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Abstract

Underwater video and digital still cameras are rapidly being adopted by marine scientists and managers as

a tool for non-destructively quantifying and measuring the relative abundance, cover and size of marine

fauna and flora. Imagery recorded of fish can be time consuming and costly to process and analyze manually.

For this reason, there is great interest in automatic classification, counting, and measurement of fish. Uncon-

strained underwater scenes are highly variable due to changes in light intensity, changes in fish orientation

due to movement, a variety of background habitats which sometimes also move, and most importantly simi-

larity in shape and patterns among fish of different species. This poses a great challenge for image/video

processing techniques to accurately differentiate between classes or species of fish to perform automatic clas-

sification. We present a machine learning approach, which is suitable for solving this challenge. We demon-

strate the use of a convolution neural network model in a hierarchical feature combination setup to learn

species-dependent visual features of fish that are unique, yet abstract and robust against environmental and

intra-and inter-species variability. This approach avoids the need for explicitly extracting features from raw

images of the fish using several fragmented image processing techniques. As a result, we achieve a single and

generic trained architecture with favorable performance even for sample images of fish species that have not

been used in training. Using the LifeCLEF14 and LifeCLEF15 benchmark fish datasets, we have demonstrated

results with a correct classification rate of more than 90%.

Regular sampling of fish populations is important for

monitoring the status and trends in the relative abundance,

composition, size, and biomass of fish assemblages (Jennings

and Kaiser 1998). There is an increasing focus on non-

destructive sampling techniques as marine protected areas

and areas closed to fishing increase in area, and as these

techniques gain popularity as biodiversity management tools

(McLaren et al. 2015). Underwater video based monitoring

techniques (Harvey and Shortis 1995; Shortis et al. 2009), are

being promoted as one of the main tools for non-destructive

sampling of fish (Cappo et al. 2003; Mallet and Pelletier

2014). Underwater video systems have been shown to be

cost effective, accessible and provide a means of repeatable

sampling (Murphy and Jenkins 2010). While manual process-

ing of the resulting imagery decreases the cost effectiveness

and availability of numerical data after recording, recent

developments in computer vision algorithms leading to

automatic species identification can improve the efficiency

of image analysis (Shortis et al. 2013).

Automatic counting and recognition of fish can be divided

into two components, (1) automatic fish detection in the

video sequences and (2) automatic fish species classification

in the video frames. Fish detection aims to distinguish fish

from “non-fish” objects in the video. Examples of non-fish

objects include coral reefs, kelp, sea grass beds and other

aquatic plants, sessile invertebrates such as sponges, gorgo-

nians and ascidians, and the physical structure of the seafloor.

Fish species classification aims to identify the species of fish

out of the pool of various classes or species of interest.

Several image processing and machine learning algo-

rithms have been proposed in the last two decades for these

applications. Some early attempts involved classification of

dead fish using shape and color dependent features (Strachan

and Kell 1995). Another approach, using a laser light source*Correspondence: ahmad.salman@seecs.edu.pk
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to create 3D fish models, was proposed in Storbeck and Daan

(2001) to take into account features like height, width, and

thickness of the specific species to be recognized. Such sys-

tems produced favorable results because they were developed

for fish sampling in controlled environments, e.g., fishing

vessels or conveyer belts. For real-time underwater fish iden-

tification, an effective approach using stereo cameras and

controlled lighting conditions was used in Harvey and

Shortis (1995). The fish were made to swim through a prede-

fined chamber to capture their images. Unconstrained under-

water fish classification involves more complex

environments and challenging factors like variation in light-

ing, turbidity of the water, background confusion due to reef

features and underwater plant life, and intra-species varia-

tion due to changes in orientation of the freely moving fish.

Videos are generally captured using digital cameras and there

is no prior assumption about the underwater environment

where the cameras are deployed. Due to these confounding

factors, underwater fish classification in an unconstrained

environment is a real challenge. Two methods for fish classi-

fication in the natural environment are presented in, for

example, Rova et al. (2007) and Spampinato et al. (2010),

based on capturing the texture pattern and shape of fish

using image processing. However, fish with only rich and

easily distinguishable texture were targeted. Recent trends

are moving toward the use of machine learning algorithms

for fish classification in video. Such algorithms automatically

learn features from labeled training data to differentiate

between classes; different fish species in our case. Early

machine learning algorithms were based on Principal Com-

ponent Analysis (PCA) (Turk and Pentland 1991) or Linear

Discriminant Analysis (LDA) (Mika et al. 1999). However,

these techniques assume that the appearance of each fish

species is linearly independent of other species’ appearances

as well as the background. This assumption does not hold in

practice due to the similarities among fish species in both

shape and size, and with the ambiguities caused by

extremely diverse background consisting of underwater reefs

and plant life. Recently, Sparse Representation-based Classifi-

cation (SRC) has been used together with Eigen-faces (PCA)

(Hsiao et al. 2014) for fish classification in the Taiwanese

coral reef ecosystem. PCA, LDA, and SRC have been exten-

sively used for other computer vision tasks like generic

object recognition and facial recognition from images (Turk

and Pentland 1991; Mika et al. 1999; Wright et al. 2009).

However, due to their linear nature, these techniques are

unable to model the nonlinear differences between the fish

species and their complex backgrounds.

Environmental variability in underwater imagery poses a

greater challenge towards achieving acceptable performance

Fig. 1. Example of underwater images on Taiwan reef with different background variability (http://groups.inf.ed.ac.uk/f4k/).
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(for example, see Fig. 1). Another approach for unconstrained

natural underwater environment uses hierarchical classifica-

tion trees with Support Vector Machines (SVMs) trained on

input image features (Huang et al. 2015). The decision mak-

ing is based on Gaussian Mixture Modeling (GMM). The

reported results are much improved in comparison with PCA

and standard SVM classification (Duan and Keerthi 2005;

Huang et al. 2015).

In the last few years, deep learning has emerged as a

powerful machine learning tool with the ability to overcome

the shortcomings of the conventional image classification

approaches. Variation in lighting conditions, distortions like

poor image quality and noise, changes in orientation and

size of the object of interest in the image and variations in

the background impose non-linearity in the image data dis-

tribution (Bengio 2009). It is difficult for conventional

machine learning algorithms to model and adapt to the fea-

tures of objects of interest in such images. Underwater

imagery of fish in their natural habitat includes all of these

challenges that must be addressed using a specially designed,

non-linear mathematical function to represent the complex

features in the data. Multilayer deep neural networks provide

such an opportunity to extract unique, invariant and robust

fish-dependent features in the presence of the distortions

and variability in the images.

We propose to use deep Convolution Neural Networks

(CNN) (LeCun et al. 2004) together with classification, based

on the standard classifiers like K-Nearest Neighbor (KNN)

and Support Vector Machine (SVM) trained on the features

extracted by the CNN in supervised deep learning. Fish

dependent features learnt in this setup prove to be robust

against environmental variability. Inspired by the visual cor-

tex of cats, CNN are marked by their ability to explore spa-

tially correlated sub-regions in natural images for extracting

unique and orientation invariant features of objects. CNN

has produced promising results in various applications like

handwritten digit recognition, facial recognition, and speech

recognition (Larochelle et al. 2007; Lee et al. 2009), where a

specific architecture was designed for each case. State-of-the-

art performance has been achieved using feature extraction

through very deep CNN in generic image-based object recog-

nition (Simonyan and Zisserman 2015). They introduced

special feature selection layers, called pooling and regulariza-

tion layers, on top of multiple convolution layers in CNN to

sift out distinct features of objects to be recognized. Another

pioneering CNN design for object detection in still images

was proposed in Ouyang and Wang (2013), where a combi-

nation of features selected from each layer of CNN was used

to identify the object of interest (pedestrians in their case) in

images. We aim to employ a specially designed CNN for the

task of fish classification using combination of fish-

dependent features identified by each layer of network. Our

approach is more suitable for fish recognition in underwater

environments as the deep learning CNN technique adapts to

the unique challenging situations, in comparison with gen-

eral object recognition/detection in non-underwater

imagery. We present the difference between this approach

and the latest CNNs, and the motivation behind our design,

in the discussion section.

The remainder of the paper is organized as follows: Mate-

rials and procedures section describes the proposed model of

the deep learning CNN. Assessment section details the exper-

imental scheme and protocol including the comparative

study. Discussion and conclusions section covers detailed

discussion about the significance of our results followed by

conclusions.

Materials and procedures

In this section, we provide details about the fish dataset

used in this article. Then, we describe our CNN architecture

designed for extracting fish species-dependent features based

on their unique visual characteristics. We also elaborate the

motivation and reasoning for designing the proposed CNN

and how it is beneficial in extracting information that helps

in the classification of fish species.

Fish dataset

The datasets used in this article are taken from LifeCLEF

2014 and LifeCLEF 2015 fish identification tasks (http://

www.imageclef.org/). The LifeCLEF 2014 (LCF-14) for fish is

a smaller dataset derived from a very large dataset called

Fish4Knowledge (http://groups.inf.ed.ac.uk/f4k/, 2015).

Fish4Knowledge contains about 700,000 underwater video

clips of ten minutes duration each. The videos span a time

period of 5 yr of monitoring the marine ecosystem of Taiwan

coral reefs, one of the largest fish biodiversity environments

in the world with more than 3000 different fish species. The

LCF-14 dataset for fish contains about 1000 videos. The

labels of approximately 20,000 detected fish in the videos

are also provided. A total of 10 different fish species are

included in this dataset. LifeCLEF 2015 (LCF-15) is also taken

from Fish4Knowledge. LCF-15 consists of 93 underwater vid-

eos covering 15 species. There are a total of 9000 annota-

tions provided with the dataset that contain species labels in

the videos. In addition, LCF-15 additionally provides about

20,000 sample images with class labels. As compared to LCF-

14, LCF-15 provides challenging underwater images and vid-

eos marked by noisy and blurry environments and poor

lighting conditions. Therefore, using LCF-15 helps us in

judging the robustness of fish recognition algorithms in

environments with higher variability. Table 1 summarizes

the technical details of LCF-14 and LCF-15 datasets. Table 2

provides the categorization of LCF-14 and LCF-15 datasets

according to the number of samples for each species.

The robustness of a classification technique is judged by

the variability it can handle in the input data. Fish species

recognition naturally encounters variability challenges, e.g.,

quality of the video, water turbidity, algae, background coral

Salman et al. Fish classification based on deep learning
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reef patterns, and light intensity changes. Variation in these

parameters will challenge the performance of any classifica-

tion technique. As shown in Fig. 2, the LCF-14 and LCF-15

data present all of these challenges.

Architecture

Our idea of applying deep CNN has two aims, (1) to find

abstract and unique species-dependent fish features implic-

itly by learning task-specific information, and (2) to apply a

suitable classification approach on the learned features. To

achieve these goals, we propose a CNN architecture as

shown in Fig. 3. Our network is a K-layered neural network,

i.e., a mathematical parametric model. The first layer is

called the input layer and represents the pixels of an image.

The kth layer is feature layer where each element of the layer,

called a neuron, contributes to the output feature vector.

The layers between input and feature layers are hidden

layers. Hidden layers are divided into sub-sections denoted

as I
m
k with k51;2; :::;K being the kth layer and m51;2; . . . M

is the number of sub-sections in that layer. We stipulate

layer k50 as the input layer. The sub-section I
m
k is called a

feature map. Each layer has different number of feature

maps. The number of neurons in each feature map is called

the kernel size. In Fig. 3, the weights Wk, k51;2; . . . ;K are

the weight matrices connecting the neurons of feature map

m at layer k with the neurons of feature map m at layer k21.

However, layer k50 accounts for the pixels of the raw input

image. Such an arrangement ensures the detection of object

features by the feature maps regardless of their position in

the input image or preceding layer (LeCun et al. 2004). The

output feature vector I
m
K is combined with the selected neu-

rons in the hidden convolution layers I
m
k ; k51;2; . . . ;K21

to create the final feature representation. The motivation

behind combining features from multiple layers is that lower

(hidden) layers have more localized information while

higher layers have more global information. Thus their com-

bination encodes both local and global information about

the fish species. In the supervised learning scenario, conven-

tional CNN based approaches place emphasis on the features

represented at the output layer. However, some less domi-

nant local features (for instance, variation in tail shape or

main body contour) may be ignored in the higher subsam-

pling layers that select strong feature as a result of max-

pooling. Therefore, preserving the information provided by

lower level convolution layers is critical in our task.

Algorithm

Suppose input to the architecture, as shown in the Fig. 3,

is an image X that is a 2D structure matrix in which each

value acts as a pixel. The value of each feature map in the

layer k51 is calculated as

I
m
k 5r W

ij
k � X

� �
1bk

� �
(1)

where (�) stands for 2D matrix convolution (LeCun et al.

2004) between weight matrix W
ij
k and input image X. The

vector bk is a constant valued bias vector normally used in

neural networks to avoid the weight collapse and numerical

instability as a result of training (Bengio and LeCun 2007). r
�ð Þ is a sigmoid function to introduce a non-linear behavior

Table 2. Species-wise population division in LCF-14 and LCF-15
datasets. Shaded are the common species in both datasets.

LCF-14 species No. of images

Acanthurus nigrofuscus 3240

Amphiprion clarkii 3863

Chaetodon lunulatus 3411

Chromis margaritifer 3653

Dascyllus reticulatus 3873

Hemigymnus fasciatus 3077

Lutjanus fulvus 866

Myripristis berndti 3390

Neoniphon sammara 2988

Plectroglyphidodon dickii 3036

LCF-15 species No. of images

Abudefduf vaigiensis 434

Acanthurus nigrofuscus 2770

Amphiprion clarkii 3265

Chaetodon lunulatus 3544

Chaetodon speculum 162

Chaetodon trifascialis 704

Chromis chrysura 3859

Dascyllus aruanus 1749

Dascyllus reticulatus 5327

Hemigymnus melapterus 361

Myripristis kuntee 3231

Neoglyphidodon nigroris 213

Pempheris vanicolensis 906

Plectroglyphidodon dickii 3102

Zebrasoma scopas 343

Table 1. Information about LCF-14 and LCF-15 fish datasets.

Dataset No. of videos Format Resolution Frames/Sec No. of labeled images Species/classes

LCF-14 1000 FLV 6403 480, 320 x 240 24 19,868 10

LCF-15 93 FLV 640 x 480, 320 3 240 24 20,0001 15

Salman et al. Fish classification based on deep learning
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in the network to model the data distribution of the input

images which are naturally non-linear (Bengio and LeCun

2007; Bengio 2009). The function is given as

r zð Þ5 11e2zð Þ21
� �

. As with (1), the value of each feature map

in the layer k52;3; . . . ;K is achieved by

I
m
k 5r

XMk21

i51

W
ij
k � I

i
k21

� �
1bm

k

 !
; k52;3; . . . K;

m51;2; . . . ;Mk; i51;2; . . . ;Mk21; j51;2; . . . ;Mk

(2)

Interpreting (2) and Fig. 3, we can say that each feature map

I
m
k of layer k is calculated by adding the convolutions of fea-

ture maps of layer k21 and weight matrices connecting the

feature maps I
m
k and I

i
k21 where i51;2; . . . ;Mk21 accounts

for the number of feature maps in the layer k21. W
ij
k are the

weights connecting Mk21 feature maps of layer k21 and Mk

feature maps of layer k. Therefore, there will be a total of

Mk3Mk21ð Þ weight matrices between the two layers. The

main idea behind using the convolution operation is to

exploit the correlative behaviour among the structures in an

image, in terms of abstract non-linear features. There are

additional layers shown in between the convolution layers

in Fig. 3, called sub-sampling layers. These layers are not

associated with any weight matrix. The purpose of these

layers is to select the most dominant outputs and ignore the

others. Using this approach, the dimension of the output of

any layer can be reduced to enhance the computational effi-

ciency together with sifting the information content from

the pool of several neurons. The output of sub-sampling

layer in reduced dimension is provided as input to the next

convolution layer. In (2), the variable k denotes only the

convolution layers and hence a presence of a sub-sampling

Fig. 2. (a) Sample images of various fish species (one per row) in LCF-14 and (b) LCF-15 datasets showing variation in image quality, background,
and orientation of fish in each image.
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layer in the equation is ignored for simplicity. As shown in

Fig. 3, the feature layer K is subjected to the fully connected

neural network (Hinton and Salakhutdinov 2006) to com-

pare the final output with the desired class label vector. A

class label vector for N classes is an N-dimensional vector

containing 1 at the location corresponding to the correct

class label of the input image and all zeros elsewhere. Class

label is a number from 1 to N given to each fish species.

This is called one-of-n labels and is a common way of defin-

ing class labels in supervised learning (Hinton and Salakhut-

dinov 2006). Therefore,

If 5Wf 3I
m
k ; k5K; m51;2; . . . ;MK (3)

where Wf are the connection weights between output and

feature layer. I
m
k are the feature maps of the Kth layer. The

output If is the result of matrix multiplication between Wf

and I
m
k . The output vector If is confined to the range [0–1]

to be able to compare the result with the class labels. The

network is trained using a standard error-backpropagation

algorithm (Hinton et al. 2006). The error is defined as the

Euclidean distance between the network output y and

desired output d

E5ky2dk2 : (4)

The network parameters or weights are trained to minimize

the error (4) which will force the CNN to learn the fish spe-

cies characteristics as a result of supervised constraints. The

desired output and consequently the network output y will

be different for each fish-species. The symbol k � k is the L2

norm of vectors.

The images of fish in their natural underwater environ-

ment may encounter a number of variations. The location of

fish as well as background coral reef, sea floor and plants

cannot be confined to any fixed location in the image. More-

over, the changing light intensity in consecutive images/

frames adds further variation in the videos. Since the CNN

architecture is inspired by the biological cortex of the cat’s

eye (LeCun et al. 2004), each feature map in Fig. 3 (layer-1)

is only associated with a small region of the input image

containing fish through a set of weights, making it analo-

gous to a receptive field in the eye. This continues for the

feature maps of the higher layer, which take the feature

maps of preceding layer as the input. Given the fish dataset

is large enough to contain a variety of image conditions, this

setting ensures the extraction of features that are invariant

to the position and the pose of the fish. Each layer extracts

unique and invariant features from the layer below it. Fur-

thermore, the supervised learning criterion with class labels,

as mentioned in (4), ensures the filtering of non-fish infor-

mation from the images. Figure 4 illustrates the fish species-

dependent feature extraction as the image propagates to the

higher layers of CNN. The visible, first convolution layer acts

in a similar fashion to an edge detection layer while the

higher layer further extracts invariant yet useful features of

the fish structure. As the image propagates to the higher

layers, the dimension changes according to the designed

architecture of CNN. It is evident from Fig. 4 that the infor-

mation about fish edges diminishes as the image propagates

Fig. 3. Proposed deep Convolution Neural Network. On the bottom-
left is a feature map whereas on the right is a complete CNN. The input
to the network is a two dimensional image and the output is the label

vector. The fish species-dependent feature vector is a special combina-
tion of the output of convolution layers. Using a large number of labeled

training images, the parameters of the hidden layer are optimized so
that when an image of a fish is passed through the network, it produces
the correct species label.

Fig. 4. Image propagation through CNN with each convolution layer as a unique feature extractor. Multiple images in layers are outcome of feature

maps in that layer.
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into the higher layers. Since the edges are not very well

defined in terms of pixel strength due to blending with the

water color, this information may not appear in the output

feature vector. This might create problems in classification,

as different species of fish may have a similar tail of fin struc-

ture but may exhibit small differences in the main body

shape. Therefore, such an information loss may result in

errors in classification. To solve this problem, we propose a

feature combination approach to combine the useful infor-

mation extracted by each layer. Given the convolution layer

representations of CNN, the final high dimensional feature

vector is calculated as

F5 I
m
K ; f I

m
K21

� �
; . . . ; f I

m
2

� �
; f I

m
1

� �� �
: (5)

which represents the concatination of the output layer fea-

ture vector with selected hidden layer features. f �ð Þ is a

mathematical function to sift out unique fish species-

dependent features learned by the neurons of hidden layers.

We use Principal Component Analysis (PCA) to find the

orthogonal Eigen vectors representing such features. The

dimension of PCA components for all hidden convolution

layers were kept the same as that of the output feature vector

I
m
K . These features were then fed to standard classifiers like

SVM and KNN to predict the fish species label.

Assessment

In this section, we present several experiments designed

to investigate the fish classification accuracy of the proposed

CNN neural architecture. We also compare our results with

the current state-of-the-art image-based object recognition

techniques that have been successfully applied for various

computer vision tasks. The experimental settings for training

of several algorithms are presented followed by the results

and comparisons.

Experimental protocol

To learn fish-specific characteristics, we train the CNN

with LCF-14 and LCF-15 fish datasets by organizing them

into training, validation and testing sets. The training set is

used by the CNN to train the network parameters for opti-

mum performance on the recognition task in multiple itera-

tions. The validation set is used to monitor the performance

of the CNN during training. The validation set acts as an

intermediate testing of a learning architecture after each

training iteration. Once the CNN is trained, the parameters

(i.e., network weights), are saved and used to measure per-

formance on the testing set. All three sets (i.e., training, vali-

dation, and testing) are disjoint, which means that each set

contains unique images of fish that are not used in any of

the other sets. The original LCF-14 and LCF-15 datasets pro-

vide about 20,000 sample images each. However, to train

deep architectures like CNN, it is always beneficial to include

more environmental variability so that the architecture

learns to suppress such anomalies and extracts class-

dependent features in a supervised learning scenario (Raina

et al. 2007). To achieve this, we replicate the images in the

LCF-14 and LCF-15 datasets with induced image distortions.

We use salt and pepper noise to degrade some images,

change the light intensity levels, sharpen some images and

add blurring to some images through average and Gaussian

filtering (Boyle and Thomas 1988; Shapiro and Stockman

2001). With such duplication and degradation, a total of

100,000 images are generated for the LCF-14 dataset for fish

including the original 20,000 images. Out of the 100,000

images, 70,000 are used for training and 30,000 are reserved

for validation. For the testing set, we use the 6956 images as

provided in the dataset, without any modification. Using a

similar approach, we generated a total of 175,200 images for

the LCF-15 dataset including the original 20,000 images and

9000 annotated images from videos. Out of the 175,200

images, 85,700 are used in training set, 32,000 for the valida-

tion set and remaining 7500 images are kept as the testing

set. There is no original training and test split provided in

LCF-15 dataset. Note that all species are included in training,

validation and testing sets for the expanded datasets. Table 3

summarizes the overall dataset distribution.

The effectiveness of a machine learning approach is

judged by its ability to correctly classify unknown and previ-

ously unseen query images. Unseen means that the particu-

lar image was not used at any stage of the training of the

machine learning algorithm. This testing protocol is stand-

ard in the machine learning literature. However, we made

the experimental protocol further challenging by performing

cross-dataset classification. In other words, we trained our

CNN on the two datasets separately and additionally tested

them across the datasets. Thus, we report results for four

experimental protocols that are (1) training on LCF-14 and

testing on the same using its test set (2) training on LCF-15

and testing on the same using its test set (3) training on

Table 3. Data distribution for experimental protocol (no. of images).

Dataset Original

Generated

training

set

Generated

validation

set

Generated

testing set

Total

generated

LCF-14 20,000 70,000 30,000 6956 106,956

LCF-15 29,000 85,700 32,000 7500 175,200

Salman et al. Fish classification based on deep learning
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LCF-14 and testing on LCF-15 test set (4) training on LCF-15

and testing on the LCF-14 test set. Improved performance

on cross-dataset classification validates the effectiveness of

fish species features extraction as a result of deep learning in

the CNN.

The hyperparameters chosen to train our architecture are

as follows: total number of layers are three, i.e., K53. All

input images to the CNN are confined to 32 3 32 pixel reso-

lution given that the datasets contain images of different res-

olutions. All the images were resized using bilinear

transformation (Smith 1981) and converted to greyscale.

Color information is not used due to the fact that the colors

of the fish are attenuated and are not accurately preserved in

the dataset. Thus, we only retain the texture and shape

information. We observed that increasing the resolution fur-

ther did not provide any significant improvement in per-

formance, but increased the computational cost. The first

convolution layer, i.e., k51, has eight feature maps with the

kernel size of 5 each. The first subsampling layer down sam-

ples the output of the first layer by a factor of 2. The convo-

lution layer k52 has 24 feature maps with the kernel size of

3 each. The second sub-sampling layer implements the down

sampling by the factor of 3. The last convolution layer k53

has 80 feature maps with kernel size of 4 each. For each

input image, the output feature vector has 80 dimensions,

which is fed to the fully connected layer with a final output

in the form of a class label vector. The CNN trained for LCF-

14 has 10 output values for 10 fish classes while the CNN

trained for LCF-15 has 15 outputs for 15 fish classes.

The fish species classification task is in fact a fish species

identification task in our experiment. In other words, each

predicted class of the test image is to be compared with the

rest of the classes using the outcome of SVM or KNN classi-

fier and the highest scoring class is selected as the final

outcome.

Comparative study

In order to evaluate the effectiveness of our proposed fish

species classification approach, we present a comparative

study based on various other popular techniques recently

used for automatic fish species classification. Support Vector

Machines (SVM) based systems are among the state-of-the-

art for various applications (Duan and Keerthi 2005; Wang

and Casasent 2009; Huang et al. 2015). SVM is basically a

binary classifier, i.e., it can discriminate between two classes.

However, using one-against-one and one-against-all

approaches, it can be used as a multi-class classifier as used

in Duan and Keerthi (2005) for fish classification. In addition

to SVM, we also present results based on k-nearest neighbor

(KNN) classifier, a popular yet simple approach (Cover and

Hart 1967; Altman 1992) that is based on exploiting the

Euclidean distance among the features of various classes.

Classification based on sparse representation of features

(SRC) has recently been used for fish species classification in

Wright et al. (2009) and Hsiao et al. (2014) with promising

results. We have also used SRC in addition to SVM and KNN

in our experiments. SRC, SVM, and KNN are trained on raw

fish images. Here, we emphasize that the training and test

protocols in all these approaches including CNN are kept

exactly the same for a fair comparison. The tunable parame-

ters for SVM, KNN, and SRC are chosen on the basis of the

training and validation sets (as used for CNN) for their best

performance.

For a baseline system, we have also used Principal Com-

ponent Analysis (PCA) of raw fish images. PCA is generally

used for dimensionality reduction of the data. As a result, we

choose 10% of the principal components as new features

and classify these using the standard SVM and KNN. For

score measurement, we have adopted three measures, i.e.,

Average Count (AC), Average Precision (AP), and Average

Recall (AR) (Huang et al. 2015).

AC5

Pc
j51 True PositivejPc

j51 True Positivej1False Positivej

� � (6)

AP5
1

c

Xc

j51

True Positivej

True Positivej1False Positivej

� �
(7)

AR5
1

c

Xc

j51

True Positivej

True Positivej1False Negativej

� �
(8)

In (6), (7) and (8), c accounts for the total number of classes.

The performance comparison between various approaches is

shown in Table 4 in terms of AC, AP, and AR. We dub our

technique as CNN-KNN and CNN-SVM, i.e., fish species label

prediction by KNN and SVM based on the features learned

by CNN. Similarly, PCA-KNN and PCA-SVM denote predic-

tion of class label by KNN and SVM classifiers based on the

PCA features calculated on raw images of fish. The PCA

dimensionality was chosen to be 10 based on the best cross-

validation performance across all species of fish.

It is evident from the comparison in Table 4 that CNN-

KNN and CNN-SVM perform better when compared to all

other techniques if training and testing both are done on

LCF-14 fish dataset. CNN-SVM returns the highest classifica-

tion success rate. PCA-SVM on the other hand shows better

performance as compared to KNN, SVM, PCA-KNN, and SRC.

Similarly, when training and testing is performed on LCF-15

fish data, CNN-KNN outperforms all other approaches while

CNN-KNN performs marginally better than CNN-SVM. These

outcomes depict the challenging nature of LCF-15 fish data-

set that is marked by higher degradations in terms of light

intensity and blurriness together with background confusion

with objects of interest, i.e., fish. The CNN trained on LCF-

15 fish data is forced to extract fish-dependent features for

the challenging environment in the supervised learning sce-

nario. Hence it is capable of suppressing the information

unrelated to fish. Although in the same-dataset train-test

protocol, CNN based classification outperforms all the others
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in general, other algorithms produce reasonable scores

except SRC which fails to cope with the challenging variabil-

ity in LCF-15 dataset. Moreover, it is critical to monitor the

robustness of any algorithm and to do critical analysis

whether there is any overfitting on a particular dataset by

the learning algorithms.

To achieve this in the performance evaluation, two more

challenging cases are investigated, i.e., training on LCF-14

fish data and testing on LCF-15 test set and vice versa. The

cross-dataset testing evaluates the robustness and generaliza-

tion ability of the various approaches. It should be noted

that the cross-dataset performance can be measured only for

the five common classes in LCF-14 and LCF-15 datasets (see

Table 2). From Table 5 it is evident that CNN based classi-

fiers, especially CNN-SVM, outperforms all approaches with

a large margin in both cross-dataset experiments. It is inter-

esting to notice that all techniques perform better in the

case when training is done on the noisy and poorer quality

LCF-15 dataset and testing is done on LCF-14. This implies

that the machine learning algorithms are able learn to

extract useful information regarding fish species in the pres-

ence of noise and image distortions and perform well even

when those challenges are not present in LCF-14 dataset. On

the other hand, when training is done on LCF-14 and testing

is performed on LCF-15, the performance is comparatively

poor as the variability incorporated in LCF-15 is totally

unknown to all classifiers trained either directly on raw

images or features extracted by PCA and CNN. In both cross-

dataset experiments, SRC produces better scores in terms of

AC and AP as compared to SVM, KNN, PCA-SVM, and PCA-

KNN but it lags behind in AR. Still, CNN-KNN and CNN-

SVM yield the best results among all algorithms, which

shows that it is robust enough against overfitting on a spe-

cific dataset and learns to extract invariant fish species-

dependent features. In contrast, all other algorithms produce

worse results while testing on LCF-15 in cross-dataset setup

as compared to when they were trained and also tested on

LCF-15 (see Table 4).

These experiments strengthen our claim that stand alone

shallow architectures like SVM, KNN, and SRC, when trained

on either raw images or on features extracted through

another shallow mathematical formulation like PCA, fail to

accommodate unique, task-specific features in these experi-

ments. On the other hand, our approach based on deep

Table 4. Performance comparison (percentage values) on same-dataset with the LCF-14- LCF-14 and LCF-15- LCF-15 train-test pro-
tocol. Best scores are shown in bold.

Method

AC AP AR

Train on LCF-14 Train on LCF-15 Train on LCF-14 Train on LCF-15 Train on LCF-14 Train on LCF-15

Test on LCF-14 Test on LCF-15 Test on LCF-14 Test on LCF-15 Test on LCF-14 Test on LCF-15

SVM 83.94 63.41 82.21 63.41 81.12 65.23

KNN 84.56 81.55 83.52 81.50 81.02 83.50

SRC 84.04 26.81 83.75 26.81 80.77 38.02

PCA-SVM 88.54 82.33 86.89 82.74 85.63 82.33

PCA-KNN 86.02 81.37 85.20 81.37 82.71 82.99

CNN-SVM 96.75 92.87 94.47 91.64 95.70 90.97

CNN-KNN 96.23 93.65 93.44 91.99 95.03 91.25

Table 5. Performance comparison (percentage values) of cross-dataset with the LCF-14- LCF-15 and LCF-15- LCF-14 train-test pro-
tocol. For cross-dataset experiments, only five fish species common to LCF-14 and LCF-15 were considered. Best scores are shown in
bold.

Method

AC AP AR

Train on LCF-14 Train on LCF-15 Train on LCF-14 Train on LCF-15 Train on LCF-14 Train on LCF-15

Test on LCF-15 Test on LCF-14 Test on LCF-15 Test on LCF-14 Test on LCF-15 Test on LCF-14

SVM 40.80 76.32 40.80 75.12 57.30 90.26

KNN 40.64 82.09 40.64 81.80 60.63 90.01

SRC 44.63 84.02 44.63 88.10 61.35 60.20

PCA-SVM 34.16 80.30 34.16 78.60 54.34 94.29

PCA-KNN 39.88 80.19 39.88 79.66 61.33 90.90

CNN-SVM 65.36 97.41 65.36 97.18 74.50 98.43

CNN-KNN 63.88 97.22 63.88 96.94 75.71 97.99
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Fig. 5. Performance in terms of %Precision and %Recall for individual fish species. (a, b) Precision and Recall of Same-dataset train-test protocol on

LCF-14. (c, d) Precision and Recall of Same-dataset train-test protocol on LCF-15. (e, f) Precision and Recall of Cross-dataset train-test protocol on LCF-
14-LCF-15. (g, h) Precision and Recall of Cross-dataset train-test protocol on LCF-15-LCF-14. Cross-dataset graphs (last two rows) are shown for five
common species in LCF-14 and LCF-15.
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learning compensates for the environmental variability and

is successful in extracting fish species-specific features. The

overall performance of CNN-KNN and CNN-SVM in all four

experimental setups remains favorable both in the same and

the cross-dataset experimental protocols. Tables 4, 5 tabulate

the performance for the average precision, recall and count

for all fish species of the LCF-14 and LCF-15 datasets. The

test sets used in all experiments are the ones mentioned in

Table 3. Figure 5 gives precision and recall of individual fish

species for all the seven techniques used in the experiments.

The first row of Fig. 5 is the precision (left) and recall (right)

with LCF14-LCF14 train-test settings. The second row is the

performance with the LCF15-LCF15 train-test setup. The

third row is the cross-dataset experiment on five common

species with the LCF14-LCF15 train-test scenario. Similarly,

the last row is the performance for the LCF15-LCF14 train-

test setting. Figure 6 shows the examples of fish species that

are misclassified and resulted in the worst performances by

all algorithms relative to other species. The first two rows are

Lutjanus fulvus and Acanthurus nigrofuscus of LCF-14 in self

and cross-data testing respectively. The last two rows are A.

nigrofuscus and Hemigymnus melapterus of LCF-15 in self and

cross-data testing respectively. L. fulvus examples are misclas-

sified (first row) apparently due to over exposure by the light

source mounted with the camera. H. melapterus (fourth row)

images are either too dark or extremely blurred, which

resulted in misclassification of this species. A. nigrofuscus

(second and third rows) in both LCF-14 and LCF-15 is not

correctly classified due to the same reasons. Therefore,

extremely high variability in terms of light and blurriness is

responsible for the relatively poor performance. It should be

noted that CNN still performs better than all other

approaches for all these species as evident in Fig. 5.

In another set of experiments, we test robustness of the

algorithms to image blur and noise. Test images of LCF-14

are artificially deteriorated with white Gaussian noise and

blurring, a technique proposed in Khan et al. (2015). We

choose LCF-14 for this experiment as the images are cleaner

compared to those from LCF-15, which already exhibit noise

and blurring due to poor quality of images and murkiness of

water. As exercised by Khan et al. (2015), we corrupt the test

images with 14 different levels of noise and blurring. The

algorithms already trained on clean images of LCF-14 are

used to recognize fish species in the corrupted LCF-14

images. Figure 7 shows sample images of two fish generated

with different levels of blurring and noise. The performance

comparison in terms of overall fish species classification

accuracies by all machine learning approaches, reported in

Fig. 6. Examples of fish misclassified by all techniques arranged according to species. (First Row) L. fulvus from LCF-14. (Second Row) A. nigrofuscus

from LCF-14. (Third Row) A. nigrofuscus from LCF-15. (Last Row) H. melapterus from LCF-15.
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this article, is also given in Figure 8 on the modified LCF-14

test dataset with artificial corruption. It is evident from the

results that CNN-KNN and CNN-SVM generate higher accu-

racies which shows the robustness to severe degradations of

the features learned via CNN. KNN is most sensitive to

increasing blur levels followed by PCA-KNN. SRC accuracy

decays sharply with the increasing levels of noise, although

it is second to only CNN based systems in the case of blur-

ring. CNN-SVM lags CNN-KNN with a minute difference

while SVM is behind KNN when noise intensity increases.

Therefore, it can be concluded that KNN-based systems are

more sensitive to blurring and SVM-based systems are more

sensitive to noise degradation in general.

Discussion and conclusions

The demand for monitoring and sampling of fish popula-

tions in lakes and oceans is inevitable due to its importance

in estimating fresh water body and marine conservation sta-

tus. Before advanced approaches of computer vision in iden-

tification and classification using underwater cameras, fish

populations were manually sampled and tagged. This prac-

tice, which is still popular, demands time and labor costs

that are undesirable in this age of rapid marine exploration

and real time monitoring. Automatic fish species classifica-

tion has direct influence on observing and studying under-

water ecosystems, which in turn affects our socio-economic

activities. Coastal areas provide ideal locations for fish life to

flourish as nutrients from deep ocean beds are deposited

there as a result of natural oceanic movement (http://www.

ecologyandsociety.org). This results in establishment of

industry and economic activities related to fisheries in

coastal areas. Climate change, water pollution and over fish-

ing are the factors responsible for the observed declines in

fish populations of specific species, a problem that needs to

be continuously monitored by marine biodiversity conserva-

tionists. Monitoring and management are especially critical

in coastal areas where human communities get direct bene-

fits from fisheries, but also where the pressure on fish stocks

is the greatest. Failure in adopting efficient and cost effective

Fig. 7. Sample images of fish with increased levels (from left to right) of Gaussian blurring (first two rows) and Gaussian noise (last two rows).

Fig. 8. Fish classification accuracy on various levels of added noise and

blurring. Accuracy graphs by various algorithms on LCF-14 when test
data is blurred (a) or corrupted with Gaussian white noise (b).
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ways to sample fish populations may result in extinction of

certain fish species and therefore, disruption of the entire

marine ecosystem. One example is the severe decline in sev-

eral salmon species in Northwest Pacific that is contributing

to the coast wide closure of fisheries (http://www.ecolo-

gyandsociety.org). Hence, a timely warning to regulatory

authorities and Government bodies is necessary to imple-

ment and impose strict rules for preservation of endangered

fish species. Efficient fish identification and classification

techniques to keep aquatic life under surveillance can also

provide indirect evidence of the degradation of marine eco-

systems such as coral reefs and coastal mangroves, both of

which are very sensitive to pollution and climate change.

We have proposed a deep architecture in the form of a

convolution neural network employed for fish species classi-

fication on two benchmark datasets, namely the LCF-14 and

LCF-15. Computer vision tasks in general and the fish classi-

fication task in particular pose great challenges for the

machine learning community to automatically recognize the

object of interest from the video sequences in the presence

of environmental variability, visual distortions, and image

noise. These factors decrease the performance of machine

learning approaches, which is directly related to the quality

of features used to represent an object in an image (Bengio

and LeCun 2007; Bengio 2009). The object of interest in an

image in the presence of variability and distortion represents

the input space with high non-linearity, making it difficult

to model the objects of interest efficiently and effectively in

the feature space (Hinton and Salakhutdinov 2006; Laro-

chelle et al. 2009). However, this can be rectified by using

non-linear automatic learning systems, like multi-layer neu-

ral networks such as CNNs. Each non-linear hidden layer in

the network is the input to the next layer making it specifi-

cally non-linear and highly complex. The depth of the net-

work is, therefore, related to effectively encoding the non-

linearity of the input data. Hence, our network and its

parameters are designed to match the non-linearity of the

data. The supervised training scenario ensures automatic

learning of complex, non-linear and discriminative features

(Bengio 2009).

Shallow architectures like SVM, KNN, and SRC do not

ensure robust data representation, should the data exhibit

degradation and variability. These techniques either fail to

perform well or over-fit to a specific environment or dataset.

Our results show that when degraded and highly variable

data is used in training, conventional shallow machine

learning techniques fail to extract useful information from

the data and perform poorly when similar variability is

encountered in the test data. As shown in our results, KNN,

SVM, SRC, PCA-KNN, and PCA-SVM perform relatively

poorly in cross-dataset experiments, i.e., when they are

trained on LCF-14 and tested on the LCF-15 dataset or vice

versa. On the other hand, the results are improved in the

same-dataset train-test protocol. This is because of the over-

fitting phenomena on the same dataset environment and

failing to cope with the variability in test datasets that are

unseen during training. CNN-SVM and CNN-KNN on the

other hand avoid overfitting to a large extent as the results

are much better as compared to the other algorithms in the

case when training is done on LCF-14 and testing on LCF-

15. In fact, when the CNN is trained on the noisy LCF-15

dataset and tested on the cleaner LCF-14 data, the outcome

is even better than the case when both the training and test-

ing is done on LCF-14 dataset. The CNN utilizes the

degraded data in training and adapts so as to cancel out the

distortions and noise if they appear in the test data, thereby

learning to better extract fish species-dependent information.

To sum up, too much corruption as in the case with LCF-15

would greatly hamper the learning of useful information in

the training of shallow architectures. Deep architectures on

the other hand have more capability to filter out distortions.

Our experiments with artificially generated test data of LCF-

14 with degradation using blurring and noise also supports

this idea as the CNN based classifiers produce stable results.

These observations are also consistent with the experimenta-

tions in Bengio and LeCun (2007).

Our architecture is related to LeNET (LeCun et al. 2004), a

pioneering work to implement deep neural network in the

form of a convolution neural network. Although CNN has

been used in various machine learning tasks including

generic object recognition in images, handwriting recogni-

tion and speech signal processing (Lee et al. 2009) with

favorable results, we have employed CNN using a different

strategy. In our case, the network is trained with a fully con-

nected overhead classification layer in a supervised learning

style. After training we discard the fully connected layer and

use the last convolution layer as output feature vector to rep-

resent the input data. In addition, some information from

the hidden layers is also utilized and represented in the final

feature vectors. This approach turns out to be beneficial in

the case of under water fish classification in unconstrained

surroundings. Sometimes the shape of fish, especially the

edges of the body, fins and tail do not exhibit high contrast

due to matching of fish color with background, murkiness of

water and low light conditions. Such images, when subjected

to training in a strong supervised learning architecture such

as the CNN, the less dominant yet important features are

ignored in the deeper layers of neural network. Therefore,

we have devised a technique to select weak fish species-

dependent invariant features in lower hidden layers and

append with the highly non-linear and dominant fish fea-

tures learned in the output layer.

CNN based architectures, with many hidden layers with

regularization and maximum valued neuron pooling con-

straints, have been recently used for generic object recogni-

tion from images (Razavian et al. 2014; Simonyan and

Zisserman 2015) reporting state-of-the-art results. Similar to

the proposed architecture, these networks utilize the output
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layer as a feature vector. Such a setup might be useful when

the objects of interest in images are sharp and distinct, and

so dominate the input space. However, we also utilize the

hidden layer information together with the output layer fea-

tures to improve the fish classification performance. Another

deep network was proposed by Ouyang and Wang (2013) for

pedestrian detection. This approach also used the representa-

tion of hidden layers in feature extraction, but sets of neurons

in hidden layers were trained to detect specific parts of the

body and combined to get the overall pedestrian representa-

tion. In this case, each hidden layer is associated with a spe-

cific part of human body to be detected, which enables their

system to detect the general human body shape irrespective

of identity. Therefore, the architecture proposed by Ouyang

and Wang (2013) cannot be directly used for class-based rec-

ognition of fish species. Further, walking or standing pedes-

trians exhibit very limited variation in poses, which is

suitable for their application. In our case, freely swimming

fish may appear in any possible orientation, moving sideways,

upwards or downwards, so we cannot associate a specific set

of neurons in any layer with a specific part of the fish.

To our knowledge, this is the first attempt to utilize a

deep learning CNN for the difficult task of underwater fish

species classification with state-of-the-art results on the LCF-

14 and LCF-15 datasets. With no pre-processing of images

and using several complicated image processing techniques

before applying some machine learning algorithm for classi-

fication, deep learning using CNN has proved to be suitable

recipe for creating a single learning module applicable for

raw images to extract fish species-dependent features. Based

on the results presented here, this technique is both efficient

and effective compared to similar work reported in the pub-

lished literature (Rova et al. 2007; Fablet et al. 2009; Hsiao

et al. 2014). Blanc et al. (2014) presents work on LCF-14

dataset, using videos to first detect and then classify the fish

species using fish species-dependent features trained using

an SVM classifier. The features are explicitly extracted in

terms of descriptors invariant to light intensity and color

variation. On LCF-14 test data Blanc et al. (2014) reports

average precision and recall of more than 55% and 50%,

respectively. This relatively lower performance is due to the

twofold classification, i.e., detection in videos followed by

species recognition. In such cases, detection errors are propa-

gated to the recognition module hence resulting in overall

lower recognition scores. In this article, we have reported

results on LCF-14 using SVM classifiers trained with raw

images and PCA features, demonstrating that detection of

fish is not consistent. We perform training and testing of

algorithms on still images where the fish have already been

detected, as our aim is to demonstrate the effectiveness of

robust feature extraction by highly complex and nonlinear

CNN models. However, it is clear that good quality features

will contribute towards other tasks such as fish detection in

videos.

The experiments conducted in this article utilize MATLAB

for the algorithm development. Freely available MATLAB tool-

boxes were used for SVM (https://www.csie.ntu.edu.tw/~cjlin/

libsvm/#matlab), KNN and SRC (https://sites.google.com/site/

sparsereptool/) and CNN development (http://uk.mathworks.

com/matlabcentral/fileexchange/38310-deep-learning-toolbox)

implementations. The computation was done on Intel Core i5

2.5 GHz processor with 16GB RAM. The training of CNN took

5–6 h. However, during testing, each fish image takes about 1

ms for classification. No special hardware is required for CNN

training or classification. However, the use of GPUs (Graphics

Processing Units) can reduce the CNN training time.

To conclude, we have presented and employed CNN deep

architecture for the task of fish species classification using

two benchmark datasets, LifeCLEF14 and LifeCLEF15.

Through same-dataset and cross-dataset training-testing

experimental protocols, we have shown that CNN outper-

forms various other recent approaches employed for fish spe-

cies classification. Consequently, the performance reported

for the classification problem is the best reported so far for

the datasets we used.

In future, we aim to further enhance the CNN architec-

ture by designing a better loss function. To demonstrate gen-

eralization, further comparative studies with other deep

architectures for fish detection and species classification will

be performed on several fish image and especially video data-

sets acquired in the unconstrained underwater environment.

It would be interesting to investigate the performance

improvement by including the color information in training

a deep architecture like CNN.
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