0.3	-4.3
13SZ14@02	1018	19	10.3	0.4	-2.9
13SZ14@03	822	12	6.5	0.2	-1.8
13SZ14@04	778	11	5.7	0.2	-5.8
13SZ14@05	749	11	5.4	0.1	7.7
13SZ14@06	778	11	3.7	0.3	-4.0
13SZ14@07	839	13	10.0	0.4	0.9
13SZ14@08	818	12	6.4	0.3	-3.4
13SZ14@09	812	11	4.7	0.4	13.1
13SZ14@10	831	13	5.2	0.2	2.3
13SZ14@11	778	12	5.5	0.3	3.7
13SZ14@12	792	11	5.7	0.3	-0.9
13SZ14@13	804	11	7.0	0.3	3.2
13SZ14@14	768	11	5.1	0.3	-9.7
13SZ14@15	788	11	5.3	0.4	7.1
13SZ14@16	878	12	6.0	0.2	2.8
13SZ14@17	807	11	9.9	0.3	-3.1
13SZ14@18	780	11	5.5	0.4	4.5
13SZ14@19	779	12	3.4	0.3	-23.9
13SZ14@20	806	11	5.6	0.3	-11.4
13SZ14@21	782	11	5.7	0.4	-3.0
13SZ14@22	803	13	5.2	0.3	3.5
13SZ14@23	775	11	3.5	0.4	9.2
13SZ14@24	2025	30	7.5	0.3	3.2
13SZ14@25	2613	17	5.9	0.3	1.9
13SZ14@26	773	12	6.0	0.2	13.1
13SZ14@27	772	11	5.5	0.4	12.4
13SZ14@28	761	11	5.5	0.2	-1.2
13SZ14@29	747	11	5.4	0.4	1.4
13SZ14@30	1004	37	10.0	0.3	-3.7

13SZ19@01	742	11	3.8	0.4	-5.2
13SZ19@02	1995	14	6.6	0.2	2.6
13SZ19@03	1991	25	6.4	0.4	0.7
13SZ19@04	790	12	5.6	0.2	-2.1
13SZ19@05	753	11	3.9	0.3	-2.8
13SZ19@06	760	11	5.2	0.3	4.4
13SZ19@07	1719	27	6.1	0.3	2.4
13SZ19@08	823	12	9.2	0.3	-0.4
13SZ19@09	780	11	6.8	0.3	7.9
13SZ19@10	802	11	6.1	0.4	-2.4
13SZ19@11	754	11	6.3	0.2	-9.8
13SZ19@12	815	12	6.9	0.2	10.8
13SZ19@13	790	11	5.6	0.3	-1.2
13SZ19@14	723	10	3.7	0.2	2.7
13SZ19@15	2020	25	6.9	0.4	3.0
13SZ19@16	781	11	3.1	0.4	3.5
13SZ19@17	2050	31	6.8	0.3	3.9
13SZ19@18	756	11	7.2	0.3	-0.7
13SZ19@19	1960	27	6.9	0.2	-0.8
13SZ19@20	818	12	6.2	0.3	-7.5
13SZ19@21	766	11	5.0	0.3	-7.3
13SZ19@22	831	12	8.8	0.4	0.0
13SZ19@23	2527	13	6.1	0.3	0.6
13SZ19@24	782	11	5.1	0.2	2.8
13SZ19@25	803	11	6.3	0.4	-7.2
13SZ19@26	819	12	4.1	0.3	-11.5
13SZ19@27	762	11	5.8	0.3	-28.0
13SZ19@28	802	13	5.9	0.4	-1.0
13SZ19@29	839	12	5.6	0.4	-7.2
13SZ19@30	2412	38	7.4	0.3	0.2
13SZ19@31	798	12	7.6	0.2	-9.1
13SZ19@32	836	12	4.1	0.3	0.7
13SZ19@33	769	11	6.3	0.4	-2.8
13SZ19@34	802	11	6.0	0.4	-1.0
13SZ19@35	820	13	6.8	0.2	-12.9
13SZ19@36	804	12	5.8	0.3	-14.3
13SZ19@37	2011	54	7.2	0.4	-1.1
13SZ19@38	814	12	5.3	0.3	-4.8
13SZ19@39	764	11	3.8	0.2	1.1
12SZ14@01	733	10	4.5	0.5	-3.1

12SZ14@02	727	10	6.1	0.3	1.1
12SZ14@03	730	11	1.4	0.5	4.9
12SZ14@04	746	11	2.4	0.3	-0.7
12SZ14@05	739	11	6.1	0.2	-2.5
12SZ14@06	737	10	2.4	0.1	5.4
12SZ14@07	734	11	7.3	0.3	5.5
12SZ14@08	741	11	4.2	0.2	-5.7
12SZ14@09	760	11	4.2	0.2	-0.6
12SZ14@10	757	11	5.1	0.2	-6.4
12SZ14@11	770	11	4.7	0.2	-5.7
12SZ14@12	770	11	3.3	0.2	-3.2
12SZ14@13	754	11	4.1	0.2	-0.7
12SZ14@14	731	10	4.5	0.2	0.2
12SZ14@15	716	10	5.1	0.2	2.8
12SZ14@16	743	11	5.2	0.1	-6.4
12SZ14@17	738	11	3.8	0.3	0.3
12SZ14@18	759	11	6.3	0.2	5.1
12SZ14@19	774	11	4.9	0.3	-8.1
12SZ14@20	740	11	5.6	0.3	2.9
12SZ14@21	999	19	6.3	0.2	-1.9
12SZ14@22	740	11	5.2	0.2	0.9
12SZ14@23	736	10	4.2	0.2	-4.3
12SZ14@25	742	11	4.6	0.2	-2.3
12SZ17@01	740	11	5.0	0.1	-2.0
12SZ17@02	722	10	4.6	0.3	-2.6
12SZ17@03	728	10	4.2	0.3	-1.7
12SZ17@04	720	10	4.8	0.3	-0.9
12SZ17@05	715	10	4.7	0.2	9.0
12SZ17@06	741	11	3.6	0.3	-4.4
12SZ17@07	719	10	3.9	0.3	-3.0
12SZ17@08	727	10	4.9	0.2	-1.5
12SZ17@09	725	10	3.7	0.4	-0.8
12SZ17@10	733	10	3.8	0.2	-2.8
12SZ17@11	706	10	3.5	0.3	-0.6
12SZ17@12	729	10	6.2	0.2	-1.3
12SZ17@13	722	10	3.9	0.3	6.2
12SZ17@14	722	10	4.2	0.2	3.0
12SZ17@15	740	11	3.9	0.2	-1.0
12SZ17@16	748	11	4.1	0.3	4.7
12SZ17@17	729	10	4.1	0.2	-9.6

12SZ17@19	740	11	4.9	0.2	-4.4
12SZ17@20	733	10	3.8	0.3	-1.4
12SZ17@21	739	11	3.8	0.3	-2.9
12SZ17@22	721	10	3.9	0.3	4.7
12SZ17@23	719	10	4.0	0.2	6.6
12SZ17@24	722	10	5.8	0.3	4.1
12SZ17@25	702	10	4.4	0.2	-1.7
12SZ17@26	728	10	2.3	0.3	2.0
12SZ17@27	743	11	3.6	0.2	-7.8
12SZ17@28	831	12	8.3	0.3	0.0
Yuanziwan Formation, uppe	r part of Suixian				
Group 12S710@01	752	11	3 1	0.2	3.8
125710@02	747	11	3.8	0.3	-21.0
125710@03	763	11	2.3	0.4	-1.3
125710@04	730	10	4.3	0.3	-4.6
128710@05	737	10	6.0	0.4	3.3
12S710@06	752	11	3.9	0.2	-11.3
12SZ10@07	749	11	2.2	0.2	-7.8
12SZ10@08	738	10	5.2	0.2	0.4
12SZ10@09	734	11	5.5	0.3	2.0
12SZ10@10	725	10	4.9	0.4	5.5
12SZ10@11	733	10	6.9	0.4	0.0
12SZ10@12	740	11	6.6	0.2	2.5
12SZ10@13	763	11	1.3	0.4	-4.9
12SZ10@14	736	10	6.2	0.4	-1.7
12SZ10@15	718	10	2.2	0.3	-3.4
12SZ10@16	731	10	5.7	0.4	3.7
12SZ10@17	720	10	4.4	0.3	11.5
12SZ10@18	765	11	4.1	0.4	-6.5
12SZ10@20	728	10	5.5	0.2	-8.4
12SZ10@22	749	11	4.5	0.2	-5.4
12SZ10@23	740	11	3.9	0.3	2.0
12SZ10@24	731	11	4.7	0.4	4.8
12SZ10@25	777	11	2.8	0.3	-3.9
12SZ10@26	732	10	2.9	0.4	5.4
12SZ10@27	757	11	5.3	0.4	10.5
12SZ10@28	750	11	4.3	0.3	-0.7
13SZ17@01	736	10	6.1	0.3	-3.3
13SZ17@02	730	10	2.4	0.4	1.3

13SZ17@03	730	10	2.5	0.3	1.1
13SZ17@04	715	10	2.3	0.3	4.4
13SZ17@05	718	10	3.4	0.3	5.4
13SZ17@06	710	10	3.6	0.3	15.7
13SZ17@07	733	10	2.6	0.4	0.6
13SZ17@08	712	10	4.0	0.3	16.1
13SZ17@09	730	10	2.5	0.2	8.6
13SZ17@10	724	10	3.6	0.4	-9.9
13SZ17@11	741	11	8.6	0.3	-4.6
13SZ17@12	739	10	3.3	0.3	6.0
13SZ17@13	738	11	3.9	0.3	9.6
13SZ17@14	724	10	3.4	0.2	-5.5
13SZ17@15	722	10	2.7	0.4	3.6
13SZ17@16	793	11	6.2	0.4	-1.8
13SZ17@17	738	10	3.6	0.3	-2.7
13SZ17@18	719	10	2.6	0.2	-1.7
13SZ17@19	731	10	2.6	0.3	3.1
13SZ17@20	799	11	6.7	0.4	-7.8
13SZ17@21	746	11	4.1	0.2	1.5
13SZ17@22	731	10	4.2	0.3	0.2
13SZ17@23	727	10	3.3	0.3	12.6
13SZ17@24	738	11	4.7	0.4	9.6
13SZ17@25	721	10	3.7	0.3	0.3
13SZ17@26	709	10	2.5	0.4	3.9

[&] The "U-Pb age: listed here refers to ²⁰⁶Pb/²³⁸U age (<1000 Ma) or ²⁰⁷Pb/²⁰⁶Pb age (>1000 Ma);

* indicates undated spots whose U-Pb ages are derived from weighted mean of ²⁰⁶Pb/²³⁸U ages given the concodance of almost all of other spots within one sample;

^d discordance difined as percent diviation of $t_{206/238}$ relative to $t_{207/206}$ using the equation (1- $t_{206/238}/t_{207/206}$)*100; data marked in red are not included in the oxygen isotope plot.

Note: The 206 Pb/ 238 U age listed here with aboslute discordance <12% are used for plotting U-Pb age vs. δ^{18} O diagram.

Sample spot	U-Pb (Ma)	±1σ (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Yb/ ¹⁷⁶ Lu	ε _{нf} (0)	2σ	ε _{нf} (t)	2σ	Т _{DM1} [#] (Ма)	Т _{DM2} [#] (Ма)
Gujing Formation, Io	ower part of	Suixian Gr	oup												
12SZ20@01	769	11	0.036764	0.000423	0.001393	0.000015	0.282154	0.000022	26	-21.9	1.3	-5.6	1.4	1564	1779
12SZ20@03	746	11	0.073106	0.000425	0.002710	0.000018	0.282161	0.000018	27	-21.6	1.2	-6.5	1.3	1610	1806
12SZ20@04	734	11	0.036631	0.000198	0.001354	0.000007	0.282122	0.000019	27	-23.0	1.2	-7.5	1.3	1607	1846
12SZ20@07	719	10	0.042143	0.000575	0.001587	0.000019	0.282233	0.000027	27	-19.1	1.4	-3.9	1.5	1459	1655
12SZ20@08	739	11	0.040897	0.000487	0.001528	0.000016	0.282194	0.000030	27	-20.4	1.5	-4.9	1.5	1513	1719
12SZ20@09	746	11	0.049729	0.001622	0.001630	0.000043	0.282167	0.000024	31	-21.4	1.3	-5.7	1.4	1555	1768
12SZ20@10	733	10	0.046115	0.000370	0.001733	0.000017	0.282166	0.000022	27	-21.4	1.3	-6.1	1.4	1560	1775
12SZ20@11	745	11	0.041064	0.000208	0.001577	0.000007	0.282229	0.000035	26	-19.2	1.6	-3.6	1.7	1465	1656
12SZ20@12	747	11	0.109882	0.003230	0.004029	0.000112	0.282214	0.000035	27	-19.7	1.6	-5.3	1.7	1591	1744
12SZ20@13	737	11	0.060591	0.000481	0.002322	0.000017	0.282031	0.000026	26	-26.2	1.4	-11.1	1.5	1780	2030
12SZ20@14	718	10	0.041774	0.000260	0.001583	0.000009	0.282168	0.000027	26	-21.4	1.4	-6.3	1.5	1551	1772
12SZ20@15	718	10	0.045421	0.000222	0.001722	0.000008	0.282155	0.000042	26	-21.8	1.8	-6.8	1.8	1576	1799
12SZ20@16	746	11	0.037484	0.000274	0.001431	0.000010	0.282140	0.000018	26	-22.4	1.2	-6.6	1.3	1585	1811
12SZ24@01	750	11	0.111279	0.002162	0.004046	0.000073	0.282098	0.000027	28	-23.8	1.4	-9.3	1.5	1766	1950
12SZ24@02	739	10	0.086027	0.000733	0.003162	0.000024	0.281929	0.000030	27	-29.8	1.5	-15.1	1.5	1972	2232
12SZ24@03	773	11	0.065178	0.000601	0.002374	0.000022	0.282132	0.000022	27	-22.6	1.3	-6.8	1.4	1637	1842
12SZ24@04	843	12	0.075827	0.001827	0.002740	0.000068	0.282563	0.000021	28	-7.4	1.3	9.7	1.4	1021	1062
12SZ24@05	727	10	0.198478	0.004143	0.006956	0.000146	0.282267	0.000037	29	-17.9	1.7	-5.2	1.7	1649	1723
12SZ24@06	771	11	0.044770	0.000642	0.001586	0.000021	0.282046	0.000020	28	-25.7	1.2	-9.5	1.3	1724	1976
12SZ24@07	791	11	0.096539	0.001373	0.003459	0.000054	0.282398	0.000034	28	-13.2	1.6	2.4	1.6	1290	1391
12SZ24@08	765	11	0.079833	0.002571	0.002955	0.000096	0.282233	0.000061	27	-19.1	2.4	-3.7	2.4	1515	1678
12SZ24@10	733	10	0.104013	0.002257	0.003754	0.000073	0.282615	0.000059	28	-5.5	2.3	8.8	2.4	972	1018
12SZ24@11	726	10	0.057028	0.000811	0.002068	0.000029	0.281896	0.000019	28	-31.0	1.2	-16.0	1.3	1960	2266

Appendix S3 Zircon LA-ICP-MS Hf isotopic results

12SZ24@12	743	11	0.108808	0.001265	0.003845	0.000039	0.282123	0.000033	28	-23.0	1.5	-8.5	1.6	1720	1903
12SZ24@13	751	11	0.055899	0.000564	0.002082	0.000022	0.282169	0.000017	27	-21.3	1.2	-5.8	1.3	1571	1774
12SZ24@14	780	11	0.072078	0.001688	0.002778	0.000064	0.282437	0.000023	26	-11.9	1.3	3.9	1.4	1209	1305
12SZ28@01	758	11	0.034713	0.000276	0.001310	0.000011	0.282099	0.000014	26	-23.8	1.1	-7.7	1.2	1637	1878
12SZ28@02	738	11	0.058605	0.000883	0.002313	0.000034	0.282328	0.000015	25	-15.7	1.2	-0.6	1.2	1352	1499
12SZ28@03	772	11	0.069203	0.000458	0.002568	0.000016	0.282218	0.000017	27	-19.6	1.2	-3.9	1.3	1521	1694
12SZ28@04	745	11	0.040002	0.000744	0.001493	0.000026	0.282024	0.000014	27	-26.4	1.1	-10.8	1.2	1750	2020
12SZ28@05	742	11	0.074720	0.000271	0.002677	0.000008	0.282107	0.000019	28	-23.5	1.2	-8.5	1.3	1687	1902
12SZ28@06	758	11	0.034936	0.000248	0.001306	0.000011	0.282015	0.000017	27	-26.8	1.2	-10.7	1.3	1754	2027
12SZ28@07	733	10	0.101130	0.002839	0.003534	0.000096	0.282266	0.000019	29	-17.9	1.2	-3.4	1.3	1491	1641
12SZ28@08	1840	15	0.014352	0.000262	0.000487	0.000008	0.281403	0.000019	29	-48.4	1.2	-8.0	1.4	2548	2762
12SZ28@09	745	11	0.086533	0.002199	0.003228	0.000078	0.282089	0.000023	27	-24.1	1.3	-9.3	1.4	1739	1946
12SZ28@10	732	10	0.040283	0.000117	0.001506	0.000004	0.282142	0.000015	27	-22.3	1.2	-6.9	1.2	1585	1814
12SZ28@13	732	11	0.060840	0.000745	0.002210	0.000025	0.282115	0.000017	28	-23.2	1.2	-8.2	1.3	1655	1879
12SZ28@14	756	12	0.043531	0.000201	0.001599	0.000007	0.282138	0.000018	27	-22.4	1.2	-6.6	1.3	1594	1816
12SZ28@15	753	11	0.043918	0.000381	0.001587	0.000014	0.282209	0.000016	28	-19.9	1.2	-4.1	1.3	1494	1690
12SZ28@16	740	10	0.072778	0.000284	0.002575	0.000011	0.282142	0.000017	28	-22.3	1.2	-7.2	1.3	1631	1837
12SZ28@17	746	11	0.069520	0.000851	0.002425	0.000030	0.282244	0.000026	29	-18.7	1.4	-3.4	1.4	1478	1650
12SZ28@18	721	10	0.027884	0.000130	0.001032	0.000005	0.282526	0.000017	27	-8.7	1.2	6.7	1.3	1028	1115
12SZ28@19	766	11	0.072672	0.000803	0.002555	0.000032	0.282166	0.000018	28	-21.4	1.2	-5.8	1.3	1596	1788
Liulin Formation, middle part of Suixian Group															
12SZ06@01	776	11	0.043751	0.000180	0.001669	0.000004	0.282533	0.000018	26	-8.5	1.2	7.8	1.3	1036	1104
12SZ06@02	795	11	0.051678	0.000155	0.002088	0.000008	0.282498	0.000019	25	-9.7	1.2	6.8	1.3	1097	1172
12SZ06@03	772	11	0.025994	0.000295	0.001055	0.000010	0.282437	0.000017	25	-11.8	1.2	4.7	1.3	1153	1261
12SZ06@04	778	11	0.065069	0.001910	0.002374	0.000068	0.282362	0.000018	27	-14.5	1.2	1.4	1.3	1305	1430
12SZ06@05	805	12	0.036244	0.000238	0.001443	0.00008	0.282480	0.000017	25	-10.3	1.2	6.7	1.3	1105	1186
12SZ06@06	929	14	0.033358	0.000110	0.001300	0.000005	0.282549	0.000017	26	-7.9	1.2	11.9	1.3	1003	1023

12SZ06@07	792	11	0.055073	0.000777	0.002126	0.000034	0.282502	0.000021	26	-9.5	1.3	6.8	1.3	1093	1168
12SZ06@08	762	11	0.026042	0.000522	0.001178	0.000023	0.282494	0.000016	22	-9.8	1.2	6.4	1.3	1077	1164
12SZ06@09	754	11	0.026238	0.000297	0.001195	0.000014	0.282454	0.000020	22	-11.3	1.2	4.8	1.3	1134	1241
12SZ06@10	783	12	0.034496	0.000160	0.001344	0.000004	0.282027	0.000017	26	-26.3	1.2	-9.8	1.3	1739	2000
12SZ06@11	810	12	0.049974	0.000186	0.001898	0.000006	0.282474	0.000019	26	-10.5	1.2	6.3	1.3	1127	1207
12SZ06@12	798	11	0.041558	0.000434	0.001599	0.000016	0.282433	0.000018	26	-12.0	1.2	4.8	1.3	1176	1276
12SZ06@13	822	12	0.038504	0.000226	0.001418	0.000008	0.282294	0.000017	27	-16.9	1.2	0.5	1.3	1367	1514
12SZ06@14	808	11	0.039390	0.000780	0.001601	0.000029	0.282466	0.000016	25	-10.8	1.2	6.2	1.3	1129	1214
12SZ06@15	802	11	0.039310	0.000429	0.001387	0.000016	0.282604	0.000019	28	-6.0	1.2	11.0	1.3	927	961
12SZ06@16	799	11	0.038032	0.000643	0.001567	0.000026	0.282466	0.000018	24	-10.8	1.2	6.0	1.3	1127	1215
12SZ06@17	828	12	0.023693	0.000176	0.000940	0.000007	0.282383	0.000013	25	-13.8	1.1	4.0	1.2	1226	1340
12SZ06@18	2003	15	0.010834	0.000098	0.000397	0.000003	0.281249	0.000020	27	-53.9	1.2	-9.7	1.5	2749	2977
12SZ06@19	762	11	0.013727	0.000099	0.000526	0.000004	0.282538	0.000017	26	-8.3	1.2	8.3	1.3	997	1068
12SZ06@20	823	12	0.038257	0.000199	0.001357	0.000006	0.282512	0.000017	28	-9.2	1.2	8.3	1.3	1056	1120
12SZ06@21	800	11	0.027513	0.000402	0.000982	0.000015	0.282414	0.000017	28	-12.7	1.2	4.5	1.3	1184	1294
12SZ06@22	785	11	0.041945	0.001410	0.001651	0.000055	0.282432	0.000018	25	-12.0	1.2	4.5	1.3	1179	1282
12SZ06@23	765	11	0.068959	0.000398	0.002661	0.000015	0.282603	0.000019	26	-6.0	1.2	9.6	1.3	961	1006
12SZ06@24	742	11	0.053700	0.001382	0.001944	0.000050	0.282504	0.000017	28	-9.5	1.2	5.9	1.3	1085	1172
12SZ06@25	847	14	0.055558	0.000600	0.002091	0.000023	0.282511	0.000017	27	-9.2	1.2	8.3	1.3	1079	1136
12SZ06@26	799	11	0.023662	0.000086	0.000891	0.000003	0.282523	0.000016	27	-8.8	1.2	8.4	1.3	1028	1094
12SZ06@27	832	12	0.030755	0.000043	0.001088	0.000001	0.282325	0.000016	28	-15.8	1.2	2.0	1.3	1311	1446
12SZ07@01	859	12	0.017967	0.000045	0.000769	0.000002	0.282579	0.000016	23	-6.8	1.2	11.7	1.3	947	973
12SZ07@02	803	11	0.033787	0.000126	0.001318	0.000003	0.282444	0.000017	26	-11.6	1.2	5.4	1.3	1152	1247
12SZ07@03	762	11	0.045247	0.000584	0.001977	0.000025	0.282484	0.000016	23	-10.2	1.2	5.6	1.3	1115	1204
12SZ07@04	1988	20	0.015515	0.000071	0.000540	0.000002	0.281248	0.000016	29	-53.9	1.2	-10.3	1.5	2760	2992
12SZ07@05	793	11	0.016135	0.000105	0.000615	0.000004	0.282398	0.000019	26	-13.2	1.2	4.0	1.3	1194	1314
12SZ07@06	2011	21	0.007570	0.000021	0.000269	0.000001	0.281217	0.000018	28	-55.0	1.2	-10.5	1.6	2782	3021

12SZ07@07	817	12	0.023691	0.000279	0.000879	0.000010	0.282346	0.000016	27	-15.1	1.2	2.5	1.3	1276	1408
12SZ07@08	2019	16	0.018398	0.000032	0.000635	0.000001	0.281261	0.000018	29	-53.4	1.2	-9.2	1.4	2749	2966
12SZ07@09	742	11	0.061450	0.000172	0.002250	0.000006	0.282164	0.000016	27	-21.5	1.2	-6.3	1.3	1585	1790
12SZ07@10	812	11	0.077384	0.000553	0.002828	0.000019	0.282263	0.000019	27	-18.0	1.2	-1.6	1.3	1466	1611
12SZ07@11	801	11	0.027270	0.000172	0.001125	0.000008	0.282477	0.000017	24	-10.4	1.2	6.7	1.3	1100	1184
12SZ07@12	786	11	0.069088	0.000254	0.002520	0.000009	0.281855	0.000022	27	-32.4	1.3	-16.4	1.4	2043	2336
12SZ07@13	749	11	0.046233	0.000933	0.001783	0.000037	0.282459	0.000020	26	-11.1	1.2	4.6	1.3	1144	1247
12SZ07@14	771	11	0.024720	0.000148	0.000974	0.000006	0.282418	0.000016	25	-12.5	1.2	4.0	1.3	1178	1294
12SZ07@15	798	11	0.020424	0.000088	0.000769	0.000003	0.282402	0.000015	27	-13.1	1.2	4.1	1.3	1194	1310
12SZ07@16	802	11	0.030142	0.000214	0.001149	0.000006	0.282484	0.000016	26	-10.2	1.2	6.9	1.3	1090	1170
12SZ07@17	709	10	0.054018	0.000358	0.002096	0.000010	0.282585	0.000016	26	-6.6	1.2	8.1	1.2	972	1037
12SZ07@18	742	11	0.035039	0.000068	0.001329	0.000001	0.282075	0.000020	26	-24.7	1.3	-9.0	1.3	1671	1926
12SZ07@19	798	11	0.041317	0.000424	0.001347	0.000012	0.281844	0.000019	31	-32.8	1.2	-16.0	1.3	1995	2322
12SZ07@20	872	12	0.051332	0.000458	0.002046	0.000016	0.282410	0.000018	25	-12.8	1.2	5.3	1.3	1224	1312
12SZ07@21	1675	30	0.011010	0.000134	0.000401	0.000004	0.281427	0.000017	27	-47.6	1.2	-10.7	1.8	2509	2765
12SZ07@22	789	11	0.040154	0.000044	0.001467	0.000002	0.282540	0.000019	27	-8.2	1.2	8.5	1.3	1021	1083
12SZ07@24	804	11	0.077275	0.000622	0.002592	0.000019	0.281859	0.000019	30	-32.3	1.2	-15.9	1.3	2041	2326
12SZ07@25	777	11	0.057851	0.000719	0.002140	0.000027	0.281921	0.000020	27	-30.1	1.2	-14.1	1.3	1928	2212
12SZ07@26	780	11	0.022666	0.000183	0.000939	0.00008	0.281975	0.000016	24	-28.2	1.2	-11.5	1.3	1793	2084
12SZ07@27	1979	30	0.007732	0.000015	0.000285	0.000001	0.281217	0.000018	27	-55.0	1.2	-11.2	1.8	2783	3033
12SZ07@28	1984	21	0.018174	0.000008	0.000641	0.000001	0.281247	0.000018	28	-53.9	1.2	-10.5	1.6	2768	3002
12SZ07@29	786	11	0.019318	0.000015	0.000712	0.000001	0.282422	0.000017	27	-12.4	1.2	4.6	1.3	1164	1276
12SZ07@30	781	11	0.045280	0.000865	0.001680	0.000031	0.281815	0.000019	27	-33.8	1.2	-17.5	1.3	2054	2387
12SZ07@31	784	11	0.100071	0.001016	0.003486	0.000037	0.281994	0.000022	29	-27.5	1.3	-12.0	1.4	1893	2115
12SZ07@32	1977	19	0.008555	0.000014	0.000312	0.000000	0.281206	0.000016	27	-55.4	1.2	-11.7	1.5	2800	3054
12SZ07@33	785	11	0.022794	0.000137	0.000808	0.000006	0.282439	0.000017	28	-11.8	1.2	5.2	1.3	1143	1247
12SZ07@34	797	11	0.099458	0.000145	0.003948	0.00008	0.282503	0.000022	25	-9.5	1.3	6.0	1.4	1148	1213
12SZ07@35	2025	22	0.011918	0.000032	0.000428	0.000001	0.281230	0.000021	28	-54.5	1.3	-9.9	1.6	2776	3005

12SZ07@36	876	12	0.022705	0.000120	0.000816	0.000005	0.282588	0.000017	28	-6.5	1.2	12.4	1.3	935	952
12SZ07@37	763	11	0.027681	0.000199	0.000983	0.000006	0.282587	0.000016	28	-6.5	1.2	9.8	1.3	940	991
12SZ07@38	805	11	0.053640	0.000238	0.001785	0.000006	0.281876	0.000021	30	-31.7	1.3	-14.9	1.3	1973	2274
12SZ07@39	779	11	0.016154	0.000071	0.000616	0.000003	0.282399	0.000018	26	-13.2	1.2	3.7	1.3	1193	1317
12SZ07@40	811	11	0.024651	0.000481	0.000968	0.000018	0.282470	0.000018	25	-10.7	1.2	6.7	1.3	1105	1189
12SZ07@41	2739	10	0.011829	0.000049	0.000437	0.000002	0.281022	0.000016	27	-61.9	1.2	-1.1	1.3	3055	3151
12SZ07@42	799	11	0.035114	0.000067	0.001421	0.000005	0.282504	0.000017	25	-9.5	1.2	7.4	1.3	1069	1142
12SZ07@43	2506	7	0.033509	0.000451	0.001276	0.000015	0.281004	0.000018	26	-62.5	1.2	-8.5	1.3	3146	3322
12SZ07@44	761	11	0.063071	0.000222	0.002301	0.000008	0.282102	0.000015	27	-23.7	1.1	-8.1	1.2	1677	1898
12SZ07@45	816	12	0.026878	0.000207	0.000973	0.000007	0.282058	0.000015	28	-25.3	1.2	-7.8	1.3	1680	1927
12SZ07@46	2025	16	0.008255	0.000043	0.000305	0.000002	0.281241	0.000016	27	-54.1	1.2	-9.4	1.4	2752	2977
13SZ14@01	833	12	0.024011	0.000053	0.000870	0.000001	0.282361	0.000015	28	-14.5	1.2	3.4	1.3	1253	1375
13SZ14@02	1018	19	0.046201	0.000159	0.001596	0.000005	0.282119	0.000015	29	-23.1	1.2	-1.7	1.4	1621	1781
13SZ14@03	822	12	0.078049	0.000103	0.002537	0.000004	0.282150	0.000020	31	-22.0	1.2	-5.2	1.3	1618	1802
13SZ14@04	778	11	0.032495	0.000148	0.001355	0.000005	0.282272	0.000014	24	-17.7	1.1	-1.2	1.3	1396	1565
13SZ14@05	749	11	0.062625	0.000522	0.002167	0.000015	0.282495	0.000019	29	-9.8	1.2	5.7	1.3	1105	1192
13SZ14@06	778	11	0.033555	0.000612	0.001224	0.000020	0.282527	0.000016	27	-8.7	1.2	7.9	1.3	1032	1102
13SZ14@07	839	13	0.025967	0.000396	0.000943	0.000013	0.282127	0.000017	28	-22.8	1.2	-4.8	1.3	1582	1796
13SZ14@08	818	12	0.022418	0.000376	0.000829	0.000014	0.282548	0.000014	27	-7.9	1.1	9.7	1.2	991	1042
13SZ14@10	831	13	0.043375	0.000091	0.001518	0.000003	0.282388	0.000019	29	-13.6	1.2	4.0	1.4	1237	1345
13SZ14@11	778	12	0.049626	0.000636	0.001687	0.000021	0.281922	0.000017	29	-30.1	1.2	-13.8	1.3	1904	2198
13SZ14@12	792	11	0.042034	0.000389	0.001541	0.000015	0.282437	0.000017	27	-11.8	1.2	4.9	1.3	1168	1268
13SZ14@13	804	11	0.029531	0.000248	0.001099	0.000009	0.282529	0.000017	27	-8.6	1.2	8.6	1.3	1025	1087
13SZ14@14	768	11	0.022630	0.000064	0.001037	0.000002	0.282622	0.000014	22	-5.3	1.1	11.1	1.2	893	929
13SZ14@15	788	11	0.028274	0.000162	0.001005	0.000004	0.282357	0.000014	28	-14.7	1.1	2.2	1.2	1264	1400
13SZ14@16	878	12	0.031029	0.000151	0.001240	0.000006	0.282557	0.000016	25	-7.6	1.2	11.1	1.3	990	1021
13SZ14@17	807	11	0.018789	0.000068	0.000648	0.000003	0.282175	0.000017	29	-21.1	1.2	-3.7	1.3	1504	1712

13SZ14@18	780	11	0.023933	0.000042	0.000941	0.000001	0.282427	0.000014	25	-12.2	1.1	4.5	1.2	1165	1275
13SZ14@20	806	11	0.105023	0.002055	0.003468	0.000068	0.281810	0.000019	30	-34.0	1.2	-18.1	1.3	2163	2435
13SZ14@21	782	11	0.040887	0.000519	0.001606	0.000017	0.282570	0.000015	25	-7.1	1.2	9.3	1.3	981	1033
13SZ14@22	803	13	0.057196	0.000446	0.002145	0.000013	0.282438	0.000018	27	-11.8	1.2	4.8	1.3	1186	1281
13SZ14@23	775	11	0.037076	0.000925	0.001330	0.000033	0.282412	0.000017	28	-12.7	1.2	3.7	1.3	1198	1313
13SZ14@24	2025	30	0.014609	0.000223	0.000519	800000.0	0.281284	0.000018	28	-52.6	1.2	-8.1	1.8	2710	2916
13SZ14@25	2613	17	0.018008	0.000054	0.000671	0.000002	0.281250	0.000018	27	-53.8	1.2	3.7	1.5	2766	2812
13SZ14@28	761	11	0.016478	0.000046	0.000712	0.000002	0.282364	0.000016	23	-14.4	1.2	2.0	1.3	1245	1387
13SZ14@29	747	11	0.020404	0.000243	0.000746	0.000008	0.282532	0.000016	27	-8.5	1.2	7.6	1.3	1012	1090
13SZ14@30	1004	37	0.041933	0.000374	0.001461	0.000015	0.282213	0.000014	29	-19.8	1.1	1.5	2.0	1483	1612
13SZ19@01	742	11	0.042756	0.000596	0.001565	0.000021	0.282274	0.000019	27	-17.6	1.2	-2.0	1.3	1401	1576
13SZ19@02	1995	14	0.072792	0.002247	0.002018	0.000054	0.281268	0.000015	36	-53.2	1.2	-11.4	1.3	2842	3054
13SZ19@03	1991	25	0.013792	0.000119	0.000461	0.000004	0.281189	0.000018	30	-56.0	1.2	-12.2	1.7	2833	3089
13SZ19@04	790	12	0.023048	0.000216	0.000937	0.000007	0.282422	0.000016	25	-12.4	1.2	4.6	1.3	1171	1280
13SZ19@05	753	11	0.024583	0.000189	0.000966	0.000006	0.282435	0.000016	25	-11.9	1.2	4.2	1.3	1154	1269
13SZ19@06	760	11	0.031241	0.000039	0.001340	0.000002	0.282476	0.000016	23	-10.5	1.2	5.7	1.3	1107	1202
13SZ19@07	1719	27	0.034047	0.000166	0.001143	0.000004	0.281444	0.000016	30	-47.0	1.2	-10.0	1.7	2535	2764
13SZ19@08	823	12	0.026063	0.000332	0.000938	0.000011	0.281992	0.000019	28	-27.6	1.2	-10.0	1.3	1770	2042
13SZ19@09	780	11	0.050596	0.000206	0.001951	0.000008	0.282527	0.000019	26	-8.7	1.2	7.6	1.3	1051	1120
13SZ19@10	802	11	0.031590	0.000096	0.001210	0.000001	0.282480	0.000019	26	-10.3	1.2	6.7	1.3	1098	1180
13SZ19@11	754	11	0.026543	0.000117	0.000977	0.000005	0.282306	0.000017	27	-16.5	1.2	-0.3	1.3	1334	1500
13SZ19@12	815	12	0.019906	0.000025	0.000737	0.000001	0.282319	0.000016	27	-16.0	1.2	1.6	1.3	1308	1453
13SZ19@13	790	11	0.017670	0.000067	0.000643	0.000003	0.282415	0.000015	27	-12.6	1.2	4.5	1.3	1171	1284
13SZ19@14	723	10	0.118362	0.003226	0.003863	0.000102	0.282048	0.000020	31	-25.6	1.2	-11.5	1.3	1832	2039
13SZ19@15	2020	25	0.009780	0.000023	0.000347	0.000001	0.281196	0.000015	28	-55.7	1.1	-11.1	1.6	2815	3060
13SZ19@16	781	11	0.049390	0.000127	0.001869	0.000006	0.282614	0.000016	26	-5.6	1.2	10.7	1.3	925	961
13SZ19@17	2050	31	0.011695	0.000086	0.000416	0.000003	0.281237	0.000018	28	-54.3	1.2	-9.1	1.9	2766	2984

13SZ19@18	756	11	0.052039	0.000184	0.001834	0.000004	0.282174	0.000019	28	-21.1	1.2	-5.4	1.3	1553	1758
13SZ19@19	1960	27	0.008639	0.000034	0.000308	0.000001	0.281224	0.000016	28	-54.7	1.2	-11.4	1.7	2775	3027
13SZ19@20	818	12	0.037479	0.000129	0.001377	0.000004	0.282489	0.000016	27	-10.0	1.2	7.3	1.3	1090	1164
13SZ19@21	766	11	0.014520	0.000044	0.000689	0.000002	0.282459	0.000016	21	-11.1	1.2	5.5	1.3	1112	1215
13SZ19@22	831	12	0.021692	0.000599	0.000738	0.000019	0.282168	0.000015	29	-21.4	1.1	-3.4	1.3	1517	1719
13SZ19@23	2527	13	0.017812	0.000034	0.000669	0.000001	0.280904	0.000018	27	-66.1	1.2	-10.5	1.4	3231	3440
13SZ19@24	782	11	0.061467	0.000760	0.002329	0.000024	0.282433	0.000018	26	-12.0	1.2	4.1	1.3	1199	1299
13SZ19@25	803	11	0.037403	0.000358	0.001366	0.000011	0.282501	0.000019	27	-9.6	1.2	7.4	1.3	1072	1145
13SZ19@26	819	12	0.031315	0.000574	0.001142	0.000019	0.282437	0.000015	27	-11.9	1.2	5.6	1.3	1157	1251
13SZ19@28	802	13	0.030455	0.000793	0.001111	0.000028	0.282419	0.000013	27	-12.5	1.1	4.7	1.3	1180	1286
13SZ19@29	839	12	0.052792	0.001217	0.001827	0.000040	0.282297	0.000015	29	-16.8	1.2	0.7	1.3	1378	1517
13SZ19@30	2412	38	0.016355	0.000006	0.000575	0.000000	0.281164	0.000014	28	-56.8	1.1	-3.7	2.1	2875	3014
13SZ19@31	798	12	0.025888	0.000172	0.000960	0.000006	0.282465	0.000014	27	-10.9	1.1	6.3	1.3	1112	1202
13SZ19@32	836	12	0.033137	0.000151	0.001274	0.000005	0.282423	0.000015	26	-12.4	1.2	5.4	1.3	1181	1276
13SZ19@33	769	11	0.032423	0.000246	0.001251	0.000008	0.282177	0.000014	26	-21.1	1.1	-4.7	1.2	1526	1735
13SZ19@34	802	11	0.036051	0.000164	0.001339	0.000004	0.282362	0.000017	27	-14.5	1.2	2.5	1.3	1268	1396
13SZ19@37	2011	54	0.011767	0.000061	0.000411	0.000002	0.281192	0.000016	29	-55.9	1.2	-11.6	2.7	2826	3075
13SZ19@39	764	11	0.086390	0.000297	0.002967	0.000005	0.282086	0.000017	29	-24.2	1.2	-8.9	1.3	1731	1941
12SZ14@01	733	10	0.035093	0.000281	0.001368	0.000011	0.282333	0.000018	26	-15.5	1.2	-0.02	1.3	1310	1468
12SZ14@02	727	10	0.042978	0.000674	0.001720	0.000026	0.282287	0.000017	25	-17.1	1.2	-1.9	1.3	1388	1560
12SZ14@04	746	11	0.037656	0.000429	0.001375	0.000016	0.282155	0.000019	27	-21.8	1.2	-6.0	1.3	1561	1782
12SZ14@05	739	11	0.032427	0.000076	0.001278	0.000002	0.281824	0.000018	25	-33.5	1.2	-17.9	1.3	2020	2373
12SZ14@06	737	10	0.046917	0.000228	0.001739	0.000010	0.282282	0.000019	27	-17.3	1.2	-1.9	1.3	1396	1567
12SZ14@07	734	11	0.023374	0.000108	0.001028	0.000006	0.282196	0.000017	23	-20.4	1.2	-4.7	1.3	1490	1705
12SZ14@08	741	11	0.052199	0.000353	0.002007	0.000012	0.282217	0.000018	26	-19.6	1.2	-4.3	1.3	1499	1689
12SZ14@09	760	11	0.031623	0.000139	0.001225	0.000005	0.282046	0.000017	26	-25.7	1.2	-9.5	1.3	1708	1971
12SZ14@10	757	11	0.058644	0.000468	0.002238	0.000020	0.282129	0.000020	26	-22.7	1.2	-7.2	1.3	1635	1849

12SZ14@11	770	11	0.030616	0.000484	0.001228	0.000018	0.282117	0.000020	25	-23.1	1.2	-6.8	1.3	1608	1840
12SZ14@12	770	11	0.047340	0.000341	0.001777	0.000011	0.282100	0.000019	27	-23.8	1.2	-7.7	1.3	1656	1884
12SZ14@13	754	11	0.133482	0.000489	0.004833	0.000020	0.281978	0.000028	28	-28.1	1.4	-13.9	1.5	1992	2182
12SZ14@14	731	10	0.037274	0.000162	0.001405	0.000006	0.282268	0.000018	27	-17.8	1.2	-2.4	1.3	1403	1586
12SZ14@15	716	10	0.069728	0.002742	0.002586	0.000102	0.282300	0.000021	27	-16.7	1.3	-2.1	1.3	1402	1560
12SZ14@16	743	11	0.055338	0.000734	0.002066	0.000024	0.282098	0.000021	27	-23.9	1.3	-8.5	1.4	1673	1904
12SZ14@17	738	11	0.055829	0.000697	0.002059	0.000025	0.282292	0.000017	27	-17.0	1.2	-1.7	1.3	1393	1556
12SZ14@18	759	11	0.023667	0.000339	0.000894	0.000011	0.282117	0.000021	26	-23.2	1.3	-6.9	1.4	1594	1835
12SZ14@19	774	11	0.050163	0.000273	0.001863	0.000010	0.282222	0.000019	27	-19.4	1.2	-3.3	1.3	1486	1667
12SZ14@20	740	11	0.053658	0.001042	0.002000	0.000033	0.282112	0.000018	27	-23.4	1.2	-8.0	1.3	1649	1878
12SZ14@22	740	11	0.021091	0.000091	0.000814	0.000004	0.282110	0.000016	26	-23.4	1.2	-7.5	1.3	1600	1851
12SZ14@25	742	11	0.060526	0.001853	0.002190	0.000064	0.282161	0.000019	28	-21.6	1.2	-6.3	1.3	1586	1793
12SZ17@01	740	11	0.040931	0.000286	0.001635	0.000010	0.282382	0.000016	25	-13.8	1.2	1.7	1.3	1250	1384
12SZ17@02	722	10	0.072149	0.001487	0.002731	0.000046	0.282417	0.000019	26	-12.6	1.2	2.1	1.3	1236	1353
12SZ17@03	728	10	0.066287	0.000217	0.002329	0.000008	0.282600	0.000018	28	-6.1	1.2	8.9	1.3	957	1012
12SZ17@04	720	10	0.073143	0.000455	0.002839	0.000016	0.282465	0.000017	26	-10.9	1.2	3.7	1.3	1170	1269
12SZ17@05	715	10	0.064435	0.001130	0.002373	0.000038	0.282453	0.000017	27	-11.3	1.2	3.4	1.3	1172	1281
12SZ17@06	741	11	0.063826	0.000845	0.002222	0.000027	0.282541	0.000019	29	-8.2	1.2	7.1	1.3	1039	1112
12SZ17@07	719	10	0.058456	0.000312	0.002050	0.000012	0.282583	0.000020	29	-6.7	1.2	8.2	1.3	973	1036
12SZ17@08	727	10	0.058396	0.002087	0.002166	0.000075	0.282612	0.000024	27	-5.7	1.3	9.4	1.4	935	986
12SZ17@09	725	10	0.066150	0.000892	0.002329	0.000030	0.282547	0.000018	28	-7.9	1.2	6.9	1.3	1033	1107
12SZ17@10	733	10	0.069504	0.000390	0.002436	0.000013	0.282545	0.000019	29	-8.0	1.2	7.0	1.3	1040	1113
12SZ17@11	706	10	0.065143	0.001095	0.002321	0.000035	0.282574	0.000017	28	-7.0	1.2	7.5	1.3	994	1063
12SZ17@12	729	10	0.062647	0.000648	0.002262	0.000025	0.282318	0.000022	28	-16.1	1.3	-1.1	1.4	1364	1518
12SZ17@13	722	10	0.055339	0.000309	0.001983	0.000011	0.282583	0.000022	28	-6.7	1.3	8.3	1.4	972	1034
12SZ17@14	722	10	0.053305	0.000296	0.001902	0.000010	0.282567	0.000017	28	-7.3	1.2	7.8	1.3	994	1063
12SZ17@15	740	11	0.113026	0.000830	0.003856	0.000028	0.282596	0.000019	29	-6.2	1.2	8.2	1.3	1005	1054

12SZ17@16	748	11	0.103767	0.001118	0.003578	0.000038	0.282644	0.000023	29	-4.5	1.3	10.2	1.4	923	958
12SZ17@17	729	10	0.049780	0.000249	0.001781	0.000009	0.282543	0.000018	28	-8.1	1.2	7.1	1.3	1024	1100
12SZ17@19	740	11	0.047699	0.000651	0.001883	0.000019	0.282419	0.000017	25	-12.5	1.2	2.9	1.3	1205	1323
12SZ17@20	733	10	0.068174	0.000166	0.002423	0.000007	0.282614	0.000019	28	-5.6	1.2	9.4	1.3	938	987
12SZ17@21	739	11	0.159032	0.002896	0.005405	0.000099	0.282635	0.000025	29	-4.9	1.3	8.8	1.4	990	1023
12SZ17@22	721	10	0.070116	0.002272	0.002478	0.000080	0.282600	0.000019	28	-6.1	1.2	8.7	1.3	960	1017
12SZ17@23	719	10	0.033889	0.000559	0.001217	0.000020	0.282510	0.000016	28	-9.3	1.2	6.0	1.3	1055	1149
12SZ17@24	722	10	0.032064	0.000495	0.001275	0.000018	0.282426	0.000019	25	-12.3	1.2	3.1	1.3	1176	1302
12SZ17@25	702	10	0.065464	0.000802	0.002302	0.000028	0.282603	0.000019	28	-6.0	1.2	8.5	1.3	951	1011
12SZ17@26	728	10	0.050851	0.000505	0.001851	0.000019	0.282481	0.000019	27	-10.3	1.2	4.9	1.3	1116	1215
12SZ17@27	743	11	0.030444	0.000120	0.001090	0.000005	0.282172	0.000016	28	-21.2	1.2	-5.4	1.3	1526	1747
12SZ17@28	831	12	0.053706	0.000337	0.001870	0.000011	0.282510	0.000017	29	-9.3	1.2	8.1	1.3	1074	1136
part of Suixian Group														1615.	
12SZ10@01	752	11	0.053345	0.000218	0.002020	0.000009	0.282136	0.000024	26	-22.5	1.3	-6.9	1.4	1615. 7	1830.7
12SZ10@02	747	11	0.072090	0.000460	0.002543	0.000016	0.282189	0.000031	28	-20.6	1.5	-5.4	1.6	1562. 4	1750.9
12SZ10@03	763	11	0.026471	0.000147	0.001018	0.000005	0.282214	0.000019	26	-19.7	1.2	-3.4	1.3	1464. 2	1663.0
12SZ10@04	730	10	0.052742	0.000691	0.001891	0.000024	0.281953	0.000022	28	-29.0	1.3	-13.8	1.4	1869. 6	2158.3
12SZ10@05	737	11	0.043154	0.000215	0.001603	0.00008	0.282044	0.000020	27	-25.8	1.2	-10.3	1.3	1727. 8	1988.8
12SZ10@07	749	11	0.046471	0.000642	0.001746	0.000023	0.282115	0.000020	27	-23.2	1.3	-7.6	1.3	1633. 6	1862.2
12SZ10@08	738	10	0.041047	0.000246	0.001579	0.000011	0.281984	0.000019	26	-27.9	1.2	-12.4	1.3	1810. 9	2094.1
12SZ10@09	734	11	0.040728	0.000098	0.001537	0.000002	0.282183	0.000017	26	-20.8	1.2	-5.4	1.3	1528.	1739.0
12SZ10@10	725	10	0.022914	0.000208	0.000945	0.000009	0.282050	0.000017	24	-25.5	1.2	-10.0	1.3	1688.	1964.3
12SZ10@11	733	10	0.097772	0.000826	0.003335	0.000036	0.282047	0.000024	29	-25.7	1.3	-11.1	1.4	1807.	2026.5
- 12SZ10@13	763	11	0.069837	0.000796	0.002562	0.000030	0.281896	0.000020	27	-31.0	1.3	-15.5	1.3	1986.	2268.4
128710@14	736	10	0 043564	0 000319	0.001620	0.000012	0 282126	0.000018	27	-22.8	12	-74	13	5 1612.	1842.2
125710@16	731	10	0.036856	0.000230	0.001308	0.00000	0.281002	0.000017	26	-27.6	1.2	-12 1	1.3	1 1790.	2077 3
120210(210	131	10	0.030630	0.000239	0.001390	0.000000	0.201992	0.000017	20	-21.0	1.4	-12.1	1.0	9	2011.3

12SZ10@17	720	10	0.041915	0.000210	0.001594	0.000007	0.282121	0.000017	26	-23.0	1.2	-7.9	1.3	1618. 8	1855.7
12SZ10@18	765	11	0.042009	0.000378	0.001609	0.000013	0.282188	0.000022	26	-20.7	1.3	-4.6	1.4	1524. 3	1724.0
12SZ10@20	728	10	0.116227	0.000388	0.003953	0.000014	0.282374	0.000037	29	-14.1	1.7	0.1	1.7	1345. 1	1458.0
12SZ10@22	749	11	0.061955	0.002685	0.002284	0.000092	0.281949	0.000027	27	-29.1	1.4	-13.7	1.5	1895. 8	2171.2
12SZ10@23	740	11	0.048112	0.001423	0.001710	0.000045	0.282293	0.000018	28	-16.9	1.2	-1.4	1.3	1379. 1	1545.0
12SZ10@24	731	11	0.048567	0.000809	0.001772	0.000029	0.281936	0.000025	27	-29.6	1.4	-14.3	1.4	1888. 4	2186.3
12SZ10@25	777	11	0.088392	0.002324	0.003201	0.000083	0.282206	0.000024	28	-20.0	1.3	-4.5	1.4	1564. 9	1729.3
12SZ10@26	732	10	0.047685	0.000186	0.001769	0.000007	0.282181	0.000019	27	-20.9	1.2	-5.6	1.3	1540. 9	1749.2
12SZ10@27	757	11	0.028810	0.000442	0.001085	0.000016	0.282200	0.000019	27	-20.2	1.2	-4.1	1.3	1486. 4	1691.3
12SZ10@28	750	11	0.065030	0.000965	0.002411	0.000034	0.282131	0.000026	27	-22.7	1.4	-7.3	1.4	1639. 3	1849.0
13SZ17@01	736	10	0.141088	0.001771	0.004996	0.000048	0.282213	0.000022	28	-19.8	1.3	-6.0	1.4	1638	1771
13SZ17@02	730	10	0.041076	0.000152	0.001500	0.000005	0.282152	0.000019	27	-21.9	1.2	-6.5	1.3	1570	1795
13SZ17@03	730	10	0.050014	0.000291	0.001813	0.000011	0.282128	0.000020	28	-22.8	1.2	-7.6	1.3	1618	1846
13SZ17@04	715	10	0.041864	0.000165	0.001560	0.000006	0.282161	0.000019	27	-21.6	1.2	-6.6	1.3	1560	1785
13SZ17@05	718	10	0.044161	0.000315	0.001632	0.000012	0.282142	0.000021	27	-22.3	1.3	-7.2	1.3	1591	1821
13SZ17@07	733	10	0.042965	0.000251	0.001573	0.000009	0.282184	0.000020	27	-20.8	1.2	-5.4	1.3	1528	1739
13SZ17@09	730	10	0.089549	0.000818	0.003420	0.000031	0.282327	0.000019	26	-15.7	1.2	-1.3	1.3	1395	1529
13SZ17@10	724	10	0.056921	0.000292	0.002091	0.000011	0.282223	0.000019	27	-19.4	1.2	-4.5	1.3	1494	1685
13SZ17@11	741	11	0.034624	0.000408	0.001295	0.000016	0.282161	0.000021	27	-21.6	1.3	-5.9	1.4	1550	1772
13SZ17@12	739	10	0.057143	0.000567	0.002082	0.000019	0.282243	0.000024	27	-18.7	1.3	-3.4	1.4	1465	1645
13SZ17@13	738	11	0.065614	0.000739	0.002403	0.000028	0.282157	0.000025	27	-21.8	1.4	-6.7	1.4	1602	1807
13SZ17@14	724	10	0.035576	0.000159	0.001313	0.000007	0.282181	0.000023	27	-20.9	1.3	-5.6	1.4	1521	1740
13SZ17@15	722	10	0.049282	0.000293	0.001832	0.000010	0.282178	0.000032	27	-21.0	1.5	-6.0	1.6	1547	1759
13SZ17@16	793	11	0.058614	0.001197	0.002147	0.000040	0.282486	0.000022	27	-10.1	1.3	6.3	1.4	1117	1197
13SZ17@17	738	10	0.060346	0.000139	0.002222	0.000005	0.282169	0.000020	27	-21.3	1.2	-6.1	1.3	1577	1781
13SZ17@18	719	10	0.052510	0.000398	0.001921	0.000016	0.282138	0.000021	27	-22.4	1.3	-7.5	1.3	1608	1834
13SZ17@19	731	10	0.039832	0.000447	0.001474	0.000017	0.282197	0.000021	27	-20.3	1.3	-4.9	1.3	1506	1714
13SZ17@20	799	11	0.031427	0.000353	0.001320	0.000014	0.282471	0.000017	24	-10.6	1.2	6.3	1.3	1113	1199
-----------	-----	----	----------	----------	----------	----------	----------	----------	----	-------	-----	------	-----	------	------
13SZ17@21	746	11	0.074815	0.000180	0.002697	0.000007	0.282210	0.000028	28	-19.9	1.4	-4.7	1.5	1538	1717
13SZ17@22	731	10	0.054128	0.000135	0.001967	0.000005	0.282177	0.000023	28	-21.0	1.3	-5.9	1.4	1554	1762
13SZ17@24	738	11	0.031422	0.000099	0.001170	0.000004	0.282127	0.000019	27	-22.8	1.2	-7.1	1.3	1592	1831
13SZ17@25	721	10	0.056329	0.000318	0.002067	0.000013	0.282232	0.000027	27	-19.1	1.4	-4.2	1.5	1480	1668
13SZ17@26	709	10	0.043505	0.000166	0.001590	0.000005	0.282190	0.000021	27	-20.6	1.3	-5.7	1.3	1521	1736

T_{DM1} and T_{DM2} were calculated according o the following equations and parameters: $T_{DM1} = (1/\lambda) \times In[1+({}^{176}Hf/{}^{177}Hf_{DM} - {}^{176}Hf/{}^{177}Hf_{S})/({}^{176}Lu/{}^{177}Hf_{DM} - {}^{176}Lu/{}^{177}Hf_{S})];$

$$\begin{split} T_{DM2} &= T_{DM1} - (T_{DM1} - T) \times [(f_{cc} - f_s)/(f_{cc} - f_{DM})]; \\ f_{Lu/Hf} &= ({}^{176}Lu/{}^{177}Hf)_s/({}^{176}Lu/{}^{177}Hf)_{CHUR} - 1; \end{split}$$

where f_{cc} , f_{DM} , and f_s are the $f_{LU/Hf}$ values of the continental crust, the depleted mantle, and the zircon grains, respectively; S. CHUR, DM, and T refer to sample, chondritic uniform reservoir, depleted mantle, and zircon U-Pb age, respectively.

Decay constant of ¹⁷⁶Lu λ = 1.867 × 10⁻¹¹ year⁻¹(Söderlund et al., 2004).

 176 Hf/¹⁷⁷Hf_{DM} = 0.28325, 176 Lu/¹⁷⁷Hf_{DM} = 0.0384 (Griffin et al., 2000). Present-day 176 Hf/¹⁷⁷Hf_{CHUR}(0) = 0.282772; 176 Lu/¹⁷⁷Hf_{CHUR} = 0.0332 (Blichert and Albarède, 1997).

 $({}^{176}Lu/{}^{177}Hf)_{CC} = 0.015, ({}^{176}Hf/{}^{177}Hf)_{CC} = 0.28325$ (Amelin et al., 1999).

References:

Amelin, Y., Lee, D-C., Halliday, A. N. and Pidgeon, R. T. ,1999, Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252-255. Blichert-Toft, J. and Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243-258. Griffin, W., Pearson, N.J., Belousova, E., Jackson, S.E., Van Achterbergh, E., O'Reilly, S.Y. and Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133-148. Söderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E., 2004. The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311-324.

Appendix S4 Atlas of cathodoluminescence images 12SZ20 siltstone Gujing Formation lower part of Suixian Group

12SZ24 sandstone Gujing Formation lower part of Suixian Group

12SZ28 sandstone Gujing Formation lower part of Suixian Group

12SZ06 sandstone Liulin Formation middle part of Suixian Group

12SZ07 sandstone Liulin Formation middle part of Suixian Group

13SZ14 sandstone Liulin Formation middle part of Suixian Group

13SZ19 sandstone Liulin Formation middle part of Suixian Group

12SZ14 metarhyolite Liulin Formation middle part of Suixian Group

12SZ17 tuffaceous siltestone Liulin Formation middle part of Suixian Group

12SZ10 siltstone Yuanziwan Formation upper part of Suixian Group

13SZ17 sandstone Yuanziwan Formation upper part of Suixian Group

