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Abstract 4 

This study proposes the use of artificial neural networks (ANNs) to calculate the compressive 5 

strength and strain of fiber reinforced polymer (FRP) confined square/rectangular columns. 6 

Modeling results have shown that the two proposed ANN models fit the testing data very 7 

well. Specifically, the average absolute errors of the two proposed models are less than 5%. 8 

The ANNs were trained, validated, and tested on two databases. The first database contains 9 

the experimental compressive strength results of 104 FRP confined rectangular concrete 10 

columns. The second database consists of the experimental compressive strain of 69 FRP 11 

confined square concrete columns. Furthermore, this study proposes a new potential approach 12 

to generate a user-friendly equation from a trained ANN model. The proposed equations 13 

estimate the compressive strength/strain with small error. As such the equations could be 14 

easily used in engineering design instead of the “invisible” processes inside the ANN. 15 

CE Database subject headings: Fiber Reinforced Polymer; Confinement; Concrete columns; 16 

Neural networks; Compressive strength; Computer model.  17 
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Introduction 18 

The use of FRP confined concrete columns has been proven in enhancing the strength and the 19 

ductility of columns. Over the last two decades, a large number of experimental and analytical 20 

studies have been conducted to understand and simulate the compressive behavior of FRP 21 

confined concrete. Experimental studies have confirmed the advantages of FRP confined 22 

concrete columns in increasing the compressive strength, strain, and ductility of columns 23 

(Hadi and Li 2004; Hadi 2006a; Hadi 2006b; Hadi 2007a, b; Rousakis et al. 2007; Hadi 2009; 24 

Wu and Wei 2010; Hadi and Widiarsa 2012; Hadi et al. 2013; Pham et al. 2013). Meanwhile, 25 

many stress-strain models were developed to simulate the results from experimental studies. 26 

Most of the existing models were based on the mechanism of confinement together with 27 

calibration of test results to predict the compressive stress and strain of FRP confined concrete 28 

columns (Lam and Teng 2003a; Ilki et al. 2008; Wu and Wang 2009; Wu and Wei 2010; 29 

Rousakis et al. 2012; Yazici and Hadi 2012; Pham and Hadi 2013; Pham and Hadi 2014). 30 

Models developed by this approach provide a good understanding of stress-strain curve of the 31 

confined concrete, but their errors in estimating the compressive strength and strain are still 32 

considerable. Bisby et al. (2005) had carried out an overview on confinement models for FRP 33 

confined concrete and indicated that the average absolute error of strain estimation ranges 34 

from 35% to 250% while the error of strength estimation is about 14% - 27%. In addition, 35 

Ozbakkaloglu et al. (2013) had reviewed 88 existing FRP confinement models for circular 36 

columns. That study showed that the average absolute errors of the above models in 37 

estimating stress and strain are greater than 10% and 23%, respectively. Thus, it is necessary 38 

for the research community to improve the accuracy of estimating both the compressive stress 39 

and strain of FRP confined concrete. This study introduces the use of artificial neural 40 

networks (ANNs) to predict the compressive strength and strain of FRP confined 41 
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square/rectangular concrete columns given the input parameters including geometry of the 42 

section and mechanical properties of the materials. 43 

ANN can be applied to problems where patterns of information represented in one form need 44 

to be mapped into patterns of information in another form. As a result, various ANN 45 

applications can be categorized as classification or pattern recognition or prediction and 46 

modeling. ANN is commonly used in many industrial disciplines, for example, banking, 47 

finance, forecasting, process engineering, structural control and monitoring, robotics, and 48 

transportation. In civil engineering, ANN has been applied to many areas, including damage 49 

detection (Wu et al. 1992; Elkordy et al. 1993), identification and control (Masri et al. 1992; 50 

Chen et al. 1995), optimization (Hadi 2003; Kim et al. 2006), structural analysis and design 51 

(Hajela and Berke 1991; Adeli and Park 1995), and shear resistance of beams strengthened 52 

with FRP (Perera et al. 2010a; Perera et al. 2010b). 53 

In addition, ANN has also been used to predict the compressive strength of FRP confined 54 

circular concrete columns (Naderpour et al. 2010; Jalal and Ramezanianpour 2012). This 55 

study uses ANN to predict both the compressive strength and strain of FRP confined 56 

square/rectangular concrete columns. Furthermore, a new potential approach is introduced to 57 

generate predictive user-friendly equations for the compressive strength and strain. 58 

Experimental Databases 59 

The test databases used in this study is adopted from the studies by Pham and Hadi (2013; 60 

2014). Details of the databases could be found elsewhere in these studies, but for convenience 61 

the main properties of specimens are summarized. It is noted that when the axial strain of 62 

unconfined concrete at the peak stress (co) is not specified, it can be estimated using the 63 

equation proposed by Tasdemir et al. (1998) as follows: 64 
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In the literature, test results of the compressive strain of FRP confined concrete is relatively 66 

less than that of the compressive strength. If a database is used to verify both the strain and 67 

strength models, the size of this database will be limited by the number of specimens having 68 

results of the strain. Thus, in order to maximize the databases’ size, this study uses two 69 

different databases for the two proposed models. In addition, studies about FRP confined 70 

rectangular specimens focused on confined strength but not strain. Thus data about confined 71 

strain of rectangular specimens reported are extremely limited. When the number of 72 

rectangular specimens is much fewer than that of square columns, it is not reliable to predict 73 

the compressive strain of the rectangular specimens by using a mixed database. Therefore, 74 

this paper deals with strain of square specimens only. 75 

All specimens collated in the databases were chosen based on similar testing schemes, ratio of 76 

the height and the side length, failure modes, and similar stress-strain curves. The ratio of the 77 

height and the side length is 2. The aspect ratio of the rectangular specimens ranged between 78 

1 and 2.7. Test results of the specimens which have a descending type in the stress-strain 79 

curves were excluded from the databases. In addition, a few studies concluded that square 80 

columns confined with FRP provide a little (Mirmiran et al. 1998) or no strength 81 

improvement (Wu and Zhou 2010). Thus, this study deals only with specimens with round 82 

corner, as such specimens with sharp corners were excluded from the databases. After 83 

excluding all the above, the databases contained the test results of 104 FRP confined 84 

rectangular concrete columns and 69 FRP confined square concrete columns for the strength 85 

and strain models, respectively. 86 

Artificial Neural Network Modeling 87 
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Compressive Strength of FRP Confined Rectangular Columns 88 

The ANN strength model was developed by the ANN toolbox of MATLAB R2012b 89 

(MATLAB) to estimate the compressive strength of FRP confined rectangular specimens. The 90 

data used to train, validate and test the proposed model were obtained from the paper by 91 

Pham and Hadi (2014). The database contained 104 FRP confined rectangular concrete 92 

columns having unconfined concrete strength between 18.3 MPa and 55.2 MPa. The database 93 

was randomly divided into training (70%), validation (15%), and test (15%) by the function 94 

“Dividerand”. 95 

Following the data division and preprocessing, the optimum model architecture (the number 96 

of hidden layers and the corresponding number of hidden nodes) needs to be investigated. 97 

Hornik et al. (1989) provided a proof that multilayer feedforward networks with as few as one 98 

hidden layer of neurons are indeed capable of universal approximation in a very precise and 99 

satisfactory sense. Thus, one hidden layer was used in this study. The optimal number of 100 

hidden nodes was obtained by a trial and error approach in which the network was trained 101 

with a set of random initial weights and a fixed learning rate of 0.01. 102 

Since the number of input, hidden, and output neurons is determined, it is possible to estimate 103 

an appropriate number of samples in the training data set. Upadhyaya and Eryurek (1992) 104 

proposed an equation to calculate the necessary number of training samples as follows: 105 

o

w

log
o

w
n

o

w
2       (2)

 
106 

where w is the number of weights, o is the number of the output parameters, and n is the 107 

number of the training samples. Substituting the number of weights and the number of the 108 

output parameters into Eq. 2, the following condition is achieved: 109 
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110 

Once the network has been designed and the input/output have been normalized, the network 111 

would be trained. The MATLAB neural network toolbox supports a variety of learning 112 

algorithms, including gradient descent methods, conjugate gradient methods, the Levenberg-113 

Marquardt (LM) algorithm, and the resilient back-propagation algorithm (Rprop). The LM 114 

algorithm was used in this study. In the MATLAB neural network toolbox, the LM method 115 

(denoted by function “Trainlm”) requires more memory than other methods. However, the 116 

LM method is highly recommended because it is often the fastest back-propagation algorithm 117 

in the toolbox. In addition, it does not cause any memory problem with the small training 118 

dataset though the learning process was performed on a conventional computer. 119 

In brief, the network parameters are: network type is Feed-forward back propagation, number 120 

of input layer neurons is 8, number of hidden layer neurons is 6, one neuron of output layer is 121 

used, type of back propagation is Levenberg-Marquardt, training function is “Trainlm”, 122 

adaption learning function is “Learngdm”, performance function is MSE, transfer functions in 123 

both hidden and output layers are “Tansig”.  The network architecture of the proposed ANN 124 

strength model is illustrated in Fig. 1. 125 

In the development of an artificial neural network to predict the compressive strength of FRP 126 

confined rectangular concrete specimens (fcc
’ in MPa), the selection of the appropriate input 127 

parameters is a very important process. The compressive strength of confined concrete should 128 

be dependent on the geometric dimensions and the material properties of concrete and FRP. 129 

The geometric dimensions are defined as the short side length (b in mm), the long side length 130 

(h in mm), and the corner radius (r in mm). Meanwhile, the material properties considered 131 

are: the axial compressive strength (fco
’ in MPa) and strain (co in %) of concrete, the nominal 132 
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thickness of FRP (tf in mm), the elastic modulus of FRP (Ef in GPa), and the tensile strength 133 

of FRP (ff in MPa). 134 

Compressive Strain of FRP Confined Square Columns 135 

The ANN strain model was developed to estimate the compressive strain of FRP confined 136 

square specimens. The data used in this model were adopted from the study by Pham and 137 

Hadi (2013). The database contained 69 FRP confined square concrete columns having 138 

unconfined concrete strength between 19.5 MPa and 53.9 MPa.  139 

The algorithm and design of the ANN strain model are the same as the proposed ANN 140 

strength model with details as follows: network type is Feed-forward back propagation, 141 

number of input layer neurons is 7, number of hidden layer neurons is 6, one neuron of output 142 

layer, type of back propagation is Levenberg-Marquardt, training function is “Trainlm”, 143 

adaption learning function is “Learngdm”, performance function is MSE, transfer functions in 144 

both hidden and output layers are “Tansig”. The architecture of the proposed model is similar 145 

to Fig. 1 with exclusion of Variable h. 146 

Once the network was designed, the necessary number of training samples could be estimated 147 

by using Eq. 2 as follows: 148 

2684848  n       (4)
 

149 

Performance of the Proposed Models 150 

The performance of the proposed ANN strength model was verified by the database of 104 151 

rectangular specimens. Fig. 2 shows the predictions of the ANN strength model as compared 152 

to the experimental values. Many existing models for FRP confined concrete were adopted to 153 

compare with the proposed model. However, because of space limitations of the paper, five 154 
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existing models were studied in this verification (Lam and Teng 2003b; Wu and Wang 2009; 155 

Toutanji et al. 2010; Wu and Wei 2010; Pham and Hadi 2014). These models were chosen 156 

herein because they have had high citations and yielded good agreement with the database. 157 

The comparison between the predictions and the test results in Fig. 2 shows improvement of 158 

the selected models in predicting the strength of FRP confined rectangular columns over the 159 

last decade. The proposed ANN strength model has the highest general correlation factor (R2 160 

= 96%) for a linear trend between the prediction and the test results while the other models 161 

have a correlation factor between approximately 78% and 88%. 162 

In order to examine the accuracy of the proposed strength model, three statistical indicators 163 

were used: the mean square error (MSE), the average absolute error (AAE), and the standard 164 

deviation (SD). Among the presented models, the proposed ANN strength model depicts a 165 

significant improvement in calculation errors as shown in Fig. 3. A low SD of the proposed 166 

ANN strength model indicates that the data points tend to be very close to the mean values.  167 

Meanwhile, the performance of the proposed ANN strain model is verified by the database 168 

which had 69 square specimens. Fig. 4 shows the compressive strain of the specimens 169 

predicted by the ANN strain model versus the experimental values. In order to make a 170 

comparison with other models, five existing models were considered in this verification 171 

(Shehata et al. 2002; Lam and Teng 2003b; ACI 440.2R-08 2008; Ilki et al. 2008; Pham and 172 

Hadi 2013). The proposed ANN strain model outperforms the selected models in estimating 173 

the compressive strain of confined square columns as shown in Fig. 4. The highest general 174 

correlation factor (R2 = 98%) was achieved by the proposed model while the correlation factor 175 

of the other models was less than 60%. For further evaluation, the values of MSE, AAE, and 176 

SD were calculated and presented. Fig. 5 shows that the proposed model significantly reduces 177 

the error in estimating the compressive strain of FRP confined square specimens by 178 
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approximately five times as compared to the other models. The average absolute error (AAE) 179 

of the existing models is around 30% while the AAE of the proposed model is approximately 180 

5%. 181 

Proposal of User-Friendly Equations 182 

In the previous section, the “Tansig” transfer function was used in the ANN as it provides 183 

better results than “Pureline” transfer function. Although the simulated results from the 184 

proposed ANNs have a good agreement with the experimental data, it is inconvenient for 185 

engineers to use the networks in engineering design. It is logical and possible that a 186 

functional-form equation could be explicitly derived from the trained networks by combining 187 

the weight matrix and the bias matrix. Nevertheless, the final equations will become very 188 

complicated because the proposed ANN models contain complex transfer functions, which 189 

are “Tansig” as shown in Eq. 5 below. Therefore, in order to generate user-friendly equations 190 

to calculate stress and strain of FRP confined concrete, the “Tansig” transfer function used in 191 

the previous section was replaced by the “Pureline” transfer function (Eq. 6). A method that 192 

uses ANNs to generate user-friendly equations for calculating the compressive strength or 193 

strain of FRP confined square/rectangular columns is proposed. As a result, the proposed 194 

equation could replace the ANN to yield the same results. Once an ANN is trained and yields 195 

good results, a user-friendly equation could be derived following the procedure described 196 

below. 197 

1
1

2
2



  xe

)x(sigtan      (5) 198 

x)x(purelin        (6)
 

199 

Mathematical Derivations 200 
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The architecture of the proposed models is modified to create a simpler relationship between 201 

the inputs and the output as shown in Fig 6. The following equations illustrate the notation in 202 

Fig. 6. 203 

 
  T

T
fffco

'
co

xxxxxxxx

fEtfrhb

87654321

 X
      (7) 204 

where X is the input matrix, which contains eight input parameters, and superscript T denotes 205 

a transpose matrix. Functions that illustrate the relationships of neurons inside the network are 206 

presented as follows: 207 

ji
j i

i,j bxIW 1

6

1

8

1
1  

 

bXIWu     (8) 208 

  uuu1  purelin      (9) 209 

ii
i

i buLW 21

6

1
2  



bLWuu 12      (10) 210 

  22 uuy  purelin      (11) 211 

where u, u1, and u2 are the intermediary matrices; “Purelin” is the transfer function; y is the 212 

output parameter which is the compressive strength of FRP confined square/rectangular 213 

columns (fcc
’ in MPa); IW is the input weight matrix; b1 is the bias matrix of Layer 1; LW is 214 

the layer weight matrix; and b2 is the bias matrix of Layer 2. 215 

From Eqs. 7-11 and Fig. 6, the output could be calculated from the input parameters by the 216 

following equation: 217 

21 bbLWXIWLWy      (12) 218 
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Based on Eq. 12, it is obvious that a user-friendly equation could be derived from a trained 219 

network. In order to simplify the above equation, another expression could be derived as 220 

follows: 221 

aXWy        (13) 222 

where W is a proportional matrix and a is a scalar, which are calculated as follows: 223 

IWLWW        (14) 224 

21 bbLWa       (15) 225 

where the matrix W is denoted as follows: 226 

 87654321 wwwwwwwwW    (16) 227 

Proposed Equation for Compressive Strength 228 

A modified ANN strength model was proposed to estimate the compressive strength of FRP 229 

confined rectangular concrete columns. The modified ANN strength model was trained on the 230 

database of 104 FRP confined rectangular concrete columns. All procedures introduced in the 231 

previous sections were applied for this model with exception of the transfer function. As 232 

described in Fig. 6, the “Purelin” transfer function was used instead of the “Tansig” transfer 233 

function. After training, the input weight matrix (IW), the layer weight matrix (LW), and the 234 

bias matrices (b1 and b2) were obtained. From Eqs. 14 – 15, the proportional matrix (W) and 235 

the scalar (a) were determined as follows: 236 

 640400331365685390360210 ........ 



W

IWLWW
    (17) 237 

24021 . bbLWa      (18) 238 

It is to be noted that the inputs and the output in Eq. 13 are normalized. The relationship 239 

between the actual inputs and the actual output is presented in the equations below: 240 



12 

 

 

























 


a1
2

22

8

1 minimaxi

minii

i
i

iinmaxminmax

xx

xx
w

yyyy
y

   (19) 241 

 

 














 













 










8

1

8

1

2

22

i
i

minmax

minimaxi

miniiminmax

minmaxminmax

i
i

minimaxi

iminmax

w
yy

xx

xwyy

yyyy
x

xx

wyy
y a

  (20) 242 

Based on the equations above, the output could be calculated from the inputs as follows: 243 





8

1i
ii cxky       (21) 244 

where ki are proportional factors, and c is a constant. 245 
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Based on the trained ANN and Eqs. 22 – 23, the constant c is 414.61 while the proportional 248 

factor ki is obtained as follows: 249 

 010150216785417007116012010 ........ k   (24) 250 

In brief, the user-friendly equation was successfully derived from the trained ANN. The 251 

compressive strength of FRP confined rectangular concrete column now is calculated by 252 

using Eqs. 21 and 24. 253 

Proposed Equation for the Compressive Strain 254 
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A modified ANN strain model was proposed to estimate the compressive strain of FRP 255 

confined square concrete columns. The proposed ANN strain model was verified by the 256 

database which contained 69 FRP confined square concrete columns having unconfined 257 

concrete strength between 19.5 MPa and 53.9 MPa. All procedures introduced in the sections 258 

above were applied for this model with the exception of the transfer function, which was the 259 

“Purelin” function. It is to be noted that the total number of input parameters herein is 7 with 260 

exclusion of one variable as shown in Fig. 6. The architecture of the proposed ANN strain 261 

model and the size of the weight matrices and biases are also similar to Fig. 6 but with 7 262 

inputs. Following the same procedure of the proposed strength model, the proportional matrix 263 

(W) and the scalar (a) are determined as follows: 264 

 303324660085995050491 ....... 


W

IWLWW
   (25) 265 

76121 . bbLWa     (26) 266 

The compressive strain now could be calculated by using Eq. 21 in which the proportional 267 

factor ki and the constant c are as follows: 268 

 00300760241593209618000402840 ....... k   (27)  269 

01266.c        (28) 270 

In brief, the user-friendly equation was successfully derived from the trained ANN. The 271 

compressive strain of FRP confined square concrete columns now is calculated by using Eqs. 272 

21 and 27-28. 273 

Performance of the Proposed User-Friendly Equations 274 
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The performance of the proposed strength equation (Eqs. 21 and 24) is shown in Fig. 7. This 275 

figure shows that the proposed user-friendly equation for strength estimation provides the 276 

compressive strength that fits the experimental results well. In addition, the proposed model’s 277 

performance was compared with other existing models as shown in Fig. 7. The five existing 278 

models mentioned in the section above were studied in this comparison. The performance of 279 

these models is comparable in calculating the compressive strength of FRP confined 280 

rectangular columns. 281 

In addition, Fig. 8 shows the performance of the proposed strain equation (Eqs. 21, 27 - 28). 282 

This figure illustrates the compressive strain of the specimens estimated by the proposed 283 

strain equation versus the experimental results. In addition, the proposed strain equation’s 284 

performance was compared with other existing models as shown in Fig. 8. The five models 285 

mentioned in the above sections were adopted. The proposed ANN strain equation 286 

outperforms the selected models in estimating the compressive strain of confined concrete as 287 

shown in Fig. 8. The highest general correlation factor (R2 = 90%) was achieved by the 288 

proposed model while the corresponding number of other models is less than 60%. This 289 

general correlation factor (R2) is less than that in the above sections when the “Tansig” 290 

transfer function was replaced by the “Purelin” transfer function. Although using the 291 

“Purelin” transfer function reduces the accuracy of the proposed models, it provides a much 292 

simpler derivation of the proposed equations. For further evaluation, the values of AAE were 293 

calculated and are presented in Fig. 8. It demonstrates that the proposed equation significantly 294 

reduces the error in estimating the compressive strain of FRP confined square specimens by 295 

approximately three times as compared to the other models. The average absolute error of the 296 

selected models is around 30% while the corresponding number of the proposed model is 297 

approximately 12%. 298 
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Analysis and Discussion 299 

Effect of corner radius on the compressive strength and strain 300 

Based on the proportional matrix (W) as presented in Eq. 12, the contribution of the input 301 

parameters to the output could be examined. The magnitude of the elements in the 302 

proportional matrix of the proposed ANN strength equation is comparable, which was 303 

presented in Eq. 16. Thus all eight input parameters significantly contribute to the 304 

compressive strength of the columns. On the other hand, the element w2 of the proportional 305 

matrix in the proposed ANN strain equation is extremely small as compared to the others (Eq. 306 

25). Hence, the contribution of the input r to the compressive strain of the columns could be 307 

negligible. 308 

The proposed ANN strain equation was modified by using 6 input parameters, in which the 309 

Input r was removed. The input parameters are: the side length, the unconfined concrete 310 

strength and its corresponding strain, the tensile strength of FRP, the nominal thickness of 311 

FRP, and the elastic modulus of FRP. The performance of the modified strain equation is 312 

shown in Fig. 9 which shows that the AAE of the predictions increased slightly from 12% to 313 

13%. Therefore, it is concluded that the contribution of the corner radius to the compressive 314 

strain of the columns is negligible. The proportional factor ki and the constant c are as 315 

follows: 316 

 002005903291314510380260 ...... k   (29)  317 

11932.c        (30) 318 

Scope and Applicability of the Proposed ANN Models 319 
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From the performance of the proposed models, it can be seen that artificial neural networks 320 

are a powerful regression tool. The proposed ANN models significantly increase the accuracy 321 

of predicting the compressive stress and strain of FRP confined concrete. It is to be noted that, 322 

the distribution of the training data within the problem domain can have a significant effect on 323 

the learning and generation performance of a network (Flood and Kartam 1994). The function 324 

“Deviderand” recommended by MATLAB was used to evenly distribute the training data. 325 

Artificial neural networks are not usually able to extrapolate, so the straining data should go at 326 

most to the edges of the problem domain in all dimensions. In other words, future test data 327 

should fall between the maximum and the minimum of the training data in all dimensions. 328 

Table 1 presents the maximum and the minimum values of each input parameter. It is 329 

recommended that the proposed ANN models are applicable for the range shown in Table 1 330 

only. In order to extend the applicability of the proposed ANN models, a larger database 331 

containing a large number of specimens reported should be used to retrain and test the 332 

models. When the artificial neural network has been properly trained, verified, and tested with 333 

a comprehensive experimental database, it can be used with a high degree of confidence. 334 

Simulating an ANN by MS Excel 335 

The finding in this study indicates that a trained ANN could be used to generate a user-336 

friendly equation if the following conditions are satisfied. Firstly, the problem is well 337 

simulated by the ANN, which yields a small error and high value of general correlation factor 338 

(R2). Secondly, the “Purelin” transfer function must be used in that algorithm. A very 339 

complicated problem is then simulated by using a user-friendly equation as followed in the 340 

proposed procedure. 341 

However, if using the “Purelin” transfer function instead of other transfer functions increases 342 

significantly errors of the model, the proposed ANN models that have the “Tansig” transfer 343 
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function should be used. So, a user-friendly equation cannot be generated in such a case. The 344 

following procedure could be used to simulate the trained ANN by using MS Excel: 345 

Step 1: Normalize the inputs to fall in the interval [-1, 1]. 346 

Step 2: Calculate the proportional matrix W and the scalar a by using Eqs. 14 – 15, 347 

respectively. 348 

Step 3: Calculate the normalized output y’ by using Eq. 13. 349 

Step 4: Return the output to the actual values. 350 

By following the four steps above, a MS Excel file was built to confirm that the predicted 351 

results from the MS Excel file are identical with those results yielded from the ANN. 352 

Conclusions 353 

Two ANN strength and strain models are proposed to calculate the compressive strength and 354 

strain of FRP confined square/rectangular columns. The prediction of the proposed ANN 355 

models fits well the experimental results. They yield results with marginal errors, about half 356 

of the errors of the other existing models. This study also develops new models coming up 357 

with a user-friendly equation rather than the complex computational models. The findings in 358 

this paper are summarized as follows: 359 

1. The two proposed ANN models accurately estimate the compressive strength and 360 

strain of FRP confined square/rectangular columns with very small errors (AAE < 5%), 361 

which outperform the existing models. 362 

2. The proposed ANN strength equation provides a simpler predictive equation as 363 

compared to the existing strength models with comparable errors. 364 
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3. The proposed ANN strain equation also delivers a simple-form equation with very 365 

small errors. The proposed model’s error is approximately 12%, which is one third in 366 

comparison with the existing strain models. 367 

4. For FRP confined rectangular columns, the corner radius significantly affects the 368 

compressive strength but marginally affects the compressive strain. 369 

The ANN has been successfully applied for calculating the compressive strength and strain of 370 

FRP confined concrete columns. It is a promising approach to provide better accuracy in 371 

estimating the compressive strength and strain of FRP confined concrete than the existing 372 

conventional methods. 373 
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Table 1. Statistics of the input parameters for the proposed models 495 

Input/Output 

parameters 

Strength model Strain model 

Maximum Minimum Maximum Minimum 

b (mm) 250 100 152 133 

h (mm) 305 100 - - 

r (mm) 60 15 60 15 

fco
’ (MPa) 53.9 18.3 53.9 19.5 

co (%) 0.25 0.16 0.25 0.16 

tf (mm) 1.5 0.13 2 0.12 

Ef (GPa) 257 75.1 241 38.1 

ff (MPa) 4519 935 4470 580 

fcc (MPa) 90.9 21.5 - - 

cc (%) - - 3.9 0.4 

 496 
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