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Abstract: We consider the use of linear multivariable state feedback control to achieve a nonun-
dershooting step response. The recently introduced nonovershooting linear state feedback controller
design method of Schmid and Ntogramatzidis (2010) is here modified to yield a step response that is
nonundershooting. The design method is applicable to square and non-square systems, minimum and
nonminimum phase systems, and also strictly proper and bi-proper systems.

1. INTRODUCTION

The problem of designing a linear control law to achieve a
nonundershooting or nonovershooting step response for lin-
ear time invariant (LTI) systems has been studied for several
decades. It is well known that the transient response of an
LTI system is related to its zero structure, and numerous stud-
ies have reported fundamental performance limitations arising
from nonminimum phase (NMP) zeros. A recent comprehen-
sive survey of the impact of system zeros on control system
performance is given in Hoagg and Bernstein (2007).

Much of the existing literature on overshoot and undershoot
is concerned with single-input single-output (SISO) systems.
Papers offering analytic results on the system overshoot include
Stewart and Davison (2006) where it was shown that for a
continuous-time SISO system with two nonminimum phase
real zeros (right-hand complex plane), the step response must
overshoot if the settling time is sufficiently small. Analytic
results on the system undershoot include Middleton (1991),
where it is shown that an LTI SISO continuous-time system
has an undershooting step response if it contains at least one
real nonminimum phase zero. A lower bound for the size of
the undershoot is also given, and this result is extended in Lau
et al. (2003) where SISO systems with two real nonminimum
phase zeros are considered and a lower bound for the minimum
undershoot is given. Johansson (2002) considered multi-input
multi-output (MIMO) systems subject to dynamic output feed-
back, and gave a lower bound on the system undershoot and
interaction for systems with at least one real NMP zero.

Papers simultaneously considering both undershoot and over-
shoot have generally sought conditions to ensure the step re-
sponse is monotonic. In Anderson et al. (1996), the authors
give conditions for discrete-time and continuous-time SISO
systems to have a nonnegative realization, implying a positive
impulse response and hence a monotonic step response. Papers
offering design methods include Darbha (2003), which gave
conditions are given for the existence of a controller to achieve
a sign invariant impulse response, and hence also a monotonic
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step response. However such an approach is inherently conser-
vative, because a monotonic step response is not necessary to
avoid undershoot or overshoot.

To date there have been few papers offering analysis or design
methods for overshoot or undershoot in the step response of
MIMO systems. A recent contribution in this area is Schmid
and Ntogramatzidis (2010), which gives design methods for
a state feedback controller to yield a nonovershooting step re-
sponse for LTI MIMO systems; the design method was applica-
ble to some nonminimum phase systems, and could be applied
to both continuous-time and discrete-time systems. In this paper
we consider how these design methods may be modified to
achieve a step response for MIMO systems that is nonunder-
shooting. It should be noted that the question of whether a
nonundershooting (or nonovershooting) tracking controller can
be obtained for an arbitrary LTI system is an open question,
even for SISO systems.

The paper is organized as follows. In Section 2 we formulate
our tracking problem and formalize the definitions of under-
shooting step response. Section 3 briefly reviews the state feed-
back controller design method given in Schmid and Ntogra-
matzidis (2010), and explains how the eigenstructure assign-
ment algorithm of Moore (1976) may be employed to obtain a
closed-loop system in which only a small number of the system
modes appear in each component of the output. Thus each
component of the output may be rendered as the sum of just a
few real exponentials. Section 4 then provides some conditions
under which sums of real exponentials have real positive roots.
In Section 5 these technical results are incorporated into the
design method of Schmid and Ntogramatzidis (2010) to give a
systematic procedure for obtaining a state feedback control law
to yield a closed-loop system whose step response is nonunder-
shooting.

In Section 6, the design method is applied to an example. We
consider a MIMO system with three real nonminimum phase
zeros, and obtain a step response that is nonundershooting.
This example will show that the well-known result in Mid-
dleton (1991) according to which any SISO system with a
real nonminimum phase zero must exhibit undershoot in its
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step response does not straightforwardly generalize to MIMO
systems with real nonminimum phase zeros.

2. PROBLEM FORMULATION

Consider the LTI system Σ governed by

Σ :

{

ẋ(t) = Ax(t)+Bu(t),
y(t) =C x(t)+Du(t),

(1)

where, for all t ∈ ℝ, x(t) ∈ ℝ
n is the state, u(t) ∈ ℝ

m is the
control input, y(t)∈ℝ

p is the output. For time t < 0, we assume
the system state is at an initial equilibrium x0, the control input
is at constant value u0, and the output is at constant value y0 =
Cx0 +Du0. Here, A, B, C and D are appropriate dimensional
constant matrices. We assume that B has full column rank and
C has full row rank. We use ℝ

+ to denote the set of positive
real numbers, and ℂ

− to indicate the left hand complex plane.
A complex number λ ∈ ℂ is said to be stable if λ ∈ ℂ

−, and
a stable matrix is one that has all its eigenvalues contained
within ℂ

−. In this paper we are concerned with the problem
of designing a linear state feedback control law for (1) such
that the output y of (1) tracks a step reference r ∈ ℝ

p with zero
steady-state error, and with zero undershoot and overshoot. We
adopt the following standard assumption throughout this paper:

Assumption 2.1. System Σ is right invertible, stabilizable and
has no invariant zeros at the origin.

This assumption ensures that a linear tracking controller can be
obtained to track any reference target r from any given initial
condition x0 as follows: choose a feedback gain matrix F such
that A+BF is stable. Two vectors xss ∈ ℝ

n and uss ∈ ℝ
m exist

that satisfy

0 = Axss +Buss (2)

r =C xss +Duss (3)

for any r ∈ ℝ
p. Application of the control input

u(t) =

{

u0, t < 0
F(x(t)− xss)+uss, t ≥ 0

(4)

yields an output

y(t) =

{

y0, t < 0
C x(t)+Du(t), t ≥ 0

(5)

Employing the change of variable ξ := x− xss, we obtain the
closed loop homogeneous system

Σhom :

{

ξ̇ (t) = (A+BF)ξ (t),
y(t) = (C+DF)ξ (t)+ r.

(6)

Since A+BF is stable, x converges to xss, u converges to uss,
and y converges to r as t goes to infinity. For a SISO system,
overshoot means that the output exceeds the target r ∈ℝ, while
undershoot means that the output moves further away from the
target than its initial distance. Since overshoot was the subject
of the paper Schmid and Ntogramatzidis (2010), we will in
this paper be concerned with the system undershoot. If y0 < r,
undershoot occurs if the response y(t) takes values less than or
equal to y0. If y0 > r, undershoot occurs if the response y(t)
takes values greater than or equal to y0.

It is also helpful to understand the system response in terms
of the tracking error ε(t) = r− y(t). At the initial equilibrium
(x0,u0,y0), we have ε0 = r − y0. Thus for y0 < r, undershoot
corresponds to the tracking error taking values greater than or

equal to its initial value ε0, while for y0 > r it corresponds
to the error taking values smaller than its initial value ε0.
Figure 1 shows some examples of step responses y(t) and the
corresponding tracking errors ε(t)= r−y(t) with y0 < r. Notice
that y1, y2 and y3 are all nonundershooting step responses, while
y4 and y5 do undershoot.
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Fig. 1. Possible step response curves and corresponding track-
ing errors with y0 < r.

Note that for bi-proper systems (i.e., with D ∕= 0), the instan-
taneous change in the control input at t = 0 may lead to in-
stantaneous changes in the output at t = 0. Thus in general for
D ∕= 0, we have y0 ∕= y(0). For example, in Figure 1 we can
see that the responses y1, y2 and y4 are all characterized by an
instantaneous transition from y0 to y(0) at t = 0. For y0 < r, we
must have y0 ≤ y(0), else undershoot occurs immediately. This
is the case of y4 in Figure 1.

To diagnose cases where overshoot and undershoot may occur
instantaneously due to discontinuities in the output arising from
D ∕= 0, we may write the error ε(0) = µε0, for some µ ∈ ℝ.
Then µ > 1 corresponds to instantaneous undershoot, since the
inequalities ε(0) > ε0 and ε(0) < ε0 in the cases y0 < r and
y0 > r, respectively, can be written as ε(0) = µε0 with µ > 1.
For strictly proper systems we will always have µ = 1.

We now formalize the above discussion with the following
definition.

Definition 2.1. Assume the initial state, control input and out-
put of the system Σ are given by (x0,u0,y0). Let r ∈ ℝ

p be a
step reference and let ε = r− y be the tracking error obtained
when the control input u given in (4) is applied to Σ. Define
ε0 = r − y0, and for each component k ∈ {1, . . . , p}, let ε0,k

denote the k-th component of ε0. Then
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(i) the system Σ has an undershooting response in the output
component yk(t) (k ∈ {1, . . . , p}) for a given r ∈ ℝ

p from the
initial condition (x0,u0,y0) if either (a) εk(0) = µk ε0,k, for some

µk > 1, or (b) there is a t̄ ∈ ℝ
+ such that εk(t̄) = ε0,k;

(ii) if Σ is nonundershooting in all output components for a
given r ∈ ℝ

p, then we say Σ has a nonundershooting response
for the specified (x0,u0,y0) and r.

(iii) if Σ is nonundershooting in all output components for a
given r ∈ℝ

p from all initial conditions (x0,u0,y0), then we say
Σ has a globally nonundershooting response for this r.

Our aim in this paper is to choose the gain matrix F such that Σ
has a nonundershooting response, for any given r and x0.

3. FEEDBACK CONTROLLER DESIGN METHOD

In Schmid and Ntogramatzidis (2010) a linear state feedback
design method was introduced to yield a nonovershooting step
response. The main idea of the method was to employ the clas-
sic result on eigenstructure assignment given by B.C. Moore in
Moore (1976) to constrain the output y(t) in such a way that the
each component of the error term ε(t) contained only a small
number of the closed loop modes (poles). Here we summarize
the design method, and present some results that describe the
form of the error term. In Section 5 we consider how the design
method may be employed to yield a closed loop response that is
nonundershooting. A key result is the following eigenstructure
lemma from Schmid and Ntogramatzidis (2010), which is itself
an adaptation of Moore’s algorithm.

Lemma 3.1. Schmid and Ntogramatzidis (2010) Let L =
{λ1, . . . ,λn} be a self-conjugate set of n distinct complex num-
bers. Let S = {s1, . . . ,sn} be a set of n (not necessarily distinct)
vectors in ℝ

p. Assume that, for each i ∈ {1, . . . ,n}, the matrix
equation

[

A−λiI B
C D

][

vi

wi

]

=

[

0
si

]

(7)

has solutions sets V = {v1, . . . ,vn}⊂ℂ
n and W = {w1, . . . ,wn}⊂

ℂ
p. Then, provided V is linearly independent, a unique real

feedback matrix F exists such that, for all i ∈ {1, . . . ,n},

(A+BF)vi = λi vi, (8)

(C+DF)vi = si. (9)

Proposition 1 of Moore (1976) shows explicitly how to con-
struct F ; we note that Moore’s algorithm may readily be exe-
cuted with MATLAB R⃝.

3.1 Systems with n− p minimum phase zeros

The first design method applies to systems that satisfy

Assumption 3.1. System Σ is square (m = p) has at least n− p
distinct invariant zeros in ℂ

−.

Let L = {λ1, . . . , λn} ⊂ ℂ
− denote the set of distinct sta-

ble closed loop eigenvalues of A + BF to be chosen. Let
{z1,z2, . . . ,zn−p} ⊂ ℂ

− be freely chosen from among the dis-
tinct minimum phase invariant zeros of Σ. Then, we choose
λi = zi for i ∈ {1, . . . ,n− p}; these modes are stable as all zi lie
in ℂ

−. For i ∈ {n− p+1, . . . ,n}, the λi may be freely chosen to
be any real distinct stable modes not coincident with invariant
zeros of Σ. Let {e1, . . . ,ep} be the canonical basis of ℝp, and
let S = {s1, . . . , sn} ⊂ ℝ

p be such that

si =

⎧





⎨





⎩

0 for i ∈ {1, . . . ,n− p};
e1 for i = n− p+1;
...

ep for i = n.

(10)

After solving (7) for the vectors in S , we obtain sets V =
{v1, . . . ,vn} ⊂ ℂ

n and W = {w1, . . . ,wn} ⊂ ℂ
p. Provided V is

linearly independent, by Lemma 3.1, Moore’s algorithm yields
F such that A + BF has eigenstructure given by L and V ,
respectively. The vectors in V satisfy

(A+BF)vi = λi vi, i ∈ {1, . . . ,n}, (11)

(C+DF)vi =

{

0 i ∈ {1, . . . ,n− p},
ei−(n−p) i ∈ {n− p+1, . . . ,n}. (12)

Now introduce the new state coordinate ξ := x− xss. As V is
linearly independent, the matrix V := [v1 v2 . . . vn ] is invertible.

Introduce ξ0 = x0 − xss and α := [α1 α2 . . . αn]
⊤ = V−1ξ0.

Theorem 3.1 describes the form of the error term:

Theorem 3.1. Schmid and Ntogramatzidis (2010). Assume Σ
satisfies Assumption 3.1. Let L be chosen as above, let F
be obtained from Moore’s algorithm, let r ∈ ℝ

p be any step
reference, and let x0 ∈ ℝ

n be any initial condition. Then, the
error term ε obtained from applying u in (4) to Σ has the form

ε(t) =

⎡

⎢

⎣

αn−p+1 eλn−p+1t

...

αn eλnt

⎤

⎥

⎦
. (13)

We observe that each of the p components of ε contain exactly
one mode.

The design method described in this section employs two rather
simple ideas. Firstly, the available minimum phase invariant
zeros are used to render the corresponding modes invisible
in the tracking error via pole/zero cancelation. The remaining
modes are distributed evenly into the p components of the
tracking error. Thus, in Theorem 3.1, n− p modes are canceled
and the remaining p modes are allocated with one mode per
component.

3.2 Systems with fewer than n− p minimum phase zeros

The design method given in Section 3.1 can be extended to
systems with at least n − l p minimum phase zeros, for any
integer l, and by taking sufficiently large l this includes all
linear systems. The key idea is to channel l modes per output
component. Choose λi = zi for i ∈ {1, . . . ,n − l p}, and for
i ∈ {n− l p+ 1, . . . ,n} the λi may be freely chosen to be any
distinct real stable modes. Next let S = {s1, . . . , sn} ⊂ ℝ

p be
such that

si =

⎧









⎨









⎩

0 for i ∈ {1, . . . ,n−l p};
e1 for i ∈ {n−l p+1, . . . ,n−l(p−1)};
e2 for i ∈ {n− l(p−1)+1, . . . ,n−l(p−2)}
...

ep for i ∈ {n−p+1, . . . , n}.

(14)

Solving (7) for the vectors in this new set S , we obtain V =
{v1, . . . ,vn} ⊂ ℂ

n and W = {w1, . . . ,wn} ⊂ ℂ
p, and provided

V is linearly independent, Moore’s algorithm yields F such
that A+BF has distinct eigenvalues and eigenvectors given by
L and V , respectively. The following notation allows us to
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succinctly state our theorem for the form of the tracking error
term in this case.

Notation 3.1. For each k ∈ {1, . . . , p}, we let
(i) vk,1,vk,2, . . . ,vk,l denote the eigenvectors in V associated
with canonical basis vector ek in (14), and let λk,1,λk,2, . . .λk,l

be the corresponding eigenvalues in L , ordered such that
λk,1 < λk,2 < ⋅ ⋅ ⋅< λk,l in each case;
(ii) For any x ∈ℝ

n, introduce the new state coordinates ξ = x−
xss and let ξ0 = ξ (0). Let V be the matrix formed by the

columns of V , and let α := V−1ξ0 be the coordinate vector
of ξ0 in terms of V . Then define

α = [α1 . . . αn−l p α1,1 . . . α1,l . . . αp,1 . . . αp,l ]
⊤. (15)

Theorem 3.2. Schmid and Ntogramatzidis (2010) . Assume Σ
has n− l p minimum phase zeros. Let L be chosen as above,
let F be obtained from Moore’s algorithm, let r ∈ ℝ

p be any
step reference, and let x0 ∈ℝ

n be any initial condition. Then εk,
the k-th component of the error term ε obtained from applying
u in (4) to Σ has the form

εk(t) = αk,1 eλk,1t +αk,2 eλk,2t + ⋅ ⋅ ⋅+αk,l eλk,l t . (16)

Remark 3.1. We see that this eigenstructure based method for
designing the feedback matrix F gives us an error term that has
a rather simple form; each component contains only l distinct
exponential terms. Other MIMO pole placement methods, for
example those in Kautsky et al. (1985), that do not allow
the designer to simultaneously select the eigenvectors lead to
an error term in which all n modes contribute in all p output
components. In Section 5 we introduce methods of exploiting
the simplified form of the error term to obtain a suitable gain
matrix F that yields a nonundershooting step response.

4. CONDITIONS IMPLYING UNDERSHOOT

In this section we consider functions composed of sums of real
exponential functions, and obtain some technical conditions
under which these functions contain a real positive root. When
applied to the system tracking error ε , such roots correspond
to undershoot. The following result from the classic paper
Laguerre (1883) provides information on the number of real
roots of such functions in terms of the variations of the signs of
their coefficients.

Notation 4.1. Let l ∈ ℕ, let {λ1, . . . ,λl} and {α1, . . . ,αl} be
sets of real numbers with λ1 < λ2 < ⋅ ⋅ ⋅< λl . Define f : ℝ→ℝ

as
f (t) = α1 eλ1t +α2 eλ2t + ⋅ ⋅ ⋅+αl eλl t . (17)

We let C{α1, . . . ,αl} denote the number of changes in the signs
in the sequence of coefficients {α1, α2, . . . ,αl}, and for any

interval I ⊆ ℝ, Z
f

I
denotes the number of real roots of f in

I .
Let us also introduce p1 =α1, p2 =α1+α2, p3 =α1+α2+α3,
. . . , pl = α1+ ⋅ ⋅ ⋅+αl and q1 = p1(λ1−λ2), q2 = q1+ p2(λ2−
λ3), . . . , ql−1 = ql−2 + pl−1(λl−1 −λl), ql = pl . Also introduce
r1 = αl , r2 = αl +αl−1, r3 = αl +αl−1 +αl−2, . . . , rl = αl +
⋅ ⋅ ⋅+α1 and s1 = r1(λl −λl−1), s2 = s1 + r2(λl−1 −λl−2), . . . ,
sl−1 = sl−2 + rl−1(λ2 −λ1), sl = rl .

Lemma 4.1. (Laguerre , 1883, Section 24). Let f be defined as
in (17). Then

Z
f

(0,1)
≤C{q1, . . . ,ql},

Z
f

[1,∞)
≤C{s1, . . . ,sl}.

Our first lemma gives a necessary and sufficient condition for
the sum of two real exponentials to take on a specified non-zero
value, which corresponds to undershoot.

Lemma 4.2. Let λ1 < λ2 < 0, and for any real nonzero con-
stants {α1,α2}, define

f (t) = α1 eλ1t +α2 eλ2t . (18)

Let β = 1
µ (α1 +α2) for some µ ≤ 1. Then there exists t̄ ∈ ℝ

+

such that f (t̄) = β if and only if t∗ ∈ ℝ
+ and f (t∗)β ≥ β 2,

where

t∗ =
1

λ2 −λ1
ln

(

−λ1α1

λ2α2

)

. (19)

Proof: Since λ1 < λ2 < 0, function f (t) goes to 0 as t → ∞.
Since β = f (0)/µ , in the case f (0) = α1 +α2 > 0, a t̄ exists
for which f (t̄) = β if and only if f (t) has a maximum whose

value exceeds β , i.e., there exists t∗ > 0 such that ḟ (t∗) = 0 and
f (t∗) ≥ β . If f (0) < 0, such t̄ exists if and only if f (t) has a
minimum whose value is more negative than β , i.e., a t∗ > 0
exists such that ḟ (t∗) = 0 and f (t∗) ≤ β . Setting ḟ (t∗) = 0
yields t∗ given by (19). If t∗ /∈ ℝ

+, then f is monotonic on ℝ
+

and takes its extreme value at t = 0, implying ∣ f (t)∣ < ∣α1 +
α2∣ ≤ ∣β ∣ for all t ∈ ℝ

+. If t∗ ∈ ℝ
+, then f takes its extreme

value at t = t∗. As such, t̄ ∈ℝ
+ satisfying f (t̄) = β exists if and

only f (t∗)β ≥ β 2, which captures both the condition f (t∗)≥ β
when f (0)> 0 and the condition f (t∗)≤ β when f (0)< 0.

When we apply Lemma 4.2 to test for undershoot, each εk(t)
has the form (18), and we use βk = ε0,k for the initial output.
Also εk(0) = α1 +α2, and we find µk ∈ ℝ such that µkε0,k =
εk(0). We only need consider µ ≤ 1 in Lemma 4.2 because µ >
1 implies instantaneous undershoot. The following corollary
offers a simpler result that can be used for strictly proper
systems where no initial discontinuity in the output can occur.

Corollary 4.1. Under the assumptions of Lemma 4.2, if µ = 1,
then there exists t̄ ∈ ℝ

+ such that f (t̄) = β if and only if and
(α1 +α2)(λ1α1 +λ2α2)> 0.

Proof: Here t̄ ∈ ℝ
+ satisfying f (t̄) = β exists if and only if

f (0) ḟ (0)> 0. This holds if and only (α1+α2)(λ1α1+λ2α2)>
0.

The next lemma gives conditions on when the sum of three real
exponentials takes on a specified non-zero value.

Lemma 4.3. Let λ1 < λ2 < λ3 < 0, and for any nonzero

constants {α1,α2,α3}, define β = 1
µ (α1 +α2 +α3) for some

µ ≤ 1. Let

f (t) = α1 eλ1t +α2 eλ2t +α3 eλ3t , (20)

and introduce p1 = α1, p2 = α1 +α2, p3 = α1 +α2 +α3, p4 =
α1 +α2 +α3 −β and q1 = p1(λ1 −λ2), q2 = q1 + p2(λ2 −λ3),
q3 = q2 + p3(λ3), q4 = p4. Also introduce r1 =−β , r2 = α3 −
β , r3 = α3 +α2 −β , r4 = α1 +α2 +α3 −β and s1 = r1(−λ3),
s2 = s1+ r2(λ3−λ2), s3 = s2+ r1(λ2−λ1), s4 = r4. Then there
exists t̄ ∈ ℝ

+ such that f (t̄) = β only if at least one of the
following conditions hold:

I. C{q1,q2,q3,q4} ≥ 1;
II. C{r1,r2,r3,r4} ≥ 1.

Proof: Define g(t) = f (t) − β . Then f (t̄) = β for some
t̄ ∈ ℝ

+ if and only g(t̄) = 0. Then we may write g in the
form (17) with coefficients {α1,α2,α3,−β} and exponents
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{λ1,λ2,λ3,0}. Applying Lemma 4.1 to g, we see that t̄ exists
only if C{q1,q2,q3,q4} ≥ 1 or C{r1,r2,r3,r4} ≥ 1.

The generalisation of these lemmas to the sum of any finite
number of real exponentials is given by the following:

Lemma 4.4. For some positive integer l, let λ1 < λ2 < ⋅ ⋅ ⋅ <
λl < 0, and for any non-zero constants {α1,α2, . . . ,αl}, define

f (t) = α1 eλ1t +α2 eλ2t + ⋅ ⋅ ⋅+αl eλl t . (21)

Let β = 1
µ (α1+ ⋅ ⋅ ⋅+αl) for some µ ≤ 1, and define αl+1 =−β

and λl+1 = 0. Use the sets {αi : 1 ≤ i ≤ l+1} and {λi : 1 ≤ i ≤
l +1} to obtain sets {qi : 1 ≤ i ≤ l +1} and {si : 1 ≤ i ≤ l +1}
as in Lemma 4.1. Then there exists t̄ ∈ ℝ

+ such that f (t̄) = β
only if C{qi : 1 ≤ i ≤ l +1} ≥ 1 or C{si : 1 ≤ i ≤ l +1} ≥ 1.

Proof: These follow straightforwardly from Lemma 4.1. In
each case, if neither of the conditions hold, then the relevant
function has no root in ℝ

+.

The conditions given here are necessary, and in some cases also
sufficient, for the existence of t̄ ∈ ℝ

+ that corresponds to un-
dershoot. Hence if the appropriate conditions are not satisfied,
undershoot does not occur. The conditions given depend only
the coefficients {αi} and the modes {λi}, and do not require
simulating the system response.

5. NONUNDERSHOOTING FEEDBACK CONTROLLERS

In this section we see how the feedback design method de-
scribed in Section 3 can be combined with the technical lemmas
in Section 4 to give a systematic procedure for searching for
a nonundershooting feedback controller. We assume an LTI
system Σ in the form (1), together with a specified initial con-
dition x0, initial control input u0, and step reference r. The
following algorithm seeks to obtain a suitable set of closed loop
eigenvalues L and corresponding eigenvectors V to which the
Moore algorithm may be applied to obtain the a state feedback
gain matrix F that yields a closed-loop nonundershooting step
response.

Algorithm 5.1.

(1) Begin by determining the value of the integer l to be used
for the choice of targets in (14). Formally l is defined as

l =

⌈

n− z

p

⌉

, (22)

where z is the number of minimum phase zeros of Σ and
for any real number q, ⌈q⌉ denotes the next integer larger
than q.

(2) For a given initial condition x0 and reference r, determine
xss and uss from (2)-(3) and hence also ξ0 = x0 − xss.

(3) Choose a desired interval [a,b] of the real line (where
a < b < 0), and form a candidate set L of n distinct
closed-loop eigenvalues containing the n− l p minimum
phase zeros of Σ, and p sets of l eigenvalues chosen from
within [a,b].

(4) For the appropriate value of l, determine the target set
S from (14). Then solve for the corresponding V and
W in (7) and check if V is linearly independent. If it is
not then return to Step 3 and choose an alternative set of
eigenvalues within [a,b].

(5) Obtain the coordinate vector α in (15), and hence obtain
the components εk of the tracking error ε from (16), for
each k ∈ {1, . . . , p}.

(6) For strictly proper systems, proceed directly to Step 7.
For bi-proper systems, solve εk(0) = µk ε0,k for µk ∈
ℝ, for each k ∈ {1, . . . , p}. For a step response without
instantaneous undershoot, check µk < 1 for each k ∈
{1, . . . , p}. If not return to Step 3.

(7) If l = 1, proceed directly to Step 8. For l ≥ 2, do the
following for each k ∈ {1, . . . , p}: For a nonundershooting
response, test each εk for the conditions in Lemma 4.2 (if
l = 2), Lemma 4.3 (if l = 3) or Lemma 4.4(b) (if l ≥ 4)
respectively. In each case, if none of the conditions in the
respective lemmas are satisfied for any k ∈{1, . . . , p}, then
L and V are satisfactory. If not, then return to Step 3.

(8) Apply Moore’s algorithm to this L , V and W to obtain
the feedback matrix F for u in (4).

According to Theorems 3.1 and 3.2, the components of the
closed-loop tracking error vector ε have the form of (13) or
(16), respectively. The tests in Step 7 ensure the coefficients
αk,l are such that undershoot does not occur in any of the
output components. For the case l = 1, the response is globally
nonundershooting.

If Σ has n− (l − 1)p+ q stable zeros, where 1 ≤ q < p, then
by (22) we would need to use the integer l for the choice of
targets in (14), even though Σ has more than n − l p stable
zeros. However the additional q stable zeros can be exploited
by modifying (14) slightly. The n closed loop modes in L

can be associated with targets si as follows: choose si = 0 for
i ∈ {1, . . . ,n− (l−1)p+q}, to fully exploit the available stable
zeros. Then the first q canonical basis vectors {e1, . . . ,eq} needs
to be associated with only l − 1 modes each. The remaining
p−q canonical basis vectors {eq+1, . . . ,ep} must be associated
with l modes.

Thus Algorithm 5.1 searches for suitable L and V , but there
is no guarantee that they can always be found, for any given
(x0,u0,y0) and r, even if [a,b] = (−∞,0) is chosen. Nonetheless
in practice the search algorithm provides an effective tool for
obtaining a nonundershooting linear controller when they do
exist, due to the simplicity of the output function. Also the
mathematical tests by which candidate sets of closed loop poles
may be tested for suitability are computationally very tractable
within MATLAB R⃝, allowing for a large number of candidate
sets of poles to be tested in an efficient manner. Very recently a
public domain toolbox, known as NOUS, has been developed
to implement Algorithm 5.1; see Pandey and Schmid (2011).

An interesting aspect of the search algorithm is that it is
generally more effective for MIMO systems than for SISO
systems, as increasing the number of outputs p reduces the
value of l, meaning that fewer modes need to be channeled into
each component of the output. This increased effectiveness may
be explained by recalling that we have assumed Σ is square;
hence increasing p also means increasing m, and thus we have
more control inputs with which to determine the eigenstructure
and hence shape the transient response. Finally note that as
Lemmas 4.3 and 4.4 only offer necessary conditions, so using
them in Step 7 will reject some L that do in fact yield suitable
F for a nonundershooting response.

6. EXAMPLES

A well known classic result on the relation between nonmini-
mum phase zeros and the transient response is the following:
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Theorem 6.1. Middleton (1991). Let Σ be an LTI stable strictly
proper SISO system with at least one real NMP zero. Then the
step response must exhibit undershoot.

The following conjecture is a possible MIMO generalization of
this result:

Conjecture 6.1. Let Σ be an LTI stable strictly proper square
MIMO system with p inputs/outputs, and p real NMP zeros.
Then the step response must exhibit undershoot in at least one
output component.

Clearly, the case p = 1 is given by Theorem 6.1. We show this
conjecture is false for MIMO systems, in general.

Example 6.1. Consider the strictly proper system Σ1:

A = [0 -5 0 6 8 0;0 0 0 -2 0 0;

6 0 0 0 0 0;0 0 0 0 0 0;

0 -1 0 -6 3 0;0 0 0 6 0 9]

B = [1 0 0; 7 0 9; 0 4 -5;0 0 7;0 2 10;-2 -1 0]

C = [ 0 7 0 -2 -3 0;0 0 -9 -1 0 0;0 0 7 6 5 0]

D = [0 0 0;0 0 0;0 0 0]

The system has n= 6 states, p= 3 inputs and outputs, and p= 3
real NMP zeros, at 0.5551, 2.4547 and 9.0000. We assume
zero initial conditions and a step reference of [1, 1, 1]T . Using
Algorithm 5.1, we obtain the gain matrix F as

F = [24.1 -38.0 -20.9 27.5 2.1 -107.7;

-143.2 198.5 85.5 -264.3 66.3 681.7;

-88.0 111.9 45.9 -179.7 51.0 378.1]

so that the control law (4), with uss and xss obtained from
solving (2)-(3), yields transient response curves as shown in
Figure 2.
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Fig. 2. Outputs from System Σ1

The gain matrix F places the closed-loop poles at

{−50, −47, −42, −40, −7, −6}, and of course the closed-
loop system has the same zeros as the open loop system, since
state feedback has been used. Thus the closed-loop system

is stable, strictly proper and square, with p = 3 real NMP
zeros. We see that with this control law, the step response
does not exhibit undershoot in any of its outputs, indicating
the conjecture is not valid in general. The authors have also
obtained examples to disprove the conjecture for the cases
p = 2, p = 4 and p = 5.

7. CONCLUSION

The design method for a linear state feedback tracking con-
troller to achieve a nonovershooting step response for MIMO
systems given in Schmid and Ntogramatzidis (2010) has been
modified here to yield a step response that is nonundershoot-
ing. The method is described here for continuous-time square
systems, and is applicable to both strictly proper and bi-proper
systems, which may be of minimum or nonminimum phase.
The method may also be applied to discrete-time systems, and
also non-square systems; we refer the reader to Schmid and
Ntogramatzidis (2010) for the details. To the best of the au-
thors’ knowledge, this is the first linear control scheme that can
provide a nonundershooting step response for a MIMO system.
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