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Abstract

We study an optimal control problem related to swing option pric-
ing in a general non-Markovian setting in continuous time. As a main
result we show that the value process solves a first-order non-linear
backward stochastic partial differential equation. Based on this result
we can characterize the set of optimal controls and derive a dual min-
imization problem.
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1 Introduction

In a swing option contract, the holder of the option can buy some volume of
a commodity, say electricity, for a fixed strike price during the lifetime of the
option. There are typically local constraints on how much volume can be
exercised at a given time, and global constraints on the total volume. Swing
options are particularly popular in electricity markets, and can be used to
hedge against the risk of fluctuating demand, see Carmona and Ludkovski
(2010).

Mathematically, the pricing problem of such a swing option leads to op-
timal control problems, whose formulation varies depending on the way the
constraints are formulated. On the one hand, the constraints can be formu-
lated discretely in the following sense: The total volume must be exercised in
form of a finite number of packages. Local constraints prescribe how many
packages can at most be exercised at a given time and refraction periods are
imposed to enforce a minimal waiting time after one package is exercised.
This formulation leads to multiple stopping problems and was studied in
discrete time e.g. by Jaillet et al. (2004), Meinshausen and Hambly (2004),
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Bender (2011a), Schoenmakers (2012), and Bender et al. (2013) and in con-
tinuous time by Carmona and Touzi (2008), Zeghal and Mnif (2006), and
Bender (2011b). On the other hand, constraints can be imposed on the rate
at which the option is exercised. This approach leads to a continuous time
optimal control problem as stated by Keppo (2004) in a general framework
and studied by Benth et al. (2011) in a diffusion setting; see also the related
work of Dokuchaev (2013) for a more general notion of controlled options.
Related discrete time optimal control formulations for swing option pricing
can be found e.g. in Barrera-Esteve et al. (2006), Bardou et al. (2010).

In the present paper we adopt the second approach and formulate the
local constraint in continuous time in terms of the rate of exercising. Suppose
an adapted process X(t) denotes the discounted payoff of the option, if one
unit volume is exercised at time t. In the case of swing option pricing we
can set X(t) = e−ρt(S(t)−K)+, where S is the electricity price process, K
is the strike price, ρ is the interest rate, and (x)+ stands for the positive
part of x. Then, we consider the following control problem

J̄(t, y) := esssup
u

E

[
∫ T

t
u(s)X(s)ds

∣

∣

∣

∣

Ft

]

,

where the supremum is taken over the set of adapted processes with values
in [0, L] which satisfy

∫ T
t u(s)ds ≤ 1 − y. Here, a local constraint restricts

the rate at which the option can be exercised to the interval [0, L], while the
global constraint imposes that the maximal volume which can be exercised
in the remaining time from t to T is 1− y. Then J̄(t, y) is a discounted fair
price of the swing option contract, if the expectation is taken with respect
to a risk-neutral pricing measure under which all tradable and storable basic
securities in the market are σ-martingales.

As the main result of this paper we will show that a ‘good’ version
(J(t, y), t ∈ [0, T ], y ∈ (−∞, 1]) of the adapted random field (J̄(t, y), t ∈
[0, T ], y ∈ (−∞, 1]) satisfies the following first order backward stochastic
partial differential equation (BSPDE) in (t, y):

J(t, y) = E

[

L

∫ T

t
(X(s) +D−

y J(s, y))+ds

∣

∣

∣

∣

Ft

]

,

J(T, y) = 0, J(t, 1) = 0. (1)

Here D−
y J denotes the left-hand side derivative of J in y and it can be re-

placed by the right-hand side derivative D+
y J in the above equation. This re-

sult will be obtained under the weak assumptions that X is right-continuous,
nonnegative, adapted, and satisfies some integrability condition. We will also
show that under these assumptions J is smooth enough to apply a variant
of a chain rule, which is sufficient to show that a control u is optimal, if and
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only if

u(s) ∈







{0}, X(s) +D−
y J(s, y +

∫ s
t u(r)dr) < 0

{L}, X(s) +D−
y J(s, y +

∫ s
t u(r)dr) > 0

[0, L], X(s) +D−
y J(s, y +

∫ s
t u(r)dr) = 0.

We finally derive a dual minimization problem for J̄(t, y) in terms of mar-
tingales. This type of dual formulations has its origin in the pricing problem
of American options, see Rogers (2002) and Haugh and Kogan (2004), and
was later generalized to a pure martingale dual for multiple exercise options
by Schoenmakers (2012) in discrete time and Bender (2011b) in continuous
time. Our dual representation can be seen as a continuous time version of
general dual formulations for discrete time control problems in Brown et al.
(2010), Rogers (2007), and Gyurko et al. (2013).

We note that a connection between backward SPDEs and dynamic pro-
gramming for a class of non-Markovian control problems was first studied
by Peng (1992). As in most of the existing literature for backward SPDEs
he considers parabolic type second order equations such that the matrix of
the higher order coefficients is positive definite. We also note that some
additional conditions on the coercivity are usually imposed in the literature;
see, e.g., condition (0.4) in Rozovskii (1990), Ch. 4. Without these condi-
tions, a parabolic type SPDE is regarded as degenerate. For the degenerate
backward SPDEs in the whole space, i.e., without boundaries, regularity
results were obtained in Rozovskii (1990), Ma and Yong (1990), Hu et al.
(2002), and more recently by Du et al. (2013) and Du and Zhang (2013).
The methods developed in these works cannot be applied in the case of a
domain with boundary because of regularity issues that prevent using an
approximation of the differential operator by a non-degenerate one. It turns
out that the theory of degenerate SPDEs in domains is much harder than in
the whole space and was, to the best of our knowledge, not addressed yet in
the existing literature. The present paper consider a problem of this kind.
We introduce and prove existence for a first order BSPDE in a domain with
boundary. This equation can be interpreted as a limit case of a degenerate
second order parabolic BSPDE.

The paper is organized as follows: In Section 2 we set the problem and
derive some basic properties of the control problem, including the existence
of optimal controls and the construction of the good version J(t, y). In
Section 3 we study the marginal values −D±

y J(t, y). It turns out that the
left-hand side derivative D−

y J(t, y) in general is a submartingale with right-
continuous paths, while the right-hand side derivative D+

y J(t, y) may admit
discontinuities from the right. For this reason it is more convenient to work
with the left-hand side derivative in most of the proofs. The proof of the
main result, namely that J solves the first-order backward stochastic partial
differential equation (1) is given in Section 4. Finally, the characterization
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of optimal strategies and the dual formulation are presented in Sections 5
and 6. Uniqueness results for the BSPDE (1) and smoothness of the value
process J(t, y) will be discussed in a companion paper, which is in prepara-
tion.

2 Some basic properties of the control problem

Throughout this paper we assume that (Ω,F,F, P ) is a filtered probabil-
ity space satisfying the usual conditions and that (X(t), 0 ≤ t ≤ T ) is a
nonnegative, rightcontinuous, F-adapted stochastic process which fulfills

E[ sup
0≤t≤T

X(t)p] < ∞ (2)

for some p > 1.
We consider the following optimization problem: An investor can exercise

the cash-flow X continuously, but she is subjected to the constraint that the
rate at which she exercises is bounded by a constant L > 0, which is fixed
from now on. Moreover the maximal total volume of exercise is bounded by
1. The investor’s aim is to maximize the expected reward, i.e. she wishes to
maximize

E

[
∫ T

0
u(s)X(s)ds

]

over all F-adapted processes with values in [0, L] which satisfy
∫ T
0 u(s)ds ≤ 1.

In order to study this problem in the general setting introduced above
we consider a dynamic version. For any [0, T ]-valued stopping time τ and
Fτ -measurable (−∞, 1]-valued random variable Y denote by U(τ, Y ) the set

of all F-adapted processes with values in [0, L] such that
∫ T
τ u(s)ds ≤ 1−Y .

Hence, the investor enters at time τ and can spend a total volume of 1− Y .
The corresponding value of the optimization problem is

J̄(τ, Y ) := esssup
u∈U(τ,Y )

E

[
∫ T

τ
u(s)X(s)ds

∣

∣

∣

∣

Fτ

]

As explained in the introduction, the main result of this paper is that a
‘good’ version (J(t, y), t ∈ [0, T ], y ∈ (−∞, 1]) of the adapted random field
(J̄(t, y), t ∈ [0, T ], y ∈ (−∞, 1]) solves the first order backward stochastic
partial differential equation (1).

Before we can prove this result, we need to derive some basic properties
of the corresponding control problem. We first establish existence of optimal
controls.

Proposition 2.1. For every pair (τ, Y ), where τ is a stopping time and
Y is an (−∞, 1]-valued Fτ -measurable random variable, there is an optimal
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control ū ∈ U(τ, Y ), i.e.

J̄(τ, Y ) = E[

∫ T

τ
ū(r)X(r)dr|Fτ ]

Proof. We consider U(τ, Y ) as a subset of Lq(F ⊗B[0, T ], P ⊗ λ[0,T ]) where
B[0, T ] and λ[0,T ] denote the Borel σ-field and the Lebesgue measure on
[0, T ], and 1/q+1/p = 1 for p > 1 as in assumption (2). Note that U(τ, Y ) is
a weakly sequentially compact subset of the reflexive Banach space Lq(F ⊗
B[0, T ], P ⊗ λ[0,T ]), because U(τ, Y ) is bounded and closed in the strong
topology and convex.

We now introduce the set

M =

{

E[

∫ T

τ
u(r)X(r)dr|Fτ ], u ∈ U(τ, Y )

}

.

It is straighforward to check that M is closed under pathwise maximization,
i.e. M1,M2 ∈ M implies that M1 ∨ M2 ∈ M. Hence, by Theorem A.3 in
Karatzas and Shreve (1998), there is a sequence (un) ⊂ U(τ, Y ) such that

E[

∫ T

τ
un(r)X(r)dr|Fτ ] ↑ J(τ, Y ), n → ∞. (3)

As U(τ, Y ) is weakly sequentially compact, we can assume without loss of
generality (by passing to a subsequence, if necessary), that un converges
weakly in Lq(F ⊗ B[0, T ], P ⊗ λ[0,T ]) to some ū ∈ U(τ, Y ). We now show
that ū is indeed optimal. Suppose A ∈ Fτ . By weak convergence of (un) to
ū and considering X1A×[τ,T ] as an element of Lp(F⊗B[0, T ], P ⊗λ[0,T ]), we
get

E[1AE[

∫ T

τ
un(r)X(r)dr|Fτ ]] ↑ E[1AE[

∫ T

τ
ū(r)X(r)dr|Fτ ]], n → ∞,

which, combined with (3), yields

E[1AE[

∫ T

τ
ū(r)X(r)dr|Fτ ]] = E[1AJ(τ, Y )]

As A ∈ Fτ was arbitrary, this immediately gives

J(τ, Y ) = Eτ [

∫ T

τ
ū(r)X(r)dr|Fτ ].

At several instances, it will be convenient to switch from the control set
U(τ, Y ) to the subset U ′(τ, Y ) of controls u which additionally satisfy

u(r) = L on {L(T − r) ≤ 1− (Y +

∫ r

τ
u(s)ds)}, (4)
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λ[0,T ] ⊗ P -almost everywhere.
We collect some facts on the relation between U(τ, Y ) and U ′(τ, Y ) in

the following proposition.

Proposition 2.2. (i) For any control u ∈ U(τ, Y ), there is a control ũ ∈
U ′(τ, Y ) such that ũ(r) ≥ u(r) on [τ, T ]. In particular, there exists an
optimal strategy ūτ,Y ∈ U ′(τ, Y ) for J(τ, Y ).

(ii) u ∈ U(τ, Y ) belongs to U ′(τ, Y ), if and only if
∫ T
τ u(r)dr = 1 − Y

on the set {L(T − τ) ≥ 1 − Y } and u(r) = L for r ∈ [τ, T ] on the set
{L(T − τ) ≤ 1− Y }.

Proof. For u ∈ U(τ, Y ) define

τL,u = inf{r ≥ τ ; L(T − r) ≤ 1− (Y +

∫ r

τ
u(s)ds)} ∧ T.

(i) If u ∈ U(τ, Y ), then

ũ = u1[τ,τL,u) + L1[τL,u,T ] ∈ U ′(τ, Y ).

(ii) Suppose u ∈ U ′(τ, Y ). On the set {L(T − τ) ≤ 1−Y } we have τL,u = τ .
Hence u(r) = L on [τ, T ]. On the set {L(T − τ) ≥ 1− Y } ∩ {τL,u < T} we
get

∫ T

τ
u(r)dr =

∫ τL,u

τ
u(r)dr +

∫ T

τL,u

u(r)dr

= 1− Y − L(T − τL,u) + L(T − τL,u) = 1− Y. (5)

On the set {L(T − τ) ≥ 1− Y } ∩ {τL,u = T}, we obtain
∫ T
τ u(r)dr ≥ 1− Y

by (4) and the other inequality is trivial.
Now suppose that u ∈ U(τ, Y ) satisfies the two properties stated in the

assertion. If τL,u = τ , then L(T − τ) ≤ 1 − Y and hence u(r) = L for r ∈

[τ, T ]. If τ < τL,u < T , then L(T −τ) > 1−Y , and hence
∫ T
τ u(r)dr = 1−Y .

An analogous calculation than in (5) shows

∫ T

τL,u

u(r)dr = L(T − τL,u),

which implies (4).

Next, we state the dynamic programming principle for this optimization
problem. Its simple proof is omitted.

Proposition 2.3. Suppose σ ≤ τ are [0, T ]-valued stopping times and Y is
an Fσ-measurable, (−∞, 1]-valued random variable. Then,

J̄(σ, Y ) = esssup
u∈U(σ,Y )

E[

∫ τ

σ
u(r)X(r)dr + J̄(τ, Y +

∫ τ

σ
u(r)dr)|Fσ ]

6



The next lemma singles out two properties which are related to Lipschitz
continuity and concavity of J in the y-variable.

Lemma 2.4. Suppose τ is a [0, T ]-valued stopping time and Y1, Y2 are Fτ -
measurable (−∞, 1]-valued random variables. Then, P -almost surely,

|J̄(τ, Y1)− J̄(τ, Y2)| ≤ E[( sup
0≤t≤T

X(t)) |Fτ ] |Y1 − Y2|. (6)

J̄

(

τ,
Y1 + Y2

2

)

≥
J̄(τ, Y1) + J̄(t, Y2)

2
(7)

Proof. We first show (6). Choose an optimal strategy ūτ,Y1 ∈ U(τ, Y1) and
define σ = inf{t ≥ τ ;

∫ t
τ ū

τ,Y1(s)ds ≥ 1−Y2}∧ T . Then, u(t) = ūτ,Y11[τ,σ] ∈
U(τ, Y2). Consequently, on the set {Y1 ≤ Y2}, we get

0 ≤ J̄(τ, Y1)− J̄(τ, Y2) ≤ E[

∫ T

τ
(ūτ,Y1(s)− u(s))X(s)ds|Fτ ]

= E[

∫ T

σ
ūτ,Y1(s)X(s)ds|Fτ ] ≤ E[( sup

0≤r≤T
X(r))

∫ T

σ
ūτ,Y1(s)ds|Fτ ]

≤ E[( sup
0≤r≤T

X(r))(Y2 − Y1)|Fτ ]

Changing the roles of Y1 and Y2, we obtain that this inequality also holds
on {Y1 > Y2}, which proves (6).

For (7) one merely needs to note that for u1 ∈ U(τ, Y1) and u2 ∈ U(τ, Y2),
the control (u1 + u2)/2 belongs to U(τ, (Y1 + Y2)/2).

We next construct a ‘good’ version of J̄(t, y) as stated in the following
proposition.

Proposition 2.5. There is an adapted random field (J(t, y), t ∈ [0, T ], y ∈
(−∞, 1]) with the following properties:
a) For every pair (τ, Y )

J(τ, Y ) = J̄(τ, Y ) P − a.s.

In particular, for every y ∈ (−∞, 1], J(t, y) is an adapted modification of
J̄(t, y).
b) There is a set Ω̄ ∈ F with P (Ω̄) = 1 such that the following properties
hold on Ω̄:

1. For every y ∈ (−∞, 1], the mapping t 7→ J(t, y) is RCLL.

2. For every t ∈ [0, T ] and y1, y2 ∈ (−∞, 1]

|J(t, y1)− J(t, y2)| ≤

(

sup
r∈[0,T ]

Z(r)

)

|y1 − y2|

where Z(t) is a RCLL modification of E[supr∈[0,T ]X(r)|Ft] which sat-

isfies supr∈[0,T ]Z(r) < ∞ on Ω̄.
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3. For every t ∈ [0, T ], the mapping y 7→ J(t, y) is concave.

As a preparation we need the following lemma.

Lemma 2.6. (a) For every y ∈ (−∞, 1], the mapping t 7→ E[J̄(t, y)] is
rightcontinuous.
(b) For every y ∈ (−∞, 1], the process J̄(t, y) has a modification Ĵ(t, y),
which is a supermartingale whose paths are RCLL with probability one.

Proof. We fix some y ∈ (−∞, 1]. Notice first that J̄(t, y) is a supermartin-
gale on [0, T ], because U(t2, y) ⊂ U(t1, y) for 0 ≤ t1 ≤ t2 ≤ T . Hence,
by Theorem 1.3.13 in Karatzas and Shreve (1991), (a) implies (b). For
(a) we fix some t ∈ [0, T ) and choose a sequence (tn) ⊂ [0, T ] such that
tn ↓ t. By the supermartingale property we have E[J̄(t, y)] ≥ E[J̄(tn, y)].
So it is sufficient to show that lim infn→∞E[J̄(tn, y)] ≥ E[J̄(t, y)]. To
this end we choose an optimal strategy ūt,y ∈ U(t, y) for J̄(t, y). Then,
un = ūt,y1[tn,T ] ∈ U(tn, y). Therefore, by dominated convergence,

lim inf
n→∞

E[J̄(tn, y)] ≥ lim inf
n→∞

E[

∫ T

tn

ūt,y(s)ds] = E[

∫ T

t
ūt,y(s)ds] = J̄(t, y).

Proof of Proposition 2.5. Let

Q1 := ([0, T ] ∩Q) ∪ {T}, Q2 := (−∞, 1] ∩Q

We choose a set Ω̄ with P (Ω̄) = 1 such that the following properties hold on
Ω̄:

(i) Z∗ := supr∈[0,T ]Z(r) < ∞.

(ii) Ĵ(t, y) = J̄(t, y) for every (t, y) ∈ Q1 ×Q2 (where Ĵ was constructed
in the previous lemma).

(iii) The mapping t 7→ Ĵ(t, y) is RCLL for every y ∈ Q2.

(iv) For every (t, y1, y2) ∈ Q1 ×Q2
2 it holds that

|J̄(t, y1)− J̄(t, y2)| ≤ Z∗|y1 − y2|.

(v) For every (t, y1, y2) ∈ Q1 ×Q2
2 it holds that

J̄(t,
y1 + y2

2
) ≥

J̄(t, y1) + J̄(t, y2)

2
.
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We briefly check that such a set Ω̄ exists. The martingale E[sup0≤r≤T X(r)|Ft]
has an RCLL modification which we denote Z(t). By Doob’s inequality it
satisfies

E[ sup
0≤t≤T

Z(t)p] ≤

(

p

p− 1

)p

E[Z(T )p] =

(

p

p− 1

)p

E[ sup
0≤t≤T

X(t)p] < ∞.

Hence, the random variable Z∗ is almost surely finite. Moreover, (ii) and (iii)
can be realized by the previous lemma, because Q1 and Q2 are countable.
The same applies to (iv) and (v) in view of Lemma 2.4.

On Ω̄ we wish to define J(t, y) in the following way: In a first step we
define J(t, y) = Ĵ(t, y) for (t, y) ∈ Q1 ×Q2. In a second step we let

J(t, y) = lim
Q2∋ỹ→y

Ĵ(t, ỹ)

for t ∈ Q1, y ∈ (−∞, 1] \ Q2. Then, J(t, y) is defined on Q1 × (−∞, 1]. In
the final step we set

J(t, y) = lim
Q1∋t̃↓t

J(t̃, y)

for t ∈ [0, T ] \Q1 and y ∈ [0, 1].
So we first have to show that the limits in the above construction exist

on Ω̄. Fix t ∈ Q1 and y ∈ (−∞, 1] \ Q2. We choose a sequence (ỹn) ⊂ Q2

such that ỹn → y. Then, by (ii) and (iv),

|Ĵ(t, ỹn)− Ĵ(t, ỹm)| ≤ Z∗|ỹn − ỹm|

In view of (i), (Ĵ(t, ỹn)) is a Cauchy sequence and, as its limit does certainly
not depend on the choice of the sequence, we see that limQ2∋ỹ→y Ĵ(t, ỹ) ex-
ists. Hence J(t, y) is well-defined on Q1 × (−∞, 1]. Moreover, it is straight-
forward to check that for t ∈ Q1 and (y1, y2) ∈ (−∞, 1]2

|J(t, y1)− J(t, y2)| ≤ Z∗|y1 − y2|

holds true.
Now we fix some t ∈ [0, T ] \ Q1 and some y ∈ (−∞, 1]. We choose

sequences (tn) ⊂ Q1 and (yk) ⊂ Q2 such that tn ↓ t and yk → y. Then,

|J(tn, y)− J(tm, y)|

≤ |Ĵ(tn, yk)− Ĵ(tm, yk)|+ |J(tn, y)− J(tn, yk)|+ |J(tm, y)− J(tm, yk)|

≤ |Ĵ(tn, yk)− Ĵ(tm, yk)|+ 2Z∗|y − yk| (8)

By (iii) we can conclude that the sequence (J(tn, y)) is Cauchy, and, hence,
limQ1∋t̃↓t

J̄(t̃, y) exists, because the limit does not depend on the approxi-
mating sequence. So J is well-defined.

We now prove that J satisfies the properties stated in b) on Ω̄. The Lip-
schitz property b2) can be immediately transferred from t ∈ Q1 (for which it
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was shown above) to general t by the construction of J . Property b1), which
states that J has RCLL paths in t, can be shown by a similar argument as
in (8). It remains to show concavity in y. As J(t, y) is continuous in y for
fixed t, it is sufficient to show that

J(t,
y1 + y2

2
) ≥

J(t, y1) + J(t, y2)

2

holds for every (t, y) ∈ [0, T ] × (−∞, 1]. By (v) and the construction of
J , it is valid for (t, y) ∈ Q1 × Q2. By the continuity properties of J̄ this
immediately extends to general (t, y).

It remains to prove a). Suppose τ is a [0, T ]-valued stopping time and Y
is a Fτ measurable, (−∞, 1]-valued random variable. We can approximate
Y by a nonincreasing sequence (Yn) of Q2-valued, Fτ measurable random
variables. Moreover, we can choose a sequence (τn) of Q1-valued stopping
times such that τn converges nonincreasingly to τ . By (ii) and the continuity
properties b1) and b2) of J , we get on Ω̄

J(τ, Y ) = lim
n→∞

J(τn, Yn) = lim
n→∞

J̄(τn, Yn).

So it remains to show that

lim
n→∞

J̄(τn, Yn) = J̄(τ, Y ), P − a.s. (9)

As U(τn, Yn) ⊂ U(τ, Y ) we observe that

E[J̄(τn, Yn)|Fτ ] ≤ J̄(τ, Y )

Hence, we have that for every A ∈ Fτ

E[1AJ̄(τn, Yn)] ≤ E[1AJ̄(τ, Y )],

which implies
lim sup
n→∞

J̄(τn, Yn) ≤ J̄(τ, Y ) (10)

Now choose some optimal strategy ūτ,Y ∈ U(τ, Y ) for J̄(τ, Y ) and define

un(t) = 1[τn,σn](t)ū
τ,Y (t)

where

σn = inf{t ≥ τn;

∫ t

τ
ūτ,Y (s)ds ≥ 1− Yn} ∧ T.

Then un ∈ U(τn, Yn). As Yn is nonincreasing, the sequence of stopping times
σn is nondecreasing. Denoting its limit by σ we obtain that

∫ σ

τ
ūτ,Y (s)ds = 1− Y

10



or σ = T . As ūτ,Y ∈ U(τ, Y ), we have in any case that

∫ T

σ
ūτ,Y (s)ds = 0.

Thus,

E[J̄(τn, Yn)|Fτ ] ≥ E[

∫ T

τn

un(s)X(s)ds|Fτ ]

= J̄(τ, Y )− E[

∫ τn

τ
ūτ,Y (s)X(s)ds|Fτ ]− E[

∫ σ

σn

ūτ,Y (s)X(s)ds|Fτ ].

As τn ↓ τ and σn ↑ σ, the dominated convergence theorem yields for every
A ∈ Fτ

lim inf
n→∞

E[1AJ̄(τn, Yn)] ≥ E[1AJ̄(τ, Y )],

which in turn implies

lim inf
n→∞

J̄(τn, Yn) ≥ J̄(τ, Y )

and in view of (10) finishes the proof of (9).

3 Some properties of the marginal value

By Proposition 2.5, there is a set Ω̄ of full measure such that for all (t, y)
the left-hand side derivative D−

y J(t, y) and the right-hand side derivative
D+

y J(t, y) in y-direction exist on Ω̄ due to concavity. In order to study the
marginal values −D−

y J(t, y) and −D+
y J(t, y), we first derive some properties

related to the difference process J(t, y + h)− J(t, y).

Proposition 3.1. Suppose τ is a [0, T ]-valued stopping time and Y2 ≥ Y1

are Fτ -measurable, (−∞, 1]-valued random variables. Denote by ūτ,Y1 ∈
U ′(τ, Y1), ūτ,Y2 ∈ U ′(τ, Y2) optimal controls for J̄(τ, Y1) and J̄(τ, Y1), re-
spectively. Then,
(i) It holds that

J̄(τ, Y1)− J̄(τ, Y2) = esssup
u∈Ũ(ūτ,Y2 ,Y2−Y1)

E[

∫ T

t
u(r)X(r)dr|Fτ ],

where Ũ(ūτ,Y2 , Y2 − Y1) denotes the set of adapted processes u such that
∫ T
τ u(r)dr ≤ Y2 − Y1 and 0 ≤ u(r) ≤ L− ūτ,Y2(r) for r ∈ [τ, T ].
(ii) Define ū on [τ, T ] by

ū(r) = (ūτ,Y1(r)− ūτ,Y2(r))+1{r;
∫ r

τ
(ūτ,Y1(s)−ūτ,Y2 (s))+ds≤Y2−Y1}

Then, ū ∈ Ũ(ūτ,Y2 , Y2 − Y1). Moreover, ū + ūτ,Y2 ∈ U ′(τ, Y1) and is an
optimal control for J̄(τ, Y1).
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Proof. We prove both items at the same time. Let u ∈ Ũ(ūτ,Y2 , Y2 − Y1).
Then, it is straightforward to check that ūτ,Y2 + u ∈ U(τ, Y1). Hence,

J̄(τ, Y1) ≥ E[

∫ T

τ
(ūτ,Y2(s)+u(s))X(s)ds|Fτ ] = J̄(τ, Y2)+E[

∫ T

τ
u(s)X(s)ds|Fτ ].

This implies

J̄(τ, Y1)− J̄(τ, Y2) ≥ esssup
u∈Ũ(ūτ,Y2 ,Y2−Y1)

E[

∫ T

t
u(r)X(r)dr|Fτ ]. (11)

We will show that ū, defined in (ii), satisfies

ū ∈ Ũ(ūτ,Y2 , Y2 − Y1) (12)

ūτ,Y1 − ū ∈ U(τ, Y2) (13)

This proves (i), because

J̄(τ, Y1) = E[

∫ T

τ
ūτ,Y1(s)X(s)ds|Fτ ]

= E[

∫ T

τ
(ūτ,Y1(s)− ū(s))X(s)ds|Fτ ] + E[

∫ T

t
ū(s)X(s)ds|Fτ ]

≤ J̄(τ, Y2) + esssup
u∈Ũ(ūτ,Y2 ,Y2−Y1)

E[

∫ T

t
u(r)X(r)dr|Fτ ]

In view of (11), the inequality turns into an identity. Hence we obtain (i)
and the optimality of ū for the problem J̄(τ, Y1) − J̄(τ, Y2). This implies
optimality of ū+ ūτ,Y2 for J̄(τ, Y1), because

J̄(τ, Y1) = J̄(τ, Y2)+E[

∫ T

t
ū(s)X(s)ds|Fτ ] = E[

∫ T

t
(ūτ,Y2(s)+ū(s))X(s)ds|Fτ ].

We will now verify (12) and (13). Notice first that (12) is rather obvious,
because

∫ T

τ
ū(r)dr ≤ Y2 − Y1

by construction, and

0 ≤ ū(r) ≤ ūτ,Y1(r)− ūτ,Y2(r) ≤ L− ūτ,Y2(r)

for r ∈ [τ, T ].
We prove (13) on the sets {L(T − τ) ≤ 1− Y2}, {L(T − τ) > 1− Y2} ∩

{L(T − τ) ≤ 1 − Y1} and {L(T − τ) > 1 − Y1} separately. On the set
{L(T − τ) ≤ 1 − Y2}, we get ūτ,Y1(r) = ūτ,Y2(r) = L for r ∈ [τ, T ] by
Proposition 2.2. Hence, ū(r) = 0 and ūτ,Y1 − ū = ūτ,Y2 ∈ U(τ, Y2). On the
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set {L(T − τ) > 1 − Y2} ∩ {L(T − τ) ≤ 1 − Y1}, we get ūτ,Y1(r) = L for

r ∈ [τ, T ] and
∫ T
τ ūτ,Y2(r)dr = 1− Y2 by Proposition 2.2. Hence, we obtain

on this set, for every r ∈ [τ, T ],

∫ r

τ
(ūτ,Y1(s)−ūτ,Y2(s))+ds ≤ L(T−τ)−

∫ T

τ
ūτ,Y2(s)ds ≤ 1−Y1−(1−Y2) = Y2−Y1.

This again implies ūτ,Y1 − ū = ūτ,Y2 ∈ U(τ, Y2). On the set {L(T − τ) >
1− Y1}, we already know, by Proposition 2.2, that

∫ T

τ
ūτ,Y1(s)ds = 1− Y1,

∫ T

τ
ūτ,Y2(s)ds = 1− Y2.

Hence,

∫ T

τ
(ūτ,Y1(s)− ūτ,Y2(s))ds = 1− Y1 − (1− Y2) = Y2 − Y1,

which yields
∫ T

τ
ū(s)ds = Y2 − Y1.

Consequently,

∫ T

τ
(ūτ,Y1(s)− ū(s))ds = 1− Y1 − (Y2 − Y1) = 1− Y2

Moreover,

0 ≤ min{ūτ,Y2(r), ūτ,Y1(r)} ≤ ūτ,Y1(r)− ū(r) ≤ L

for r ∈ [τ, T ]. So, uτ,Y1 − ū ∈ U(τ, Y2) also holds on {L(T − τ) > 1− Y1}.
By the arguments in the proof of (13) it is easy to see that ū + ūτ,Y2 ∈

U ′(τ, Y1) thanks to by Proposition 2.2.

Corollary 3.2. Suppose σ ≤ τ are [0, T ]-valued stopping times and Y is
an Fσ-measurable random variable with values in (−∞, 1]. Then there are
optimal controls ūτ,Y for J̄(τ, Y ) and ūσ,Y for J̄(σ, Y ) such that ūτ,Y (r) ≥
ūσ,Y (r) for r ∈ [τ, T ]. Moreover, ūτ,Y can be chosen from the set U ′(τ, Y ).

Proof. Choose optimal controls ūσ,Y ∈ U ′(σ, Y ) for J̄(σ, Y ) and ūτ,Ỹ ∈
U ′(τ, Ỹ ) for J̄(τ, Ỹ ), where Ỹ = Y +

∫ τ
σ uσ,Y (r)dr. By the dynamic pro-

gramming principle in Proposition 2.3, we observe that

ūσ,Y = uσ,Y 1[σ,τ) + uτ,Ỹ 1[τ,T )

is also optimal for J̄(σ, Y ). As Ỹ ≥ Y , part (ii) of the previous proposition
implies that there is an optimal control ūτ,Y ∈ U ′(τ, Y ) for J(τ, Y ) such that

ūτ,Y (r) ≥ uτ,Ỹ (r) for r ∈ [τ, T ].
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The following proposition includes as a special case the statement that
the difference process J̄(t, y + h) − J̄(t, y) is a submartingale for every y ∈
(−∞, 1] and h ∈ [0, 1 − y].

Proposition 3.3. Suppose σ ≤ τ are [0, T ]-valued stopping times and Y1 ≤
Y2 are Fσ-measurable, (−∞, 1]-valued random variables. Then,

E[J̄(τ, Y2)− J̄(τ, Y1)|Fσ ] ≥ J̄(σ, Y2)− J̄(σ, Y1).

Proof. By the previous corollary, we can choose optimal controls ūτ,Y2 for
J̄(τ, Y2) and ūσ,Y2 for J̄(σ, Y2) such that ūτ,Y2(r) ≥ ūσ,Y2(r) for r ∈ [τ, T ] and
ūτ,Y2 ∈ U ′(τ, Y2). Moreover, by Proposition 3.1 we can choose ūτ,Y1 optimal
for J(τ, Y1) such that ūτ,Y1 − ūτ,Y2 ∈ Ũ(ūτ,Y2 , Y2 − Y1). Consequently,

u(r) := ūσ,Y2(r) + 1[τ,T ](r)(ū
τ,Y1(r)− ūτ,Y2(r))

belongs to U(σ, Y1). This yields

J̄(σ, Y1) ≥ E[

∫ T

σ
u(s)X(s)ds|Fσ ]

= E[

∫ T

σ
ūσ,Y2(s)X(s)ds|Fσ ] + E[

∫ T

τ
ūτ,Y1(s)X(s)ds|Fσ ]

−E[

∫ T

τ
ūτ,Y2(s)X(s)ds|Fσ ]

= J̄(σ, Y2) + E[J̄(τ, Y1)|Fσ]−E[J̄(τ, Y2)|Fσ ]

In view of Proposition 2.5 and 3.3 we immediately obtain the following
result. It states that the marginal values −D±

y J(t, y) are supermartingales,
analogously to the situation for discrete time multiple stopping problems in
Meinshausen and Hambly (2004) and Bender (2011a).

Corollary 3.4. (i) For every y ∈ (−∞, 1], the left-hand side derivative
D−

y J(t, y) is a submartingale.
(ii) For every y ∈ (−∞, 1), the right-hand side derivative D+

y J(t, y) is a
submartingale.

We will now study the regularity of the one-sided derivatives D−
y J(t, y)

and D+
y J(t, y) as processes in time. The following example is instructive to

see what kind of results we can expect.

Example 3.5. Suppose ρ is a stopping time of the filtration F with values in
[0, T ] and consider the RCLL process

X(t) = 1[0,ρ)(t)
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Then, certainly it is optimal to exercise as soon as possible, i.e. ūt,y =
L1[t,t+(1−y)/L] is an optimal control for J(t, y). Therefore,

J(t, y) = E[min(1− y, L(ρ− t))|Ft]1{ρ≥t}.

Thus, the one sided derivatives of J are

D−
y J(t, y) = −E[1{y>1−L(ρ−t)}|Ft]

D+
y J(t, y) = −E[1{y≥1−L(ρ−t)}|Ft].

It follows that

E[D+
y J(t, y)] = P ({ρ < (1− y)/L+ t} − 1.

If the distribution function of ρ has a jump at (1 − y0)/L + t0, then the
mapping t 7→ E[D+

y J(t, y0)] is not rightcontinuous at t0. This implies that
D+

y J(t, y) does not admit a rightcontinuous version in t, if the distribution
function of ρ is discontinuous. Contrarily

E[D−
y J(t, y)] = P ({ρ ≤ (1− y)/L+ t} − 1

is rightcontinuous in t for every y. As D−
y J(t, y) is a submartingale for fixed

y, we conclude, that, for every y, D−
y J(t, y) has an RCLL modification.

Proposition 3.6. (i) For every y ∈ (−∞, 1], the submartingale D−
y J(t, y)

has an RCLL modification.
(ii) λ[0,T ] ⊗ P ({D−

y J(·, y) 6= D+
y J(·, y)}) = 0 for λ(−∞,1)-a.e. y.

Proof. Notice first, that J̄(t, y) = E[L
∫ T
t X(s)ds|Ft] for y ≤ 1−LT . Hence,

D±
y J(t, y) = 0 for y < 1 − LT . We can hence restrict ourselves to y ∈

[1− LT, 1] for the rest of the proof.
(i) D−

y J(t, y0) is a submartingale by Corollary 3.4 for every y0. Hence, it
is sufficient to prove that for every y0, the mapping t → E[D−

y J(t, y0)] is
rightcontinuous. Fix t ∈ [0, T ) and a sequence ∆n ↓ 0. By the submartin-
gale property, E[D−

y J(t + ∆n, y)] ≥ E[D−
y J(t, y)] is nonincreasing. By the

concavity of J(t, y) in y, we hence obtain

∫ 1

1−LT
|E[D−

y J(t+∆n, y)]− E[D−
y J(t, y)]|dy

= E

[
∫ 1

1−LT
(D−

y J(t+∆n, y)−D−
y J(t, y))dy

]

= E[J(t, 1 − LT )− J(t+∆n, 1− LT )]

→ 0

for n → ∞ by the rightcontinuity of J(t, 1 − LT ) in t. Thus, for almost
every y,

|E[D−
y J(t+∆n, y)]− E[D−

y J(t, y)]| → 0, n → ∞. (14)
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Now fix some arbitrary y0 and choose a sequence yk ↑ y0 such that (14)
holds for every yk. Note that by concavity,

E[D−
y J(t+∆n, y0)] ≤ E[D−

y J(t+∆n, yk)].

Consequently,

0 ≤ E[D−
y J(t+∆n, y0)]− E[D−

y J(t, y0)]

≤ E[D−
y J(t+∆n, yk)]− E[D−

y J(t, yk)] + E[D−
y J(t, yk)]− E[D−

y J(t, y0)].

By (14) we thus obtain

lim sup
n→∞

E[D−
y J(t+∆n, y0)]−E[D−

y J(t, y0)] ≤ E[D−
y J(t, yk)]−E[D−

y J(t, y0)].

Letting k tend to infinity we observe that

lim
n→∞

E[D−
y J(t+∆n, y0)] = E[D−

y J(t, y0)].

(ii) We define the measurable set

N := {((t, ω, y) ∈ [0, T ] × Ω× [1− LT, 1]; D−
y J(t, y, ω) 6= D−

y J(t, y, ω)}

and consider the sections

Ny = {(t, ω) ∈ [0, T ]× Ω; D−
y J(t, y, ω) 6= D−

y J(t, y, ω)}, y ∈ [1− LT, 1]

N(t,ω) = {y ∈ [1− LT, 1]; D−
y J(t, y, ω) 6= D−

y J(t, y, ω)}, (t, ω) ∈ [0, T ]× Ω.

It is sufficient to show that

∫ 1

1−LT
(λ[0,T ] ⊗ P )(Ny)dy = 0.

By Fubini’s theorem

∫ 1

1−LT
(λ[0,T ] ⊗ P )(Ny)dy =

∫

[0,T ]×Ω
λ[1−LT,1](N(t,ω))d(λ[0,T ] ⊗ P ).

However, λ[1−LT,1](N(t,ω)) = 0 for every (t, ω) ∈ [0, T ] × Ω̄, (where Ω̄ is
the set of full measure constructed in Proposition 2.5), by concavity of the
function y 7→ J(t, ω, y).

4 Existence for the BSPDE

In this section we prove that the good version of the value process J(t, y)
indeed solves the BSPDE (1).
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Theorem 4.1. For every y ∈ (−∞, 1) and t ∈ [0, T ]

J(t, y) = E

[

L

∫ T

t
(X(s) +D−

y J(s, y))+ds

∣

∣

∣

∣

Ft

]

,

J(t, 1) = 0

holds P -almost surely. Moreover, the left-hand side derivative D−
y can be

replaced by the right-hand side derivative D+
y .

Proof. The boundary condition J(t, 1) = 0 is obviously satisfied.
Step 1: We show for every y ∈ (−∞, 1)

J(t, y) ≤ E

[

L

∫ T

t
(X(s) +D−

y J(s, y))+ds

∣

∣

∣

∣

Ft

]

.

To this end we first fix some (t, y) ∈ [0, T ]× (−∞, 1) and choose a sequence
of partitions πn = {tn0 , t

n
1 , . . . , t

n
n} of [t, T ] such that the mesh size |πn| =

maxi=1,...,n |t
n
i − tni−1| tends to zero and with tn0 = t and tnn = T . We denote

by ūt
n
i
,y an optimal control for J̄(tni , y) and define Ȳ n

i :=
∫ tn

i+1

tn
i

ūt
n
i
,y(r)dr.

Applying the dynamic programming principle (Proposition 2.3) repeatedly,
we obtain

J(t, y)

= E[

∫ tn
1

tn
0

ūt
n
0
,y(r)X(r)dr + J(t1, y) + (J(t1, y + Ȳ n

0 )− J(t1, y))|Ft]

=

n−1
∑

i=0

E[

∫ tni+1

tn
i

ūt
n
i ,y(r)X(r)dr|Ft]

+

n−1
∑

i=0

E[J(ti+1, y + Ȳ n
i )− J(ti+1, y)|Ft]

=

n−1
∑

i=0

E[

∫ tn
i+1

tn
i

ūt
n
i
,y(r)(X(r) +D−

y J(r, y))dr|Ft]

+

n−1
∑

i=0

E[

∫ tn
i+1

tn
i

ūt
n
i
,y(r)

(

J(ti+1, y + Ȳ n
i )− J(ti+1, y)

Ȳ n
i

−D−
y J(r, y)

)

dr|Ft]

= (I) + (II)

Then,

(I) ≤ E

[

L

∫ T

t
(X(s) +D−

y J(s, y))+ds

∣

∣

∣

∣

Ft

]

,

and it remains to show that the limsup of (II) is nonpositive. We denote by

D̂−
y J(r, y) the RCLL modification of D−

y J(r, y) which exists by Proposition
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3.6, (i). Moreover, let π̄n(r) = tni+1 for r ∈ (tni , t
n
i+1]. By concavity we get

(II) ≤

n−1
∑

i=0

E[

∫ tni+1

tn
i

ūt
n
i
,y(r)

(

D−
y J(t

n
i+1, y)−D−

y J(r, y)
)

dr|Ft]

≤ LE[

∫ T

t
|D̂−

y J(π̄n(r), y)− D̂−
y J(r, y)|dr|Ft].

The right-hand side converges to zero by rightcontinuity and dominated
convergence.
Step 2: We show

J(t, y) ≥ E

[

L

∫ T

t
(X(s) +D−

y J(s, y))+ds

∣

∣

∣

∣

Ft

]

.

for every

y ∈ A := {η ∈ (−∞, 1); λ[0,T ] ⊗ P ({D−
y J(·, η) 6= D+

y J(·, η)}) = 0}.

We fix a pair (t, y) ∈ [0, T ] × A and choose a sequence of partitions πn =
{tn0 , t

n
1 , . . . , t

n
n} of [t, T ] such that the mesh size |πn| = maxi=1,...,n |t

n
i − tni−1|

tends to zero and with tn0 = t and tnn = T . Now we define the controls,

u
tn
i
,y

m (r) = L1(tn
i
,tn
i+1

](r)1{Zm(tn
i
)>0}, m ∈ N,

where

Zm(r) = m

∫ r

(r−1/m)∧0
(X(s) +D−

y J(s, y))ds, r ∈ [0, T ].

By Lebesgue’s differentiation theorem and Fubini’s theorem

λ[t,T ] ⊗ P ({(r, ω); lim
m→∞

Zm(r) = (X(r) +D−
y J(r, y))}

c) = 0 (15)

Note that u
tni ,y
m ∈ U(tni , y) for sufficiently large n (independent of m), which

we assume from now on. We define

Y n,m
i :=

∫ tni+1

tn
i

u
tn
i
,y

m (r)dr,

which is Ftni
-measurable. Similarly to the first step, but taking the subopti-

mality of the controls into account, we get

J(t, y)

≥

n−1
∑

i=0

E[

∫ tn
i+1

tn
i

u
tni ,y
m (r)(X(r) +D−

y J(r, y))dr|Ft]

+

n−1
∑

i=0

E[

∫ tn
i+1

tn
i

u
tni ,y
m (r)

(

J(ti+1, y + Y n,m
i )− J(ti+1, y)

Y n,m
i

−D−
y J(r, y)

)

dr|Ft]

= (I) + (II)
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We first treat the term (I). Let πn(r) = tni for r ∈ (tni , t
n
i+1]. Then,

(I) = E[

∫ T

t
L1{Zm(πn(r))>0}(X(r) +D−

y J(r, y))dr|Ft]

≥ E[

∫ T

t
L1{Zm(πn(r))>0}Zm(r)dr|Ft]

−LE[

∫ T

t
|X(r) +D−

y J(r, y) − Zm(r)|dr |Ft]

Concerning term (II) we note that, for r ∈ (tni , t
n
i+1],

E[

∫ tni+1

tn
i

u
tn
i
,y

m (r)

(

J(ti+1, y + Y n,m
i )− J(ti+1, y)

Y n,m
i

−D−
y J(r, y)

)

dr|Ft]

= E[

∫ tni+1

tn
i

u
tni ,y
m (r)

(

E[J(ti+1, y + Y n,m
i )− J(ti+1, y)|Fr]

Y n,m
i

−D−
y J(r, y)dr

)

|Ft]

≥ E[

∫ tn
i+1

tn
i

u
tni ,y
m (r)

(

J(r, y + Y n,m
i )− J(r, y)

Y n,m
i

−D−
y J(r, y)

)

dr|Ft]

= E[

∫ tn
i+1

tn
i

u
tni ,y
m (r)

(

J(r, y + L(tni+1 − tni )− J(r, y)

L(tni+1 − tni )
−D−

y J(r, y)

)

dr|Ft]

≥ −LE[

∫ tn
i+1

tn
i

|
J(r, y + L(tni+1 − tni )− J(r, y)

L(tni+1 − tni )
−D−

y J(r, y)| dr |Ft]

Here, we applied the Ftni
-measurability of Y n,m

i and the submartingale prop-
erty in Proposition 3.3. Hence, making use of y ∈ A,

(II)

≥ −LE[

∫ T

t
|
J(r, y + L(π̄n(r)− πn(r)))− J(r, y)

L(π̄n(r)− πn(r))
−D+

y J(r, y)|dr|Ft].

Gathering the estimates for (I) and (II) we have

J(t, y) ≥ E[

∫ T

t
L1{Zm(πn(r))>0}Zm(r)dr|Ft]

−LE[

∫ T

t
|X(r) +D−

y J(r, y) − Zm(r)|dr |Ft]

−LE[

∫ T

t
|
J(r, y + L(π̄n(r)− πn(r)))− J(r, y)

L(π̄n(r)− πn(r))
−D+

y J(r, y)|dr|Ft].

As Zm has continuous paths, we get

L1{Zm(πn(r))>0}Zm(r)dr → L(Zm(r))+

19



as n tends to infinity. Letting n go to infinity, we thus obtain by dominated
convergence

J(t, y) ≥ E[

∫ T

t
L(Zm(r))+dr|Ft]−LE[

∫ T

t
|X(r)+D−

y J(r, y)−Zm(r)|dr |Ft].

In view of (15) the proof of Step 2 can then be completed by letting m tend
to infinity.
Step 3: We can now prove the assertion.

By step 1 and 2 we have

J(t, y) = E

[

L

∫ T

t
(X(s) +D−

y J(s, y))+ds

∣

∣

∣

∣

Ft

]

= E

[

L

∫ T

t
(X(s) +D+

y J(s, y))+ds

∣

∣

∣

∣

Ft

]

(16)

for y ∈ A. Now fix some y ∈ (−∞,−1) \ A. By Proposition 3.6, (ii), there
are sequences (ȳk) and (y

k
) in A such that ȳk ↓ y and y

k
↑ y. Recalling

that y 7→ J(t, y) is continuous, y 7→ D−
y J(s, y) is leftcontinuous and y 7→

D+
y J(s, y) is rightcontinuous, we immediately see that the equations in (16)

also hold for y.

We can slightly reformulate the result that the value process solves the
above BSPDE in the following way.

Corollary 4.2. For every y ∈ (−∞, 1]

J(t, y) = E

[

L

∫ T

t
(X(s) +D−

y J(s, y))+ds

∣

∣

∣

∣

Ft

]

, t ∈ [0, T ]

D−
y J(t, 1) ≤ −X(t), D−

y J(t, 1− L(T − t)) = 0, t ∈ [0, T )

holds P -almost surely.

Proof. In view of the previous theorem, we only need to show that

D−
y J(t, 1) ≤ −X(t), D−

y J(t, 1− L(T − t)) = 0, (17)

for every t ∈ [0, T ). The first assertion in (17) in turn implies

E

[

L

∫ T

t
(X(s) +D−

y J(s, 1))+ds

∣

∣

∣

∣

Ft

]

= 0 = J(t, 1)

for t ∈ [0, T ).
Note that the second assertion in (17) is trivial, because

J(t, y) = E[

∫ T

t
LX(s)ds|Ft]
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for y < 1−L(T − t). In order to prove the first assertion we define ut,y(r) =
L1[t,t+(1−y)/L](r). Then, for y < 1

J(t, y)− J(t, 1)

y − 1
= −

J(t, y)

1− y
≤ −

L

1− y

∫ min{t+(1−y)/L,T}

t
X(s)ds.

By right-continuity of X, the right-hand side converges to −X(t), which
concludes the proof of (17).

5 Characterization of optimal controls

In this section we characterize optimality of controls. By Corollary 4.2 one
expects that the following result holds under at most technical conditions:
Suppose that u ∈ U(t, y). Then u is an optimal control, if and only if

u(s) ∈







{0}, X(s) +D−
y J(s, y +

∫ s
t u(r)dr) < 0

{L}, X(s) +D−
y J(s, y +

∫ s
t u(r)dr) > 0

[0, L], X(s) +D−
y J(s, y +

∫ s
t u(r)dr) = 0

(18)

λ[t,T ] ⊗ P -almost surely.
To prove such result we require an appropriate version of a chain rule,

which is derived in the following lemma.

Lemma 5.1. Suppose

V (t, y) = E[

∫ T

t
v(r, y)dr|Ft], t ∈ [0, T ], y ∈ (−∞, 1],

is an adapted random field which satisfies:

1. There is a set Ω̄ of full P measure such that D−
y V (t, ω, y) exists for

every t ∈ [0, T ], y ∈ (−∞, 1] and ω ∈ Ω̄, and such that v(t, ω, y) is
leftcontinuous in y for every t ∈ [0, T ], y ∈ (−∞, 1] and ω ∈ Ω̄.

2. v(t, y) is (Ft)-adapted for every y ∈ (−∞, 1] and

E[ sup
(t,y,ỹ)∈[0,T ]×(−∞,1]2, ỹ 6=y

(

|v(t, y)|+

∣

∣

∣

∣

V (t, y)− V (t, ỹ)

y − ỹ

∣

∣

∣

∣

)

] < ∞.

Then, for every (t, y) ∈ [0, T ]× (−∞, 1] and for every nondecreasing process
of the form y(r) = y +

∫ r
t u(s)ds with u ∈ U(t, y),

V (t, y) = E[

∫ T

t

(

v(r, y(r))dr −D−
y V (r, y(r))u(r)

)

dr|Ft]

holds P -almost surely.
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Proof. We first smoothen V in y-direction by setting

Ṽ (t, y) :=

∫ y

0
V (t, η)dη,

with the usual convention that
∫ y
0 V (t, η)dη = −

∫ 0
y V (t, η)dη for y < 0.

Notice that

Ṽ (t, y) = E[

∫ T

t
ṽ(t, y)dt|Ft]

where

ṽ(t, y) =

∫ y

0
v(t, η)dη.

We now fix a pair (t, y) ∈ [0, T ] × (−∞, 1) and define, for n ∈ N, tni :=
t+ i(T − t)/n and

Un(t, y) :=
{

u ∈ U(t, y); u(r) = u(tni ), for every r ∈ [tni , t
n
i+1)

}

Step 1: For u ∈ Un(t, y) and y(r) = y +
∫ r
t u(s)ds

Ṽ (t, y) = E[

∫ T

t
ṽ(r, y(r))dr − V (r, y(r))u(r)dr|Ft].

In order to prove Step 1, we fix some n ∈ N and u ∈ Un(t, y). Choose a
sequence of refining partitions (πN )N≥n of [t, T ] such that {tn0 , . . . , t

n
n} ⊂

{sN0 , . . . , sNN} = πN for every N ≥ n. We then define

πN (r) = sNi , π̄N (r) = sNi+1, r ∈ (sNi , sNi+1].

We split

Ṽ (t, y) = E[

N−1
∑

i=0

Ṽ (sNi , y(sNi ))− Ṽ (sNi+1, y(s
N
i+1))|Ft]

= E[

N−1
∑

i=0

Ṽ (sNi , y(sNi+1))− Ṽ (sNi+1, y(s
N
i+1))|Ft]

+E[
N−1
∑

i=0

Ṽ (sNi , y(sNi ))− Ṽ (sNi , y(sNi+1))|Ft]

= (I) + (II)

Then,

(I) = E[

∫ T

t
ṽ(r, y(π̄N (r)))dr|Ft].
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By continuity of ṽ(r, ·) and dominated convergence we obtain that

(I) → E[

∫ T

t
ṽ(r, y(r))dr|Ft], N → ∞.

We now observe that

(II) = E[

N−1
∑

i=0

∫ sNi+1

sN
i

Ṽ (sNi , y(sNi ))− Ṽ (sNi , y(sNi+1))

sNi+1 − sNi
dr|Ft]

= E[
N−1
∑

i=0

∫ sN
i+1

sN
i

−1

y(sNi+1)− y(sNi )

∫ y(sN
i+1

)

y(sN
i
)

V (sNi , η)dη u(r)dr|Ft].

Here, we used that u(r) = u(sNi ) for r ∈ [sNi , sNi+1) and y(sNi+1) = y(sNi ) +
u(sNi )(sNi+1 − sNi ). Then, y(sNi+1) is FsN

i
-measurable and, thus,

(II) = E[

N−1
∑

i=0

∫ sNi+1

sN
i

−1

y(sNi+1)− y(sNi )

∫ y(sNi+1
)

y(sN
i
)

V (r, η)dη u(r)dr|Ft]

+E[
N−1
∑

i=0

∫ sN
i+1

sN
i

−1

y(sNi+1)− y(sNi )

×

∫ y(sN
i+1

)

y(sN
i
)

E[V (sNi , η) − V (r, η)|FsN
i
]dη u(r)dr|Ft]

=: (IIa) + (IIb).

Then,

(IIa) = E[

∫ T

t

−1

y(π̄N (r))− y(πN (r))

∫ y(π̄N (r))

y(πN (r))
V (r, η)dη u(r)dr|Ft]

By continuity of V (r, ·) and dominated convergence we get

(IIa) → −E[

∫ T

t
V (r, y(r))u(r)dr|Ft], N → ∞.

It thus remains to show that (IIb) goes to zero. To see this we note that for
r ∈ [sNi , sNi+1]

|E[V (sNi , η) − V (r, η)|FsN
i
]| ≤ |πN |E[sup

(s,η)
|v(s, η)||FsN

i
],

where |πN | denotes the mesh size of the partition πN . Hence,

|(IIb)| ≤ |πN |E[

∫ T

t
u(r)dr sup

(s,η)
|v(s, η)||Ft] → 0, N → ∞.
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Step 2: For u ∈ U(t, y) and y(r) = y +
∫ r
t u(s)ds

Ṽ (t, y) = E[

∫ T

t
ṽ(r, y(r))dr − V (r, y(r))u(r)dr|Ft]

Indeed, given a control u ∈ U(t, y), we define un via

un(r) = n

∫ ti
ti−1

u(s)ds

T − t
, r ∈ [tni , t

n
i+1), i = 1, . . . , n − 1

and un(r) = 0 for r ∈ [0, tn1 ). Then, un ∈ Un(t, y).
Let y(r) = y+

∫ r
t u(s)ds and yn(r) = y+

∫ r
t un(s)ds. Then it is straight-

forward to verify that

y(tni−1) = yn(t
n
i ), i = 1, . . . , n.

This implies that the sequence (yn(r)) converges to y(r), as n tends to in-
finity, for every r ∈ [t, T ]. By continuity of ṽ(r, ·) and V (r, ·) and dominated
convergence we have

E[

∫ T

t
ṽ(r, yn(r))dr − V (r, yn(r))u(r)dr|Ft]

→ E[

∫ T

t
ṽ(r, y(r))dr − V (r, y(r))u(r)dr|Ft].

Moreover, yn(r) → y(r) for every r ∈ [t, T ], together with the boundedness
of the sequence (un) in L2([t, T ], λ[t,T ]) implies that (un) converges to u
weakly in L2([t, T ], λ[t,T ]). Hence,

E[

∫ T

t
V (r, y(r))(un(r)− u(r))dr|Ft] → 0.

This shows that Step 1 implies Step 2.
Step 3: For u ∈ U(t, y) and y(r) = y +

∫ r
t u(s)ds

V (t, y) = E[

∫ T

t
v(r, y(r))dr −D−

y V (r, y(r))u(r)dr|Ft].

Fix some u ∈ U(t, y) and note that u also belongs to U(t, y − ǫ) for ǫ > 0.
We apply Step 2 to get

Ṽ (t, y) = E[

∫ T

t
ṽ(r, y(r))dr − V (r, y(r))u(r)dr|Ft]

Ṽ (t, y − ǫ) = E[

∫ T

t
ṽ(r, y(r)− ǫ)dr − V (r, y(r)− ǫ)u(r)dr|Ft]
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where y(r) = y +
∫ r
t u(s)ds. Hence,

Ṽ (t, y − ǫ)− Ṽ (t, y)

−ǫ
= E[

∫ T

t

1

ǫ

∫ y(r)

y(r)−ǫ
v(r, η)dηdr|Ft ]

−E[

∫ T

t
u(r)

V (r, y(r)− ǫ)− V (r, y(r))

−ǫ
dr|Ft]

Letting ǫ tend to zero, the right-hand side converges to

E[

∫ T

t
v(r, y(r)) − u(r)D−

y V (r, y(r))dr|Ft]

by leftcontinuity of v, and the left-hand side converges to V (t, y), because

Ṽ (t, y − ǫ)− Ṽ (t, y)

−ǫ
=

1

ǫ

∫ y

y−ǫ
V (t, η)dη.

By the results established in the previous sections (Corollary 4.2 and
Proposition 2.5) we, hence, arrive at the following corollary.

Corollary 5.2. For every (t, y) ∈ [0, T ]×(−∞, 1] and for every nondecreas-
ing process of the form y(r) = y +

∫ r
t u(s)ds with u ∈ U(t, y),

J(t, y) = E[

∫ T

t
L(X(r) +D−

y J(r, y(r)))+dr −

∫ T

t
D−

y J(r, y(r))u(r)dr|Ft]

holds P -almost surely.

We are now in the position to characterize the set of optimal controls.

Theorem 5.3. A control u ∈ U(t, y) is optimal for J(t, y), if and only if
(18) holds.

Proof. By Corollary 5.2,

J(t, y)

= E[

∫ T

t
L(X(r) +D−

y J(r, y(r)))+dr −

∫ T

t
D−

y J(r, y(r))u(r)dr|Ft]

= E[

∫ T

t
X(r)u(r)dr|Ft]

+E[

∫ T

t

(

L(X(r) +D−
y J(r, y(r)))+ − (X(r) +D−

y J(r, y(r)))u(r)
)

dr|Ft]

Hence, u is optimal, if and only if the nonnegative second term on the right-
hand side vanishes, which is equivalent to (18).
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6 A dual formulation

We finally present a dual representation in terms of martingales. This type of
representation was first suggested by Rogers (2002) and Haugh and Kogan
(2004) for optimal stopping problems. A corresponding result for general
discrete time optimal control problems is due to Brown et al. (2010).

The main idea is to relax the adaptedness condition on the set of controls
and to penalize non-adapted controls by a suitable choice of martingales. We
first introduce the set U(t, y) of deterministic functions u : [t, T ] → [0, L] such

that
∫ T
t u(s)ds ≤ 1 − y. With this notation, U(t, y) is the set of adapted

processes whose paths take values in U(t, y).

Definition 6.1. Suppose (t, y) ∈ [0, T ] × (−∞, 1]. A map

M : [t, T ]× Ω× U(t, y) → R

is called a martingale map, if (M(s, u), t ≤ s ≤ T ) is a martingale for every
u ∈ U(t, y). We denote the set of martingale maps by M(t, y).

We can now represent the value J(t, y) as a solution of minimization
problem over martingale maps.

Theorem 6.2. Suppose (t, y) ∈ [0, T ]× (−∞, 1]. Then,

J(t, y) = essinf
M∈M(t,y)

E[esssup
u∈U(t,y)

∫ T

t
u(r)X(r)dr− (M(T, u)−M(t, u))|Ft]. (19)

Moreover,

M̄ t,y(s, u) = J(s, y(s)) +

∫ s

t
L(X(r) +D−

y J(r, y(r)))+ −D−
y J(r, y(r))u(r)dr

with y(r) = y +
∫ r
t u(l)dl is an optimal martingale map, which satisfies

J(t, y) = esssup
u∈U(t,y)

∫ T

t
u(r)X(r)dr − (M̄ t,y(T, u)− M̄ t,y(t, u)). (20)

Proof. Suppose u ∈ U(t, y) and M is a martingale map. Then,

E[

∫ T

t
u(r)X(r)dr|Ft] = E[

∫ T

t
u(r)X(r)dr − (M(T, u) −M(t, u))|Ft]

≤ E[esssup
u∈U(t,y)

∫ T

t
u(r)X(r)dr − (M(T, u) −M(t, u))|Ft],

where the first identity is due to the martingale property of M(s, u). This
shows

J(t, y) ≤ essinf
M∈M(t,y)

E[esssup
u∈U(t,y)

∫ T

t
u(r)X(r)dr − (M(T, u)−M(t, u))|Ft].
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In order to finish the proof it is now sufficient to show that M̄ t,y is a mar-
tingale map and satisfies

J(t, y) ≥ esssup
u∈U(t,y)

∫ T

t
u(r)X(r)dr − (M̄ t,y(T, u)− M̄ t,y(t, u)). (21)

Fix some u ∈ U(t, y) and let y(r) = y +
∫ r
t u(l)dl. By Corollary 5.2, we get

for s ≥ t

J(s, y(s)) = E[

∫ T

s
L(X(r)+D−

y J(r, y(r)))+dr−

∫ T

s
D−

y J(r, y(r))u(r)dr|Fs].

This shows that M̄ t,y is a martingale map. Finally, (21) holds, because

(

esssup
u∈U(t,y)

∫ T

t
u(r)X(r)dr − (M̄ t,y(T, u)− M̄ t,y(t, u))

)

− J(t, y)

= esssup
u∈U(t,y)

∫ T

t

(

u(r)(X(r) +D−
y J(r, y(r))) − L(X(r) +D−

y J(r, y(r)))+
)

dr

≤ 0.
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