
NOTICE: this is the author’s version of a work that was accepted for 
publication in Expert Systems with Applications. Changes resulting 
from the publishing process, such as peer review, editing, corrections, 
structural formatting, and other quality control mechanisms may not 
be reflected in this document. Changes may have been made to this 
work since it was submitted for publication. A definitive version was 
subsequently published in Expert Systems with Applications, Vol. 37, 
no. 5 (2010) http://dx.doi.org/10.1016/j.eswa.2009.11.033 

 
 



 1 

A new orthogonal array based crossover, with analysis of gene 

interactions, for evolutionary algorithms and its application to car 

door design 

K.Y. Chan1,2, *

1Department of Industrial and Systems Engineering, 

 , C.K. Kwong1, Y.C. Tsim1, M.E. Aydin2 and T.C. Fogarty4 

The Hong Kong Polytechnic University, 

Hung Hom, Kowloon,  

Hong Kong, PRC 

2 Digital Ecosystems and Business Intelligence Institue, Curtin University of 

Technology, Perth, Australia 

3 Department of Computing and Information Systems, 

University of Bedfordshire, Luton, 

United Kingdom  
4 Faculty of Business, Computing and Information Management, 

London South Bank University, 

103 Borough Road, London,  

United Kingdom  

Abstract. Recent research shows that orthogonal array based crossovers 

outperform standard and existing crossovers in evolutionary algorithms in 

solving parametrical problems with high dimensions and multi-optima. 

However those crossovers employed so far, ignore the consideration of 

interactions between genes. In this paper, we propose a method to 

improve the existing orthogonal array based crossovers by integrating 



 2 

information of interactions between genes. It is empirically shown that the 

proposed orthogonal array based crossover outperforms significantly both 

the existing orthogonal array based crossovers and standard crossovers on 

solving parametrical benchmark functions that interactions exist between 

variables. To further compare the proposed orthogonal array based 

crossover with the existing crossovers in evolutionary algorithms, a 

validation test based on car door design is used in which the effectiveness 

of the proposed orthogonal array based crossover is studied. 

Keywords: crossover, evolutionary algorithms, interactions between genes, 
orthogonal array, car door design 

1   Introduction 

The approach of evolutionary algorithms is a type of stochastic searching method 

which is increasingly being used in a wide range of practical applications especially 

where the problem involves a non-differentiable cost function or where the cost 

function is hard to quantify mathematically [2, 6, 15, 34]. However, one of the main 

drawbacks of evolutionary algorithms is their tendency to converge before reaching 

an acceptable solution on challenging problems where the dimensions are high and 

there are numerous local optima [26, 44]. To overcome this problem, recent research 

[18, 19, 32, 45] has shown that optimization with evolutionary algorithms for solving 

parametrical problems with high dimensions and multi-optima can be enhanced by 

embedding the approach of orthogonal design in the crossover. Recent publications 

indicate that the orthogonal array based crossovers outperform the existing crossovers 

                                                                                                                                            
* K.Y. Chan is the corresponding author of the paper. His email address is kit.chan@curtin.edu.au 



 3 

in solving travelling salesman problems [18], polygonal approximation [24], solving 

multimedia multicast routing problems [51], searching Pareto-optimal solutions [31], 

development of fuzzy classifiers [20], structure-specified mixed H2/H∞ controller 

design [22], solving multiobjective combinatorial optimization problems [21], solving 

mesh optimization problems for surface approximation [25], process design of fluid 

dispensing [27], and PID controller design [9] in missile systems [16]. 

 Orthogonal array based crossovers, where the salient feature is the 

incorporation of orthogonal design into the crossover, can be classified into two 

versions: The first version [31, 32, 51] is called the orthogonal crossover (OC), where 

chromosomes are produced by exploring alleles in parents based on combinations of 

an orthogonal array. The two top chromosomes with best fitness among all the 

chromosomes produced are selected as the two children as the outcome of the OC. 

However this approach only considers a limited number of combinations in the 

orthogonal array rather than taking the all the combinations as in a full factorial 

design. This may not be applicable for parametric problems, since the optimal 

combination may not be included in the combinations of the orthogonal array. The 

second version of orthogonal array based crossovers [9, 20-25, 27, 45], is called the 

main effect crossover (MC), because the combinations excluded in the orthogonal 

array are considered by analysing the main effects of genes in parents. Children are 

formed from the best combinations of genes with the best main effect in parents. Thus 

all combinations, as in full factorial design, are considered. This is more promising for 

parametric problems than OC on its own. It has been shown empirically that in 

general MC is better than OC in solving a set of parametrical benchmark problems 

with high dimensions [7, 9, 19]. 



 4 

 MC allows us to approximate the main effect on each gene, but it ignores 

linkages in the form of interaction between genes. If strong interaction exists in 

localized features of the search space, misleading results may be obtained [14, 39-42]. 

It has been shown empirically that MC cannot achieve better results than OC on 

parametrical problems in which interactions exist between variables [7, 10]. In this 

paper, a new crossover operator called an interaction crossover (IC), that considers 

interactions between genes, is proposed. It employs the approach of the interaction 

plot [38], that has been commonly used to analysis interactions between parameters in 

industrial systems [29, 33, 35, 46, 50], to analyze the interaction between genes. From 

the interaction plot, a clear picture of the interaction effects between genes can be 

obtained. In the crossover operator the children can be produced by considering both 

the main effects in genes and interaction between genes. By solving a set of hard 

parametrical benchmark problems in which interactions exist between variables [48, 

49], it has been shown empirically that significantly better results can be found based 

on IC compared with those based on OC, MC and standard crossovers. 

 To further evaluate the effectiveness of IC, a car door design based on Kim’s 

work [Kim et al 2000], is optimized using the evolutionary algorithm with IC. The 

result is then compared with the results based on OC, MC and standard crossover and 

our previously developed computational method [3]. 

2   A Review of Orthogonal Array Based Crossovers 

The following subsection 2.1 and 2.2 discuss the operations and the limitations of the 

two versions of orthogonal array based crossovers, orthogonal crossover OC [31, 32, 

51] and main effect crossover MC [9, 20-25, 27, 45], respectively.  

 



 5 

2.1  Orthogonal Crossover (OC) 

In OC, an orthogonal array is integrated into the classical crossover operator so that 

two parents can be used to generate a small but representative set of sampling points, 

to be children based on the orthogonal array. 

 The chromosomes used in OC are in a real-coded representation, where the 

alleles in genes are real numbers. In a way similar to the                                                                    

classical crossover, two parents ( )lpppP ,12,11,11 ,...,,=  and ( )lpppP ,22,21,22 ,...,,=  are 

selected randomly from the population, where l  is the number of variables in the 

chromosome. 

 Q is the number of levels, M is the number of rows and N is the number of 

columns of the orthogonal array ( )N
M QL  respectively. Then the genes in 1P  and 2P  

are quantified into Q levels such that the difference between any two successive levels 

is the same. The thi  level is denoted to be ( ) ( )liii βββiLevel ,2,1, ,...,= , where 

i=1,2,…,Q, and jiβ ,  is defined as: 

( )

( ) ( )

( )



























≤≤=

≤≤−≤≤
−

−
⋅−+

≤≤=

=

.1 and for                                     ,,max

1 and 12for  ,
1

1,min

.1 and 1for                                      ,,min

,2,1

,2,1
,2,1

,2,1

,

ljQipp

ljQi
Q

pp
ipp

ljipp

β

jj

jj
jj

jj

ji   (1) 

 After quantifying 1P  and 2P , the Q levels are sampled as M potential offspring 

based on the combinations of the M rows of parameter levels in the orthogonal array 

( )N
M QL . Specifically, N-1 integers 1k , 2k ,…, 1−Nk  are generated randomly such that 

1< 1k < 2k <…< 1−Nk <l. Then N vectors are created such that:  



 6 

( ) ( )

( ) ( )

( ) ( )


















+−

++==

+−

++==

==

−

−−+−

+−

−

.1 is  inside elements ofnumber   thehere         w

,,...,2,1,...,,
:                                         :                                          :
:                                         :                                          :

.1 is  inside elements ofnumber   thehere         w

       ,,...,2,1,...,,
. is  inside elements ofnumber   thehere         w

                       ,,...,2,1,...,,

1

11121

122

211
2

1
2

2
2

1
2

11

1
11

2
1

1
1

1

12

1

NN

NN
N

kl
NNN

kk

k

klf

lkkffff

kkf

kkkffff
kf

kffff

N

   (2) 

For i = 1,2,…M, the thi  offspring io  is produced as: 

,...,,,...,,( 2
22

2
12

1
11

1
21

1
11 ),(),(),(),(),( fiafiafiafiafiai βββββo

k
=  

),...,,,...,...,
1121

2
1122 ),(),(),(),( N

NklN
N

N
N

Nkk fiafiafiafia ββββ
+−−+−

   (3) 

where the combination of the thi  row of the orthogonal array ( )N
M QL  is denoted as 

( ) ( ) ( )[ ]iaiaiaa(i) N,...,, 21= . The fitness ic  of each offspring ( )Miio ,...,2,1for   :i.e.  =  is 

evaluated according to the fitness function; i.e. ( )ii ofunc = , where ( )fun  denotes as 

the fitness function. Then the two offspring with the best fitness among M offspring 

are selected to be the two children of the OC. 

 

 

 

 

 

 

 

 

 

 



 7 

Detailed steps of the OC are as follows: 

Algorithm 1: Orthogonal crossover (OC) 

Step 1: Select two parents 1P  and 2P  from the population randomly. 

Step 2: Quantize 1P  and 2P  based on (1), and produce 

( ) ( )liii βββiLevel ,2,1, ,...,= , where i=1,2,…,Q. 

Step 3: Randomly generate N-1 integers 1k , 2k ,…, 1−Nk , such that 

1< 1k < 2k <… 1−Nk <l in which l is the number of variables in the 

chromosomes. Then create N vectors if  based on (2), where 

i=1,2,…,N. 

Step 4: Apply ( )N
M QL  to produce the M potential offspring io  based on (3), 

where i=1,2,…,M. 

Step 5: Evaluate the fitness of the M potential offspring based on the fitness 

function ( )fun . 

Step 6: Select the two offspring with the best fitness among M potential ones 

to be the two children of the OC. 

 

The limitation of OC are described as follows: For i = 1,2,…,M, the thi  

offspring io  is produced based on the thi  combination of the orthogonal array 

( )N
M QL . Therefore M offspring are produced, meaning that M combinations are 

explored by the orthogonal array ( )N
M QL . However, the total number of 

combinations of N genes with Q levels are QN . In OC, only M combinations are 

considered, thus MN Q −  combinations are not explored. This may not be applicable 



 8 

to some parametrical problems as the best combination may not be included in the 

orthogonal array. This is the potential limitation of this operator. 

An example as shown in Figure 3 is used to explain the limitation in which the 

orthogonal array )2( 3
4L  [43] (which is detailed in Figure A1 in the appendix) is used 

to sample the genes from the two parents, P and P'. Each of the two parents are 

divided into three genes, where ( )321  , , ppp  and ( )' ,' ,' 321 ppp  are defined as the three 

genes of P and P' respectively. These three genes from the parents are sampled based 

on the four combinations of parameter levels in )2( 3
4L . Four potential offspring, 1O , 

2O , 3O , and 4O  are produced as shown in Figure 3. The best two offspring among the 

four are selected to be the children of OC. 

P=

P'=

( p1, p2, p3 )O1 =

( p1, p2', p3' )O2 =

( p1', p2, p3' )O3 =

( p1', p2', p3 )O4 =

( p1, p2, p3 )

( p1', p2', p3' )

Sample the genes
based on L4(2^3)

Select the best two
offspring to be the
children

 

Figure 3 The orthogonal array L4(23) is used to sample the genes from P and P' for OC 

 

Figure 4 illustrates the combinations in a full factorial design of 3 parameters with 

2 levels. It can be seen from Figure 4 that the total number of combinations of 3 genes 

with 2 parameter levels is 8 (i.e. 23). However, only 4 combinations (the black points) 

are considered by the orthogonal array )2( 3
4L , and the other 4 combinations (the grey 

points) are not explored by )2( 3
4L . Therefore this approach may not be applicable to 

parametrical problems since the optimal combination may be one of the combinations 

of the grey points. 



 9 

First gene

Second gene

Third gene

(p1', p2, p3')

(p1', p2', p3)

(p1, p2', p3')
(p1, p2, p3)

p1 p1'

p2'

p2

p3

p3'

 

Figure 4 Combinations of the orthogonal array )2( 3
4L   

 

2.2  Main Effect Crossover (MC) 

The major steps of the main effect crossover (MC) [18] are similar to those of the OC. 

In the OC, after evaluating the fitness of the M offspring ( ),...M,ioi 21for  =  the two 

top offspring among the offspring from the orthogonal array are selected to be the two 

children, after evaluating the fitness of the M offspring ( ),...M,ioi 21for  = . In MC, 

the fitness values of the M offspring are analyzed further by considering the main 

effects in genes, and the children are produced by taking the genes with the best 

levels. 

The main effect of the jth gene with level k is defined as: 

∑ Η⋅=
=

N

i
ijijk cM

1
        (4) 

where 

( )


 =

=Η
otherwise, 0

 , if ,1 kia j
ij  



 10 

ci is the fitness value of the thi  offspring io  with i=1,2,…,M, i.e. ( )ii ofunc = , and 

aj(i) is the element of the jth column and the ith row of the orthogonal array LM(QN). In 

other word, ci represents the fitness value of the genes formed by the ith combination 

of the orthogonal array LM(QN). 

The first child is formed from the best combinations with the best level on each 

gene. For minimization problems, if 21 jj MM > , the level 2 of the thj  gene is better 

than the level 1. The best level Best(j) of the thj  gene is denoted as: 

 ( ) NjMjBest jkQk
1,2,...,  where,minarg)(

,...,2,1
=






=

=
     (5) 

where 'arg(min(..))' is a function that returns the indices of the minimum value of the 

matrix. For maximization problem, if 21 jj MM > , the level 1 of the thj  gene is better 

than the level 2. The best level Best(j) of the thj  gene is denoted as: 

 ( ) NjMjBest jkQk
1,2,...,  where,maxarg)(

,...,2,1
=






=

=
     (6) 

where ' arg(max(..))' is a function that returns the indices of the maximum value of the 

matrix. The detailed description of the function 'arg' is referred to Example A1 in the 

appendix. 

The second child is identical to the first child except that the gene with the lowest 

main effect difference at the other level is chosen, where the main effect difference 

( )jMED  on the thj  gene is denoted as: 

( ) ( ) .,...,2,1  where,minmax
1,2,...,1,2,...,

NjMMMED jkQkjkQkj =−=
==

   (7) 

Note that the main effect reveals the individual effect of a gene, thus the most 

effective gene has the largest main effect difference. 

 



 11 

The detailed steps of the main effect crossover (MC) are as follows: 

Algorithm 2: Main effect crossover (MC) 

Step 1-Step 5: Step 1 to Step 5 are identical to Step 1 to Step 5 of Algorithm 1. 

Step 6: Based on (4), evaluate the main effect jkM  of the thj  gene with level 

k, where j=1,2,…,N and k=1,2,…,Q. 

Step 7: Determine the best level Best(j) of the thj  gene based on (5) for 

minimization problems or based on (6) for maximization problems, 

where j=1,2,…,N. 

Step 8: The first child is formed from the best level of each gene. 

Step 9: Determine the main effect difference ( )jMED  on the thj  gene based on 

(7), where j=1,2,…,N. 

Step 10: The second child is identical to the first child except the gene with the 

lowest main effect difference adopts the other level. 

 

The limitation of MC are described follows: In experimental design [1, 38], it 

should be emphasized that the analysis of the main effect is the simplest approach to 

data analysis. However, it is common for two of the genes to interact and yield a 

result that is more dependent upon the interaction between the two genes than on the 

main effects of either individual gene [14]. Further analysis, which gives insights into 

interactions and main effects inside the chromosomes in GAs, has been done [9, 39-

42]. Their central idea is to perform an 'analysis of variance (ANOVA)', whereby the 

variability of the fitness values of the chromosomes (measured by sums of squared 

deviations from mean fitness, and denoted by SS) is partitioned into main effects and 

interactions; i.e. 

Total SS = SS of main effects + SS of interactions 



 12 

Therefore the lack of provision for adequately dealing with the potential 

interactions between genes is a major weakness of MC. If a chromosome exhibits 

very low interaction between the genes, it could probably be processed efficiently by 

MC. Otherwise the predicted optimal combination may not be reproducible if strong 

interaction exists between the genes. 

Furthermore, the empirical results [7, 10] show that MC outperforms OC on the 

parametrical problems where all variables are linearly independent to each other. 

However, no significant improvement can be found on MC over OC on the 

parametrical problems where the variables interact with each other. Therefore, it 

seems that MC can not work well on parametrical problems in which variables 

interact with each other. In the following section, the improved version of MC, by 

integrating the information of interactions between genes, is proposed. 

3   Interaction Crossover (IC) 

The steps of the proposed new orthogonal array based crossover, namely IC, are 

similar to the ones in MC. In MC, the children are produced by considering only the 

best main effects in genes. In IC, the children are produced by considering both main 

effects in genes and interactions between genes. The approach of the interaction plot 

[38], which is commonly used to analyze the magnitudes of interaction between 

parameters in industrial systems [33, 35, 39, 46], is applied to IC. From the interaction 

plot, a clear picture of the magnitudes of interactions between genes can be indicated. 

In IC, an interaction matrix ijMI  is prepared to estimate the magnitudes of 

interaction between gene i and j, where Nji ≤≤ ,1 . It can be expressed as: 

( )( )
QQijij nmIMI
×

≤≤= Qnm,1for  ;,       (8) 



 13 

where Q is the number of rows and columns of the interaction matrix ijMI . The 

elements in ijMI , ( )nmIij , , which represents the average fitness of the thi  gene with 

level m and thj  gene with level n, is defined as: 

( )
∑
= 
















∑
= 















⋅

=
N

p nthj

mthithp

N

p nthj

mthithp
pf

nmIij

1  is gene   theand

  is gene   theof offspring   theof level the

1  is gene   theand

  is gene   theof offspring   theof level the

,   (9) 

where Qnm ≤≤ ,1  and [ ]




=
 otherwise. 0

 true.isbracket   theinsidestatement   theif 1
condition   

Then the approach of interaction plot [38] is used to indicate the magnitude of 

interaction between gene i and j. The thr  line of the interaction plot is defined as: 

 ( ) ( ) ( )( ) .1for  ;,,...,,2,,1 QrrQIrIrI(r)Line ijijijij ≤≤=   (10) 

Level
Lineij(Q)

1   2   3    . . . . . . . . . .     Q Level

value 
Fitness

Lineij(Q)

Parallel lines

value 
Fitness

Lineij(1)
Lineij(2)

LevelLevel

Non-parallel lines

value 
Fitness

1   2   3    . . . . . . . . . .     Q

Lineij(Q)Lineij(Q)

Lineij(1)
Lineij(2)

 

Figure 5(a) No interaction exists between 

gene i and j 

Figure 5(b) Interaction exists between 

gene i and j 



 14 

LevelLevel

Lines with crosses

value 
Fitness

Lineij(Q)

Lineij(1)
Lineij(2)

1   2   3    . . . . . . . . . .     Q

 

Figure 5(c) Strong interaction exists between gene i and j 

 

The magnitude of interaction can be determined by the interaction plot. If the lines 

on the interaction plot (as shown in Figure 5(a)) are parallel, no interaction exists 

between gene i and j. If the lines on the interaction plots are nonparallel (as shown in 

Figure 5(b)), interaction occurs. If the lines cross (as shown in Figure 5(c)), strong 

interaction occurs. The actual amount of interaction between gene i and j can be 

determined by the number of intersections on the interaction plot. 

If strong interaction does not exist in any of the gene pairs, then the main effects 

on genes can be separated out. The first child is formed by the combination of the 

genes with the best main effects based on (5) for minimization problems or on (6) for 

maximization problems. However, if strong interaction does exist in any one of the 

gene pairs, the first child is formed in two parts: The first part is the genes which do 

not carry any strong interaction between each other and the second part that in which 

the genes carry strong interaction between each other. In the first part, the level 

combination is formed by the genes with the best main effects based on (5) for 

minimization problems or on (6) for maximization problems. For the second part, the 

level combination of the genes, which gives the best fitness value, is chosen. Assume 



 15 

that strong interaction exists between gene i and j. Then for minimization problems, 

the best level combination of gene i and j is given by: 

( ) ( )[ ] ( )( )





=

=
nmIjBestiBest ijQnm

,minarg,
,...2,1,

    (11) 

where i, j =1,2,…N but ji ≠ . 'arg(min(…))' is a function that returns the indices of 

the minimum value of the matrix. For maximization problems, the best level 

combination of gene i and j is given by: 

( ) ( )[ ] ( )( )





=

=
nmIjBestiBest ijQnm

,maxarg,
,...2,1,

    (12) 

where i, j =1,2,…N but ji ≠ . 'arg(max(…))' is a function that returns the indices of 

the maximum value of the matrix. More detailed description of the function can be 

referred to Example A1 in the appendix. 

If strong interaction exists both between gene i and j and between gene j and k, 

and the estimated interaction between i and j is larger than the one between j and k, 

then the gene pair of i and j will be selected, and the best level combination of gene i 

and j are given by equation (11) for minimization problems and (12) for maximization 

problems. Otherwise, the gene pair of j and k are selected, and the best level 

combination of gene j and k are given by equation (11) for minimization problems and 

(12) for maximization problems. 

The second child is identical to the first child except that the gene with the lowest 

main effect difference in the other level is chosen. The main effect difference of the 

genes can be found by equation (7). 

 

 

 

 



 16 

Detailed steps of IC are as follows: 

Algorithm 3: Interaction crossover (IC) 

Step 1- Step 6: Step 1 to Step 6 are identical to Step 1 to Step 6 of Algorithm 

2. 

Step 7: Construct the interaction matrix ijMI  by (8), where i,j=1,2,…N with 

ji ≠ . 

Step 8: Construct the interaction plot for ijMI  by using the lines given by (10), 

where i, j=1,2,…N with ji ≠ . 

Step 9: Identify whether the gene i and j holding strong interaction or not by 

checking whether any intersection exists on the interaction plot, where i, 

j=1,2,…N with ji ≠ . 

Step 10: The first child is formed by two parts. The first part is formed by the 

genes without carrying any strong interaction based on (5) for 

minimization problems and on (6) for maximization problems. The 

second part is formed by the genes that carry strong interaction based 

on (11) for minimization problems and on (12) for maximization 

problems. 

Step 11: The second child is formed by performing Step 9 and Step 10 in 

Algorithm 2. 

4   Numerical Result of Non-separable Benchmark Functions 

We executed the evolutionary algorithms embedded with different crossovers to solve 

the benchmark functions ( 91 ff − ) shown in Table 1, which are all non-separable 

functions and the interactions existing between variables. 61 ff −  were collected from 



 17 

[49] and 97 ff −  were collected from [48]. They are unlike separable functions in that 

each sub-function can be completely enumerated, thereby avoiding local optima that 

allow stochastic search methods to move the search into the basin of attraction of the 

global optimum of that sub-function. Also they cannot be decomposed into linear 

combinations of independent sub-functions since variables interact with each other 

and cannot be enumerated completely. They could be classified as good test suites for 

evolutionary algorithms since they are non-separable and each sub-function contains 

at least two variables [48]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18 

Table 1 Non-separable benchmark functions 

Test functions Domain range 

( )ix  

Minimum 

( ) ( )∑
−

=
+ 



 −+−=

1

1

222
11 1100min

N

i
iii xxxf  [-5.12,5.12] N  0 









+= ∏∑

==

N

i
i

N

i
i xxf

11
2 min  [-10,10] N  0 

2

1 1
3 min∑ ∑

= =










=

N

i

i

j
jxf  [-100,100] N  0 









+






−= ∏∑
==

1cos
4000

1min
11

2
4

N

i

i
N

i
i i

xxf  [-600,600] N  0 

( )






















+++= ∑ ∑

=

−

=

+
+

N

i

N

i

ii
ii

xxxxNf
1

1

1

1
15 3

2sinsin2min  [3,13] N  0 

( )


















∑

−

∑

−+= =

=−
N

i

i

N

i
i

N
x

N

x

eeef 1

1

2

20cos
2.0

6 2020min
π

 
[-30,30] N  0 

( ) ( ) ( ) ( )( )111132121127 ,,,,...,,,,min xxfxxfxxfxxfff nnn−=  [-5.12,5.12] N  0 

( ) ( ) ( ) ( )( )111132121128 ,,...,,min xxfxxfxxfxxfff nnn ++++= −  [-5.12,5.12] N  0 

( )( ) ( )( ) ( )( )( )nn xxffxxffxxfff ,...,,min 112321221129 −+++=  [-5.12,5.12] N  0 

 

 A toolbox for the classical evolutionary algorithm coded in Matlab [11, 12] was 

employed to investigate the performance of the orthogonal array based crossovers 

(i.e.: OC, MC and IC), which were embedded in the classical evolutionary algorithm. 

The objective of solving the benchmark functions is to investigate how better the 

proposed orthogonal array based crossover (IC) can outperform the other crossovers 

embedded on the same platform of the classical evolutionary algorithm. We set up 



 19 

and carried out the experimental work regarding the following settings and 

configurations that can be classified into two types 1) orthogonal array based 

evolutionary algorithm embedded with orthogonal array based crossover and 2) 

standard evolutionary algorithm embedded with standard crossover: 

1) The three version of orthogonal array based crossovers (i.e. OC, MC and IC) 

embedded in the above classical evolutionary algorithm [11, 12] have been tested. 

They are called orthogonal array based evolutionary algorithms in this paper. 

a) The first version is the orthogonal array based evolutionary algorithm 

(OCEA). The basic process of OCEA is identical to the classical 

evolutionary algorithm except that the crossover utilizes the orthogonal 

crossover operator (OC) as discussed in Section 2.1. 

b) The second version is the orthogonal array based evolutionary algorithm 

(MCEA). The basic process of MCEA is identical to the classical 

evolutionary algorithm except the crossover utilizes the main effect 

crossover operator (MC) as discussed in Section 2.2. 

c) The third version is orthogonal array based evolutionary algorithm 

(ICEA). The basic process of ICEA is identical to the classical 

evolutionary algorithm except the crossover utilizes the interaction 

crossover operator (IC) as discussed in Section 3. 

An orthogonal array ( )4
9 3L  [43], which is detailed in Figure A2 in the appendix, has 

been used in the three orthogonal array based crossover operators (i.e. OC, MC and 

IC) in all three orthogonal array based evolutionary algorithms (i.e. OCEA, MCEA 

and ICEA). 

2) Two standard evolutionary algorithms (SEAs) have been tested. 



 20 

a) The first version is the standard evolutionary algorithm one (SEA1). The 

basic process of SEA1 is identical to that of the classical evolutionary 

algorithm [11, 12]. The standard three-point crossover is used in SEA1 

because three crossover points are produced by the three orthogonal array 

based crossovers (i.e. OC, MC and IC) with ( )4
9 3L . To unite the number 

of crossover points, three crossover points are used in the crossover 

operator in SEA1. 

b) The second version is the standard evolutionary algorithm two (SEA2). 

The basic process of SEA2 is identical to that of the classical evolutionary 

algorithm [11, 12] except for the crossover. 

In the orthogonal array based crossovers (i.e.: OC, MC and IC), two 

parents are selected randomly from the population. Then nine potential 

offspring are produced based on the combinations of the orthogonal array 

( )4
9 3L . In OC, the two resulting children are produced by selecting two 

best potential offspring from among the nine. In MC, the two children are 

produced by analyzing the main effects of the genes of the nine offspring. 

In IC, the two children are produced by analyzing both the main effects of 

the genes and the interactions between the genes of the nine offspring. 

Therefore extra selective pressure is created by the three orthogonal array 

based crossovers (i.e.: OC, MC and IC). 

To investigate how the extra selective pressure influences the 

performance of orthogonal array based evolutionary algorithms, a 

crossover operator with a parent tournament selection of nine is used in 

SEA2. In the crossover operator, nine chromosomes are selected 

randomly from the population. Then the standard three-point crossover is 



 21 

performed on the two chromosomes with the best fitness among the nine 

selected chromosomes, and two children are generated for the next 

generation. 

The following parameter values and scheme in the five evolutionary algorithms 

(i.e.: OCEA, MCEA, ICEA, SEA1 and SEA2) have also been adopted. The dimension 

of the tested benchmark functions is 30. The pre-defined number of function 

evaluations in all algorithms is the same, which was set as 200 000. 30 independent 

runs for each algorithm on each test function have been performed. The real coded 

representation was used in all algorithms. The parameters of the crossover rate and 

mutation rate were kept constant and their values were taken from [32]. A mutation 

rate1 of 1/30 was used in all algorithms, where 30 is the number of variables in each 

benchmark function. The mutation operator of Gaussian perturbation of individual 

variables was used in all algorithms. For the crossover rate, 0.1 was used in the three 

orthogonal array based evolutionary algorithms (i.e.: OCEA, MCEA and ICEA) and 

1.0 was used in the two SEAs (i.e.: SEA1 and SEA2). The value of the crossover rate 

used in orthogonal array based evolutionary algorithms is smaller than the one used in 

SEAs, since the orthogonal array based crossover operators (i.e.: OC, MC and IC) are 

using ( )4
9 3L  to produce nine potential offspring. With this value of crossover rate, the 

three orthogonal array based evolutionary algorithms can generate a reasonable 

number of potential offspring in each generation. A population size of 100 and 

selective pressure of 1.5 are used in all algorithms, where 1.0 is the minimum 

selective pressure and 2 is the maximum selective pressure, thus the middle selective 

pressure 1.5 was used [4, 5]. 

                                                 
1 Muhlenbein [37] recommends the mutation rate of GA as a value of 1/L, where L is the length of the chromosome. 



 22 

Table 2 presents the results yielded by the algorithms. The columns show the 

information in the following order: the name of the benchmark, the means and 

standard derivations found over the 30 runs by the algorithms SEA1, SEA2, OCEA, 

MCEA and ICEA. We can see from Table 2 that ICEA outperforms the other 

algorithms on the nine benchmark functions. ICEA is better than MCEA, which is 

better than OCEA. Table 1 shows that ICEA achieves the best mean fitness among the 

five evolutionary algorithms. In fact, ICEA obtains the best mean fitness values in all 

functions. Also the variances of ICEA are the smallest comparing with the other four 

evolutionary algorithms in all functions. The smaller the variance, the closer the 

values cluster around the mean is. Since all the variances of ICEA are the smallest, it 

is clear that ICEA is capable of approaching and keeping on searching around the 

mean closer than the other algorithms. Therefore ICEA can produce better quality and 

more stable solutions than the other four evolutionary algorithms in the nine 

benchmark functions ( 91 ff − ). 

T-test was used to evaluate the significance of which ICEA does better than the 

other algorithms, where the t-values are shown in Table 3. It shows that all t-values in 

Table 3 are higher than 2.15. Based on the normal distribution table, if the t-value 

obtained is higher than 1.89, it can be said that the performance of ICEA is better than 

SEA1, SEA2, OCEA and MCEA with a 97% confidence level in all benchmark 

functions. Recall that the steps of the algorithms are similar, except that they use 

different crossover s, where OCEA uses the crossover integrated with orthogonal 

design and MCEA uses the one considers the main effects in genes. In ICEA, the 

crossover IC, that considers both main effects in genes and interactions between 

genes, is used. These results indicate that ICEA outperforms MCEA and OCEA when 



 23 

the function has high interaction between the variables. These results significantly 

indicate that IC is an improved crossover operator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24 

Table 2 Results among the algorithms on 91 ff − . 

 SEA1 

Mean 

(S.D.) 

SEA2 

Mean 

(S.D.) 

OCEA 

Mean 

(S.D.) 

MCEA 

Mean 

(S.D.) 

ICEA 

Mean 

(S.D.) 

f1  

(×101) 

5.5133 

(1.8685) 

6.0343 

(1.9896) 

2.8592 

(1.34955) 

2.8655 

(1.3942) 

1.6859 

(1.2455) 

f2  

(×10-5) 

18.0240 

(2.6141) 

14.0921 

(1.8598) 

4.6188 

(0.9276) 

4.5765 

(0.6487) 

4.2037 

(0.6009) 

f3 

(×101) 

41.3701 

(4.5814) 

35.0302 

(2.8121) 

28.0436 

(1.6736) 

27.9850 

(1.3640) 

27.2429 

(1.1742) 

f4 

(×10-2) 

2.3798 

(1.8768) 

3.7830 

(1.8015) 

2.4753 

(0.7981) 

2.3702 

(0.8842) 

1.9151 

(0.2043) 

f5 

(×100) 

8.0942 

(1.9298) 

8.2166 

(2.0771) 

8.0385 

(1.6988) 

7.7593 

(1.4746) 

6.6538 

(1.3454) 

f6 

(×10-5) 

6.2122 

(2.7594) 

6.2573 

(0.9987) 

5.0682 

(0.7979) 

5.0251 

(0.8041) 

4.6179 

(0.3810) 

f7  

(×100) 

5.8134 

(1.9200) 

5.4415 

(1.8759) 

4.8342 

(1.3271) 

4.1828 

(1.1740) 

3.5377 

(1.0063) 

f8  

(×100) 

5.3299 

(1.7296) 

5.5692 

(1.7649) 

4.5653 

(1.7281) 

4.0399 

(1.6193) 

3.8154 

(1.4407) 

f9  

(×100) 

5.9061 

(1.8545) 

5.2772 

(1.8901) 

5.0018 

(1.8330) 

5.0219 

(1.8764) 

4.5413 

(1.6099) 

Remarks: The results are averaged over 30 runs. 'Mean' indicates the mean of the best function 

values found on the evolutionary algorithms. 'S.D.' stands for the standard deviation. 

 



 25 

Table 3 T -values between IGA to SEA1, SEA2, OCEA and MCEA 

 SEA1 – 

ICEA 

SEA2 – 

ICEA 

OCEA – 

ICEA 

MCEA – 

ICEA 

f1 9.3355 10.1467 3.4994 3.4560 

f2 38.7302 27.7111 2.0571 2.3092 

f3 16.3608 13.9965 2.1557 2.2584 

f4 4.2495 5.6429 3.7245 2.7468 

f5 3.3536 3.4588 3.4999 3.0334 

f6 3.1348 8.4005 2.7894 2.5066 

f7 5.7500 4.8984 4.2638 2.2851 

f8 4.4267 4.9881 2.4069 1.8928 

f9 6.8146 3.8045 2.6424 2.6649 

5   Validation Test 

In this section, the case study of the optimization of a car door design [30] was used to 

validate the effectiveness of ICEA. In the car door design, a fuzzy optimization model 

was developed which contains the following engineering requirements (i.e. X=x1, 

x2,…, x6) and customer requirements (i.e. Y=y1, y2,…, y5): 

 x1 – energy to close the door 

 x2 – check force on level ground 

 x3 – check force on 10% slope 

 x4 – door seal resistance 

 x5 – Road noise reduction 

      x6 – Water resistance 

y1 – easy to close from outside 

y2 – stay open on a hill 

y3 – rain leakage 

y4 – road noise 

y5 – cost 

 



 26 

A fuzzy optimization model for the car door design is formulated as shown 

below: 

)(

6...,,2,1),,(

5...,,2,1),,(

5...,,2,1),(

X

jYX

iYX

iX
tosubject
Maximize

c

g

f

y

j

i

i

µλ

µλ

µλ

µλ

λ

≤

=≤

=≤

=≤
      (14) 

where 

• Y=(y1,y2,…,y5); 

• X=(x1,x2,…,x6); 

• )10( ≤≤ λλ  represents the overall value of membership functions, or overall 

degree of satisfaction of performance characteristics achieved at a design X; 

• membership function )(X
iyµ can be represented as: 

 










≥

≤≤

≤

=
max

maxmin

min

)(1

)()(

)(0

)(

ii

iii

ii

y

yXyif

yXyyifX

yXyif

X
i

τµ     (15) 

with the linear or nonlinear fuzzy function )(Xτ , and min
iy and max

iy  represent 

the lower and upper bounds of aspirations with respect to iy  respectively. 

• the membership function of the fuzzy relationship constraints respectively 

are ),( YX
ifµ , ),( YX

jgµ , where yi=fi(x1,…,x6)and xj=gj(x1,..,xj-1,xj+1,…,x6) 

with i=1,2…,5 and j=1,2,…6. The membership functions of a fuzzy constraint 

“ bAX =~ ”[52] can be represented as: 



 27 

 











=

+<<−
−

−

+≥−≤

=

bAXif

dbAXdbif
d

bAX
dbAXordbAXif

X

1

1

0

)(µ    (16) 

with the row vector A, the constant b and a chosen constant of admissible 

violations of the constraint d. 

• The membership of the cost constraint  )(Xcµ  can be represented in the 

following form: 

 










+>

+≤≤
−

−

<

=

tcCXif

tcCXcif
t

cCX
cCXif

Xc

0

1

1

)(µ     (17) 

where t is a pre-specified non-negative tolerance level to the cost c. By solving the 

above fuzzy optimization model, an optimal target value setting of the engineering 

requirements can be obtained. The detailed description of the formulation of the fuzzy 

optimization model is outside the scope of this paper. For details, the readers can refer 

to our previous work [3]. This is a non-separable problem since interactions is not 

avoidable between both engineering requirements (i.e. X=x1, x2,…, x6) and customer 

requirements (i.e. Y=y1, y2,…, y5). 

 The evolutionary algorithms, SEA1. SEA2, OCEA, MCEA and ICEA, were 

used to solve the optimization problem of determining the target values of the car 

door design. This is modelled in (18). These algorithms are coded in Matlab. To 

conduct a more comprehensive comparison, a genetic algorithm was developed which 

integrated with a gradient search operator proposed by [3] .This algorithm was 

recoded in Matlab again to solve the problem. We call Bai and Kwong’s algorithm 

BEA in this paper. In these evolutionary algorithms, the population consisted of a set 



 28 

of real coded chromosomes in which 11 variables are in each chromosome. The t-th 

chromosome in all evolutionary algorithms is represented as: 

( ) ( )[ ]tYtXtZ ,)( = ,  

where ( ) )](),(),(),(),(),([ 654321 txtxtxtxtxtxtX = and ( ) [ ),(),(),( 321 tytytytY =  

])(),( 54 tyty ; t=1,2,…,Popsize and Popsize is the total number of chromosomes in the 

population. The t-th chromosome )(tZ  in the evolutionary algorithms is evaluated by 

the following fitness function the aim of which is to optimize the cost function (18): 

( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ){ }tXtYtXtYtXtX

tYtXtZ

cgfy iii
µµµµ ,,,,,min                    

,fitness)(fitness
=
=

 

where i=1,2,…,5; j=1,2,…,6. 

The higher the evaluated fitness of the chromosome is, the better the chromosome 

is. The numbers of evaluations used in the evolutionary algorithms were all the same, 

set at 80000, which is the same as the one used in [3] for solving the problem. 

Mutation rate2 of all evolutionary algorithms was set at 1/11, where there are 11 

variable in the chromosomes. The rest of the parameters were set the same as the ones 

used in Section 4. 

Since all evolutionary algorithms are stochastic algorithms, different solutions 

can be obtained with different runs. The better the evolutionary algorithm is, the 

larger is the mean and the smaller is the variance of overall customer satisfaction 

obtained in different runs. Therefore 100 testing runs were performed to collect the 

two statistics of the means and variances of overall customer satisfaction. These are 

detailed in Figures 7 and 8 together with the six algorithms. It can be found from 

Figure 7 that ICEA achieves the largest mean of overall customer satisfaction among 

the six algorithms and also from Figure 8 that the standard deviation of overall 

                                                 
2 Muhlenbein [37] recommends the mutation rate of GA as a value of 1/L, where L is the length of the chromosome. 



 29 

customer satisfaction with ICEA is the smallest one. Therefore ICEA can yield the 

best and most robust solutions compared with the other five evolutionary algorithms. 

Solution qualities of the evolutionary algorithms

0.66
0.68

0.7
0.72
0.74

0.76
0.78

BEA SEA1 SEA2 OCEA MCEA ICEA

Evolutionary algorithms

M
ea

n 
of

 o
ve

ra
ll 

cu
st

om
er

 
sa

tis
fa

ct
io

ns

 
Figure 7 Means of overall customer satisfaction of runs found by the evolutionary 

algorithms 
 

Robustness of the evolutionary algorithms

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

BEA SEA1 SEA2 OCEA MCEA ICEA

Evolutionary algorithms

St
d.

 o
f o

ve
ra

ll 
cu

st
om

er
 

sa
tis

fa
ct

io
ns

 
Figure 8 Standard deviations of overall customer satisfaction of runs found by the 

evolutionary algorithms 
 

The t-test is then used to evaluate how significantly better the ICEA is than the 

other evolutionary algorithms in this validation test. The t-values between ICEA and 

the other evolutionary algorithms are shown in Figure 9, which shows that all t-values 

are higher than 2.15. Based on the normal distribution table, if the t-value is higher 

than 2.15, the significance is the case has a 98% confidence level. Therefore the 



 30 

performance of ICEA is significantly better than the other five evolutionary 

algorithms with 98% confidence of solving this problem. 

T-values between the two evolutionary algorithms

0

1

2

3

4

5

6

BEA-ICEA SEA1-ICEA SEA2-ICEA OCEA-ICEA MCEA-ICEA

Evolutionary algorithm pairs

t-v
al

ue
s

 

Figure 9 t-values between ICEA to other evolutionary algorithms 

After performing the validation test, the convergence plots of all evolutionary 

algorithms averaged over the 100 runs are shown in Figure 10. The figure shows the 

progress of the evolutionary algorithms through the searches. It can be observed 

clearly from the figures that in general the convergence speeds of the orthogonal array 

based evolutionary algorithms, OCEA, MCEA and ICEA, are in general faster than 

the other three evolutionary algorithms BEA, SEA1 and SEA2. Finally, it is also 

obvious that ICEA can produce the better solutions than the other five evolutionary 

algorithms.  



 31 

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
The convergence plots of the algorithms

number of evaluations

fit
ne

ss
 v

al
ue

SEA1 

BEA 

SEA2 

OCEA 

MCEA 
ICEA 

 

Figure 10 Convergence curves of the evolutionary algorithm for solving the problem 

of determining the target values in car door design 

However, it is hard to count the computational effort used on the algorithms to 

reach the acceptable solutions, solely from the convergence curves. In [3], it has 

already been demonstrated that BEA can produce acceptable solutions for this 

problem. The solutions it found are the most acceptable solutions of this problem. 

Table 4 shows the computational times used (in seconds) on all algorithms, that can 

reach the acceptable solutions found by BEA. It can also be found from Table 4 that 

ICEA can reach acceptable solutions in shortest computational time compared with 

the other five algorithms. It also shows that ICEA used less than half computational 

effort to reach the acceptable solutions than BEA [3], even the number of operations 

used in IC is larger than the other orthogonal array based evolutionary algorithms 

OCEA and MCEA, and the standard evolutionary algorithms SEA1 and SEA2. 

 

 



 32 

Table 4 Computational time (in seconds) used by the algorithms (i.e. BEA, SEA1, 
SEA2, OCEA, MCEA and ICEA) until the acceptable solution reached 
 BEA SEA1 SEA2 OCEA MCEA ICEA 
Computational 
time taken to 
reach the 
acceptable 
solution 

61.2400 44.69 41.61 27.846 23.11 22.21 

 

Recall that the steps of the algorithms are similar, except that different 

operators are used. In BEA, the gradient search operator is used. In both SEA1 and 

SEA2, both three point crossovers, one suppressed with normal selective pressure and 

one suppressed with high selective pressure, are used. In OCEA, OC is used. In 

MCEA, MC is used. In ICEA, IC is used. These results indicate that IC can aid the 

evolutionary algorithm to give the best mean solution quality and more robust 

solutions with the shortest computational time compared with the other algorithms. 

7   Conclusion 

In this paper, we have proposed a new version of orthogonal array based crossover 

(IC) that considers the contribution of both the main effect of each individual gene 

and interactions between genes. It compensates for the potential limitation of the 

existing versions of orthogonal array based crossovers MC and OC, which ignore 

interactions between genes. We executed the evolutionary algorithm embedded with 

the proposed IC, namely ICEA, to solve the nine selected parametrical benchmark 

problems in which interactions exist between variables. The results show that ICEA 

can find solutions that are closer to optima than the other evolutionary algorithms 

embedded with the existing orthogonal array based crossovers (OC and MC) and 

some other standard crossovers. 



 33 

To further validate the effectiveness of the proposed IC embedded in the 

evolutionary algorithm, we applied it to solve the optimization problem of the design 

of a car door, in which interactions are not avoidable between the engineering 

requirements and the customer requirements, in the cost function. From the validation 

test, ICEA was found to yield better results in terms of quality and stability compared 

with those based on the evolutionary algorithms embedded with the other existing 

orthogonal array based crossover (OC and MC) and standard crossovers. Referring to 

the statistical results of the t-test, it can be confirmed that ICEA outperforms 

significantly the other algorithms involved in the validation test. Also ICEA can reach 

acceptable solutions with faster convergence speeds and smaller computational effort 

compared with the other algorithms that were tested. 

 We are currently implementing the proposed orthogonal array based searching 

approach embedded in the other stochastic algorithms for solving optimization 

problems in various product designs. The results will be reported in the future. 

 

Acknowledgement 

The authors wish to express their sincere thanks to Colin Reeves and Abdullah 

Hashim for their very useful comments on the results. They would like to express 

their gratitude to Angus Wu who suggested they worked on this research topic. They 

would also like to acknowledge Luis Hercog and James Werner for many useful 

discussions and valuable suggestions. 

 

Bibliography 

[1] G.E.P. Box and W.G. Hunter, J.S. Hunter, Statistics for Experimenters. John 

Wiley, 1978. 



 34 

 [2] T. Back, U. Hammel and H.P. Schwefel, ‘Evolutionary computation: comments 

on the history and current state’, IEEE Transactions on Evolutionary Computation, 

vol. 1, no. 1, April 1997. 

 [3] H. Bai and C.K. Kwong, ‘Inexact genetic algorithm approach to target values 

setting of engineering requirements in QFD’, International Journal of Production 

Research, Vol. 41, No. 16, pp. 3861-3881, 2003. 

[4] J.E. Baker, ‘Adaptive selection methods for genetic algorithms’, in Proceedings of 

the First International Conference on Genetic Algorithms, pp. 101-111, 1985. 

[5] J.E. Baker, ‘Reducing bias and inefficiency in the selection algorithm’, in 

Proceedings of the Second International Conference on Genetic Algorithms, pp. 

14-21, 1987. 

[6] P.P. Bonissone, R. Subbu, N. Eklund and T.R. Kiehl, ‘Evolutionary algorithms + 

domain knowledge = real-world evolutionary computation’, IEEE Transactions on 

Evolutionary Computation, Vol 10, No. 3, pp. 256-280, 2006. 

[7] K.Y. Chan, M. Emin Aydin and T.C. Fogarty, ‘A Taguchi method-based 

crossover operator for the parametrical problems’, in Proceedings of the IEEE 

International Congress on Evolutionary Computation, pp. 971-977, 2003. 

[8] K.Y. Chan, M.E. Aydin and T.C. Fogarty, ‘An epistasis measure based on the 

analysis of variance for the real-coded representation in genetic algorithm’, in 

Proceedings of the IEEE International Congress on Evolutionary Computation, pp. 

297-304, 2003. 

[9] K.Y. Chan, New Experimental Design Theoretic Genetic Algorithms for 

Optimisation Problems and Their Application, MPhil thesis, City University of 

Hong Kong, March 2003. 

[10] K.Y. Chan, Experimental design techniques in evolutionary algorithms, PhD 

thesis, London South Bank University, 2006. 



 35 

[11] A. J. Chipperfield, P. J. Fleming and C. M. Fonseca, ‘Genetic Algorithm Tools 

for Control Systems Engineering’, in Proceeding of Adaptive Computing in 

Engineering Design and Control, pp. 128-133, 1994. 

[12] A.J. Chipperfield and P.J. Fleming, ‘The MATLAB genetic algorithm toolbox’, 

in Proceedings of the IEE Colloquium on Applied Control Techniques using 

MATLAB, pp. 10/1-10/4, 1995. 

[13] D. Cvetkovic and H. Muhlenbein, ‘The optimal population size for uniform 

crossover and truncation selection’, in Technical Report GMD-AS-TR-94-11, St 

Augustine, Germany, 1994. 

[14] Y. Davidor, ‘Epistasis variance: a viewpoint on GA-hardness’, In G.J.E. Rawlins 

(Ed.) Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, 1991. 

[15] C. Dimopoulos and A.M.S. Zalzala, ‘Recent developments in evolutionary 

computation for manufacturing optimization: problems, solutions, and 

comparisons’, IEEE Transactions on Evolutionary Computation, Vol. 4, No. 2, pp. 

93-113, 2000. 

 [16] E.J. Davision, Benchmark problems for control system design, International 

Federation of Automatic Control, May, 1990. 

[17] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine 

Learning. United States of America: Addison Wesley Longman, Inc, 1989. 

[18] S.Y. Ho, L.S. Shu, H.M. Chen, ‘Intelligent genetic algorithm with a new 

intelligent crossover using orthogonal arrays’, in Proceedings of the Genetic and 

Evolutionary Computation Conference, vol. 1, pp. 289-296, 1999. 



 36 

[19] S.Y. Ho, L.S. Shu and J.H. Chen, ‘Intelligent evolutionary algorithms for large 

parameter optimization problems’, IEEE Transactions on Evolutionary 

Computation, Vol. 8, No. 6, pp. 522-541, 2004. 

[20] S.Y. Ho, H.M. Chen, S.J. Ho, T.K. Chen, ‘Design of accurate classifiers with a 

compact fuzzy-rule base using an evolutionary scatter partition of feature space’, 

IEEE Transactions on Systems, Man and Cybernetics –Part B: Cybernetics, Vol. 

34, No. 2, pp. 1031-1044, 2004. 

[21] S.Y. Ho, J.H. Chen and M.H. Huang, ‘Inheritable genetic algorithm for 

biobjective 0/1 combinatorial optimization problems and it applications’, IEEE 

Transactions on Systems, Man and Cybernetics –Part B: Cybernetics, Vol. 34, No. 

1, pp. 609-620, 2004. 

[22] S.J. Ho, S.Y. Ho, M.H. Hung, L.S. Shu and H.L. Huang, ‘Designing structure-

specified mixed H2/H∞ optimal controllers using an intelligent genetic algorithm 

IGA’, IEEE Transactions on Control Systems Technology, Vol. 13, No. 6, pp. 

1119-1124, 2005. 

[23] S.Y. Ho and H.M. Chen, ‘A GA-based systematic reasoning approach for solving 

traveling salesman problems using an orthogonal array crossover’, in Proceeding 

of the Fourth International Conference on High Performance Computing in the 

Asia Pacific Region, vol. 2, pp. 659-663, 2000. 

[24] S.Y. Ho and H.M. Chen, ‘An efficient evolutionary algorithm for accurate 

polygonal approximation’, Pattern Recognition, Vol. 34, pp. 2305-2317, 2003. 

[25], H.L. Huang and S.Y. Ho, ‘Mesh optimization for surface approximation using 

an efficient coarse-to-fine evolutionary algorithm’, Pattern Recognition, Vol. 36, 

pp. 1065-1081, 2003. 



 37 

[26] K. KrishnaKumar, S. Narayanaswamy, and S. Garg, ‘Solving large parameter 

optimization problems using a genetic algorithm with stochastic coding’, in 

Genetic Algorithms in Engineering and Computer Science, G.Winter, J. Périaux, M. 

Galán, and P. Cuesta, Eds. New York:Wiley, 1995. 

[27] C.K. Kwong, K.Y. Chan, M.E. Aydin and T.C. Fogarty, ‘An orthogonal array 

based genetic algorithm for developing neural network based process models of 

fluid dispensing’, International Journal of Production Research, Vol. 44, No. 12, 

pp. 4815-4836, 2006. 

[28] A.I. Khuri and J.A. Cornell, Response Surfaces Design and Analysis. New York: 

Marcel Dekker, Inc, 1996. 

[29] J.D. Kim and M.S. Choi, Stochastic approach to experimental analysis of 

cylindrical lapping process, International Journal of Machines Tools 

Manufacturing, Vol. 35, No. 1, pp. 51-59, 1995. 

[30] K. Kim, H. Moskowitz, A. Dhingra and G. Evans, ‘Fuzzy multicriteria models 

for quality function deployment’, European Journal of Operational Research, 121, 

504-518, 2000. 

[31] Y.W. Leung and Y. Wang, ‘Multiobjective programming using uniform design 

and genetic algorithm’, IEEE Transactions on Systems, Man, and Cybernetics – 

Part C: Applications and Reviews, vol. 30, no. 3, pp. 293-304, 2000. 

[32] Y.W. Leung and Y. Wang, ‘An orthogonal genetic algorithm with quantization 

for global numerical optimization’, IEEE Transactions on Evolutionary 

Computation, vol. 5, No. 1, pp. 41-53, 2001. 

[33] Y.H. Lin, Y.Y. Tyan and T.P. Chang and C.Y. Chang, ‘An assessment of optimal 

mixture for concrete made with recycled concrete aggregates’, Cement and 

Concrete Research, Vol. 34, pp. 1373-1380, 2004. 



 38 

[34] K.F. Man, K.S. Tang and S. Kwong, ‘Genetic algorithms: concepts and 

applications’, IEEE Transactions on Industrial Electronics, vol. 43, no. 5, 1996. 

[35] N.S. Mohan, A. Ramachandra and S.M. Kulkarni, ‘Influence of process 

parameters on cutting force and torque during drilling of glass fiber polyester 

reinforced composites’, Composite Structures, Vol. 71, pp. 407-413, 2005. 

[36] D.C. Montgomery, Design and Analysis of Experiments, New York: John Wiley 

and Sons, Inc, 1997. 

[37] H. Muhlenbein, ‘How genetic algorithms really work-Part I: Mutation and 

hillclimbing’, in Proceedings of the 2nd International Conference on Parallel 

Problem Solving from Nature, pp. 15-25, 1992. 

[38] M.S. Phadke, Quality engineering using robust design, New York: Prentic Hall, 

1987. 

[39] C.R. Reeves and C.C. Wright, ‘An experimental design perspective on genetic 

algorithms’, in Foundation of Genetic Algorithms 3, pp. 7-22, 1995. 

[40] C.R. Reeves and C.C. Wright, ‘Epistasis in Genetic Algorithms: An 

Experimental Design Perspective’, in Proceedings of the 6th International 

Conference on Genetic Algorithms, pp. 217-224, 1995. 

[41] C.R. Reeves, ‘Predictive measures for problem difficulty’, in Proceedings of the 

1999 Congress on Evolutionary Computation, vol. 1, pp. 736-742, 1999. 

[42] D.I. Seo and B.R. Moon, ‘A survey on chromosomal structures and operators’, in 

Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1357-

1368, 2003. 

[43] G. Taguchi and S. Konishi, Orthogonal Arrays and Linear Graphs. Dearbon, MI: 

American Supplier Institue, 1987. 



 39 

[44] D. Thierens, D. E. Goldberg, and A. G. Pereira, ‘Domino convergence, drift, and 

the temporal-salience structure of problems’, in Proceedings of IEEE International 

Conference of Evolutionary Computation, pp. 535-540,  1998. 

[45] J.T. Tsai, T.K. Liu and J.H. Chou, ‘Hybrid Taguchi-genetic algorithm for global 

numerical optimization’, IEEE Transactions on Evolutionary Computation, Vol. 8, 

No. 4, pp. 365-377, 2004. 

[46] R. Unal, D.O. Stanley and C.R. Joyner, ‘Propulsion system design optimization 

using the Taguchi Method’, IEEE Transactions on Engineering Management, vol. 

40, no. 3, pp. 315-322, August 1993. 

[47] D. Whitley, ‘The genitor algorithm and selective pressure: why rank-based 

allocation of reproductive trials is best’, in Proceedings of the Third International 

Conference on Genetic Algorithms, pp. 116-121, 1989. 

[48] D. Whitley, K. Mathias, S. Rana and J. Dzubera (1995), ‘Building better test 

function’, in Proceedings of the 6th International Conference on Genetic 

Algorithms, pp. 239-246, 1995. 

[49] X. Yao, Y. Lin and G. Lin, ‘Evolutionary programming made faster’, IEEE 

Transactions on Evolutionary Computation, Vol. 3, No. 2, pp. 82-102, 1999. 

[50] G.Z. Yin and D.W. Jillie, ‘Orthogonal design for process optimization and its 

application in plasma etching’, Taguchi Methods: Applications in World Industry, 

A. Bendell, J. Disney, W.A. Pridmore (ed.s), IFS Publications/Springer-Verlag, pp. 

181-198, 1989. 

[51] Q. Zhang and Y.W. Leung, ‘An orthogonal genetic algorithm for multimedia 

multicast routing’, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 

1, pp. 53-62, 1999. 



 40 

[52] H.J. Zimmermann, Fuzzy Set Theory and Its Applications, 3rd Edition Boston: 

Kluwer, 1996. 

 

Appendix: 

Run 1st parameter 2nd parameter 3rd parameter 

1 1 1 1 

2 1 2 2 

3 2 1 2 

4 2 2 1 

Figure A1: The orthogonal array )2( 3
4L  

 

Run 1st parameter 2nd parameter 3rd parameter 4th parameter 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

Figure A2: The orthogonal array )3( 4
9L  

 

 

 



 41 

Example A1 

'arg' is a function that returns the indices of the minimum value of the matrix. This 

function can return the positions of the element with minimum value in each column. 

It can also return the position of the element with minimum value in the matrix. 

For example, 
































=

=
3323
2054
1215

minarg]1,2,1,3[
4,3,2,1j

 

The third element in the first column is the minimum value among the elements in 

the first column. The first, second, and first elements in the second, third and fourth 

columns are the minimum one among the elements in the correspondent column. 

Therefore the result of this function is [3,1,2,1]. 

For another example, 
































=

==
3323
2054
1215

minarg]2,3[
4,3,2,1;3,2,1 ji

 

The value '0' is the minimum value among all elements of the matrix. It is located in 

the third column and the second row of the matrix. Therefore the result of this 

function is [3,2]. 

 


	Bibliography

