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Abstract 

Similar to most biological tissues, the biomechanical and functional characteristics of the Achilles 

tendon are closely related to its composition and microstructure. It is commonly reported that type I 

collagen is the predominant component of tendons and is mainly responsible for the tissue’s 

function. Although elastin has been found in varying proportions in other connective tissues, 

previous studies report that tendons contain very small quantities of elastin. However, the 

morphology of and the microstructural relationship among the elastic fibres, collagen and cells in 

tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar 

component in the extracellular matrix, have a unique role in mechanical functions and 

microstructural arrangement in Achilles tendons. Using confocal and Second Harmonic Generation 

(SHG) imaging techniques, this study examined the 3-dimensional microstructure of the collagen, 

elastin and cells in the mid-portion of hydrated rabbit Achilles tendons. It has been shown that 

elastic fibres present a close connection with the tenocytes. The close relationship of the three 

components has been revealed as a distinct, integrated and complex microstructural network. 

Notably, a “spiral” structure within fibril bundles in Achilles tendons was observed in some 

samples in specialized regions. This study substantiates the hierarchical system of the spatial 

microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-

dimensional confocal images. This article is protected by copyright. All rights reserved 
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Introduction 

In humans, the Achilles tendon is the thickest and strongest tendon that sustains some of the largest 

tensile loads in the body 
1
. Dysfunction and injuries are commonly seen in the Achilles tendon. 

Various studies 
1-6

 have used a range of imaging techniques to reveal the tendon’s architecture, and 

elucidate biomechanical and functional characteristics in healthy and pathological states. It is 

generally believed that the fibrous matrix of tendons mainly consists of collagen and a small 

amount of elastin, which are produced and maintained by tenoblasts and tenocytes 
7
. Tendon 

consists primarily of collagen (70-80% of the tissue’s dry weight) and less than 5% tenocytes and 

tenoblasts 
8
. These insoluble elements are embedded within a hydrated environment containing 

ground substance of proteoglycans, glycosaminoglycan (GAG) and some other small molecules 
9
. 

The detailed hierarchical structural organization of the tendon has been well defined by Kannus 
7
, 

which includes fascicles (15-3000 µm in diameter) that are composed of bundles of collagen fibres 

(5-300 µm in diameter) surrounded by the endotenon. The collagen fibres are constituted of 

collagen fibrils with diameters ranging between 20 and 150 nm. At rest, the tendon fascicles, 

collagen fibres and fibrils are characterised with crimping as observed under microscopy. This 

unique composition and structure of tendon enables it to transmit the force between muscle fibres 

and their bony attachment, modulate different joint movements, and buffer forces of various 

directions to prevent injury.  

Many microscopic techniques have been used to study the microstructure of tendons. Traditional 

optical microscopy, commonly used in histology, does not have sufficient imaging resolution to 

distinguish the detailed fibril structure of tendons but reveals general fibre texture and the 

morphology of tenocytes. Electron microscopy possesses superior imaging resolution and has been 

used intensively to study the ultra-structure of tendon 
2
. While stereoscopic techniques can reveal 

some 3-dimensional features using electron microscopy, the depth of field is often limited. 

Meanwhile, Scanning Electron Microscopy imaging techniques require excessive tissue dehydration 

and are limited to surface imaging, while Transmission Electron Microscopy (TEM) imaging 
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techniques require ultra-sectioning of tendon tissue and also have limitations for imaging the 3D 

microstructure of bulk tendon tissue 
10

. 

Collagen is the predominant component in tendon and is therefore the most commonly investigated 

passive structural sub-element considered responsible for tensile resistance and stiffness 
11

. 

Collagen type I is the main type existing in tendons, and small amounts of collagen types II, III, IV, 

V and VI are also present 
12

. Collagen is a triple-helical structure 
13

 and when observed using 

optical methods, it displays a birefringent characteristic 
14

, which means that the resultant refractive 

index and image are dependent on the polarization and the direction of propagation of light. 

Therefore, alternative optical techniques are needed to observe collagen, or multiple staining 

techniques are required. Second harmonic generation (SHG) microscopy has emerged as a powerful 

platform offering high resolution for visualizing birefringent materials without staining. Hence, 

SHG techniques are well suited for the investigation of tendons that contain abundant collagen 
14

, 

and the use of these techniques opens up opportunities for inspection of other additional 

components such as elastin and tenocytes.  

Elastin plays an important role in tissues and organs like large arteries, skin, lung and cartilage 
15

. 

As an essential component in extracellular matrix, elastin ensures tissues with elastic stretch and 

recoil, cooperates with collagen for tensile resistance 
16

, and regulates the interactions between cells 

and extracellular matrix 
15

. However, elastin is sparsely distributed in tendons, accounting for 

approximately 1-2% of the dry mass of the tendon 
7
. Given its functional importance, the 

investigations of morphology of elastin can increase the knowledge of mechanism of its functional 

contribution to tissues. The substructures of elastin can be well displayed by TEM images 
17

, but it 

is difficult to image the elastic fibres, which work as the functional unit of elastin structure, by 

traditional optical microscopy and electron microscopy 
16

. As a consequence, the distribution of 

elastin, and more importantly the concurrent location of elastin in relation to the collagen and 

tenocytes in tendons, is yet to be studied.  
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The confocal laser scanning microscope combined with fluorescent techniques is well suited for 3D 

biomedical imaging with an appropriate resolution for the examination of cells and fibres 
18

, and 

this system has been utilised by numerous studies 
14; 18-20

 to reveal 3D microstructural detail. 

Modern confocal microscopy is normally equipped with lasers of different wavelengths and can be 

integrated with SHG microscopy. Such systems provide an excellent platform for examining tendon 

structure. Clément Ricard et al. 
21

 discovered that Sulforhodamine B (SRB) specifically stains 

elastic fibres. Combined with confocal microscopy, this convenient and inexpensive fluorophore 

has been demonstrated to stain elastic fibres in lung and articular cartilage by some researchers 
22-24

.  

Collagen has been well acknowledged to play an important role in the physiological and mechanical 

functions in Achilles tendons. Although elastin accounts for a very small fraction of the 

extracellular matrix of Achilles tendons, its existence and the orientation is potentially extremely 

valuable. We hypothesize that there is a close connection between tenocytes and the fibrillary 

extracellular matrix in the mid-portion of Achilles tendons, and that elastic fibres and collagen 

fibrils play important roles in the function of Achilles tendons. Given the unique mechanical 

properties of elastic fibres in chondral and connective tissues 
23

, it is suggested that elastic fibres 

may have a crucial role in the mechanical function of Achilles tendons.  

 

Methods  

Sample Preparation 

Ten Achilles tendons from left hind limbs were freshly harvested from ten New Zealand white 

rabbits. Animal ethics approval was granted by the University of Western Australia. The rabbits 

were 18 to 20 weeks old, and weighed from 2.4 to 2.8 kg. The tendons were visually glistening and 

normal in appearance.  
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The specimens cut from the mid-portion of the Achilles tendons were embedded in O.C.T 

compound (VWR International Ltd, UK) for cryostat section. Longitudinal slices and transverse 

slices were sectioned with thicknesses of 50 µm and 20 µm respectively. The sections were adhered 

to slides, labelled, wrapped in cling film, and stored at -80℃ until fluorescent staining was 

conducted. Cryo-sections were carefully prepared to avoid any possible tissue tearing and 

compression during and prior to imaging. Torn sections were excluded from imaging. Regions of 

interest were randomly selected within the tissue section for imaging. 

Fluorescent staining 

The sections were stained with the nucleic acid-selective fluorescent dye Acridine Orange (AO) for 

imaging the nucleus of tenocytes, and the fluorescent dye SRB was used to label the elastin fibres. 

Prior to staining, sections were thawed at room temperature and washed gently in phosphate-

buffered saline (PBS, Ph 7.2) to remove the O.C.T thoroughly. The slides were stained in 0.03 g/L 

AO solution for 3 min, and then washed thoroughly in PBS before it was stained in 1 mg/ml SRB 

solution for 1 min. After thoroughly washing with PBS, the slides were covered by coverslips and 

sealed by clear nail polish, and imaged immediately. 

Confocal laser scanning microscopy and SHG imaging 

A Leica TCS SP2 multiphoton microscope was used to acquire the images of collagen, elastin and 

tenocytes in Achilles tendons through three independent channels. The system is integrated 

confocal microscopy with SHG microscopy, which possesses an Acousto-Optical Beam Splitter and 

multiple laser excitation sources. A 514 nm Krypton-Argon ion laser was used for acquiring the 

images of cells stained by Acridine Orange, while a 561 nm diode-pumped solid-state laser was 

used to acquire the images of elastin stained by SRB. A Spectra Physics Mai Tai Titanium Sapphire 

laser, which is tuneable from 710 to 990 nm, was set at 890 nm and used to acquire the SHG signals 

from the collagen. The elastin and cells fluorescent signals were collected by photomultiplier tubes 

at 565-600 nm and 590-680 nm, respectively. The SHG signals were directly collected by a 
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secondary non-descanned detector at 445 nm for transmitted lights. Oil-immersion objectives used 

in this study were: (a) 10×, NA (Numerical Aperture) 0.40; (b) 20×, NA 0.70; (c) 40×, NA 1.25; (d) 

63×, NA 1.40. Image acquisition was conducted by Leica Confocal Software with 1024×1024 

pixels in each image. Z-stacks were obtained with a step of 0.5 μm between each field of view. 

Image processing and 3D image reconstruction 

The image processing is summarized in Fig. 1. Collagen, elastin and cells were assigned green, 

cyan and red, respectively. The only channel that displayed significant homogeneous background 

noise was that of the elastin (cyan channel). In order to get clear images of elastic fibres, the 

background was subtracted using Image J (NIH, Maryland, USA) within the elastin images. After 

background subtraction, the stacks from the three channels were merged. In this study, elastin-cell 

image stacks were primarily formed along with collagen-elastin-cell image stacks. A voxel-based 

3D rendering function in computer software Voxx (Indiana University, USA) and Imaris 7.4.2 

(Bitplane, USA) were used to render the merged image stacks into 3D images for three-

dimensionally studying the microstructural relationship of tenocytes, elastic fibres and collagen. 

2D Fast Fourier Transform and Alignment Analysis 

A 2D fast Fourier transform (2D FFT) transfers the spatial information contained in a digital image 

into a mathematically defined frequency domain for objectively studying the anisotropic or 

isotropic features in the image 
25

. By measuring the grey value of the pixels in a 2D FFT image 

derived from the original digital image of fibrillary objects, Oval profile plug-in was used to 

numerically evaluate the alignment characteristics of the objects in the image
26

. 2D FFT and Oval 

profile plug-in within Image J were employed to analyse the alignment characteristics of elastic 

fibres, collagen fibrils and tenocytes in Achilles tendons. Image stacks of collagen fibrils, elastic 

fibres and tenocytes were used to reconstruct the corresponding 2D z - projects for conducting 2D 

FFT. For easily assessing and comparing the orientation characteristics, the grey values in the FFT 

alignment graphs were normalized into digits ranging from 0 to 1 using feature scaling method. 
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Results 

Collagen, Elastin and Cells  

Low magnification observations using 10× and 20× objective lenses show the general structure of 

Achilles tendon. The collagen bundles exhibit the typical crimped pattern (double headed arrow 

indicated in Fig. 2e) along the tendon’s long axis. An inherent technological limitation in the system 

for SHG imaging prevents observing the collagen in a full field of view at low magnifications (Fig. 

2a, e), while the elastin and cell images (Fig. 2b, c, f, g) display in full. The sparse elastin signals 

are submerged in the background noise and the elastic fibres cannot be easily distinguished (Fig. 2b, 

f).  

Images with higher magnifications, using 40× and 63× objective lenses, show more detailed 

microstructure of the three components. The size of the collagen observed by SHG microscopy are 

at fibril level (Fig. 2i, n), which can be verified by the higher magnification observations in the 

transverse images (Fig. 7). The elastic fibres signals in higher magnifications are strong enough to 

be distinguished from the background noise (Fig. 2j, p), and Fig. 2j shows the comparison of image 

quality before and after background subtraction, which successfully enhanced the visibility of 

elastic fibres. Elastic fibres (white arrow indicated in Fig. 2j, p) are discontinuous in the 2D images. 

In the merged images (Fig. 2m, r), elastic fibres and tenocytes within a layer align with the collagen 

fibril bundles and conforms to the collagen orientation. 

The longitudinal spatial relationship of collagen fibrils, elastic fibres and tenocytes  

Collagen fibrils, elastic fibres and tenocytes have a distinctive spatial relationship in Achilles 

tendons, as shown in Fig. 3. The 3D networks of elastin-tenocytes and collagen-elastin-tenocytes 

are observed from different angles of view. The alignment of the three components shows high 

concordance and is consistent with the long axis of the tendon.  
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Tenocytes generally display as spindle or elongated shape and deform into various shapes as the 

bundles crimp. Some tenocytes (rectangle indicated in Fig. 3a) with normal and twisted shapes were 

examined at higher magnifications to show the fine structure of the elastin-tenocyte network (as 

shown in Fig. 4). The elastic fibres are continuous in the 3D network and appear to have a very 

close relationship with the tenocytes. They are attached to the two ends of the elongated tenocytes, 

and appear to connect the tenocytes into wavy lines along the tendon’s long axis (Fig. 3a, c, e). 

Elastic fibres and tenocytes are embedded in the collagen matrix and mostly conform to the 

collagen fibril orientation (Fig. 3b, d, f). However, the collagen fibrils are crimped more sharply 

than the elastic fibres. An area with complex structure which is indicated by a rectangle in Fig. 3b 

shows a twisted geometry of collagen fibril bundles, where a similar twisted geometry can be 

observed within the elastic fibres and tenocytes. This area is shown in further detail using 2D 

images from a stack at different depths in Fig. 5.  

Connections between elastin and the tenocytes are shown in Fig. 4. The elastic fibres and tenocytes 

are connected in series. In Fig. 4a and b, the elastin forms a sparse peri-cellular meshwork around 

tenocytes. The same structure can be observed in Fig. 4c and d. A tenocyte in a twisted shape (Fig. 

4d) appears to be dragged by the elastic fibres (arrow indicated in Fig. 4d). Sharp and gentle crimps 

within the collagen fibril bundles can alter the shape of tenocytes and the directions of the elastic 

fibres (arrow indicated in Fig. 4e, f).  

The extraordinary structure of the complex area in Fig. 3b is presented in detail in Fig. 5. The 

elastic fibres in this area (Fig.5a) show a circuitous trail, which could indicate a complex 

architecture of the entire matrix. Due to the different orientations, collagen fibrils in different layers 

appeared as a braided fabric in the 3D collagen network (Fig. 5b). The 2D merged images (Fig. 5c-i) 

from different depths show: a) a group of longitudinal collagen fibrils (white lines with arrow head 

marked fibril bundle) running deeper toward an upper right direction; b) a group of longitudinal 

collagen fibrils and a group of transverse collagen fibrils form into one group (yellow lines with 

arrow head marking fibril bundles), then inserts into a deeper layer through a gap (white arrowhead 
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in Fig. 5f). These images display the spatial traversing trail of fibril bundles. The images also show 

connections between the fibrils at different depth and between fibrils oriented in different directions. 

It could also be interpreted that several collagen fibril groups with different directions spatially run 

across each other at a certain point and form spirals and plaits, which can be verified in transverse 

images in Fig. 7. The prevalence of these oblique nodes in the whole Achilles tendon warrants 

further investigation.   

2D FFT and alignment analysis 

The intensity distribution of the 2D FFT of the collagen fibrils (Fig. 6b), elastic fibres (Fig. 6e) and 

tenocytes (Fig. 6h) displays a very similar butterfly pattern which aligns approximately with the 

horizontal axis. The corresponding FFT alignment analysis using Oval profile plug-in shows very 

similar graphs with distinctive and harmonic peaks and troughs (Fig. 6c, f, i). These indicate that the 

collagen fibrils, elastic fibres and tenocytes align similarly and approximately to the vertical axis 

direction. As the alignment of tenocytes is much more compliant to that of elastic fibres (Fig. 6d, g, 

j), the FFT alignment graphs of the tenocytes and elastic fibres exhibit a great similarity (Fig. 6f, i), 

which also can be confirmed from the normalised FFT Alignment graph (Fig. 6k). 

The transverse spatial structure of collagen fibrils, elastic fibres and tenocytes 

The 3D transverse images (Fig. 7) show a very clear structure of the tendon’s hierarchical system as 

well as the spiral structure of the fibril bundles that supports the longitudinal observations.  

As shown in the transverse view (Fig. 7), the diameter of collagen fibrils is at sub-micron level, 

which corresponds to the size of tendon collagen fibrils 
7
. An Achilles tendon is made by a massive 

number of collagen fibrils and a small quantity of elastic fibres which are evenly distributed within 

the collagen fibril framework. Endotenon is made of collagen fibrils (yellow arrow in Fig. 7a, e) 

and elastin (yellow arrowhead in Fig. 7b, f) in a direction perpendicular to the tendon’s long axis. It 

binds groups of collagen fibrils and elastin together. Two forms of elastin are observed in the 

endotenon: elastic fibres (yellow arrowhead in Fig. 7b) that conform to the collagen orientation in 
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endotenon, and elastin that forms a thin membrane (yellow arrowhead in Fig. 7f) at the interface 

between the tendon matrix and the endotenon. Skinny tenocytes (white arrowhead in Fig. 7b) 

sparsely distribute in the fibril matrix, and it can still be observed that elastin exists around the 

tenocytes. Clearly, the cells in the endotenon (white hollow arrowhead in Fig. 7b) have a larger 

diameter range than the tenocytes.  

From the transverse view in Fig. 7a, collagen fibrils are the basic unit in a fascicle that can be 

observed by SHG microscopy. The fibrils show different tendency of running directions, and fibrils 

with a same tendency form a secondary unit — fibril bundles. It is widely accepted that collagen 

fibres are constituted of a group of collagen fibrils in the tendon’s hierarchical system, and no 

endotenon exists between collagen fibres 
7; 27

. Therefore, it can be assumed that the definition of 

collagen fibres in tendon’s hierarchical system actually refers to a group of collagen fibril bundles 

which have similar orientation. This structural feature can be related to the longitudinal 

observations in Fig. 5i that collagen fibrils run in groups with different orientations. The orientation 

differences between collagen fibril bundles, or “collagen fibres”, are not obviously distinguishable 

most of the time, because the general orientations are the same. However, when the sectioning 

occurred at the spiralled or plaited areas, the orientation differences can be observed clearly in 

transverse sections.  

The spatial spirals between collagen fibril bundles have been reported 
7; 26-28

, but to date there are 

few studies that have provided clear images of this proposed model. Three very obvious spirals 

have been observed in Fig. 7a as indicated by white arrows, and further magnified images are 

provided (as shown in Fig. 7c-e). There is a centre in each spiral, and the orientation of collagen 

fibril bundles around the centre forms a typical “twirl” structure. This transverse appearance can 

correspond to the longitudinal spiral or plait structure shown in Fig. 5. Meanwhile, some spaces in 

the matrix (“*” indicated in Fig. 7c-e) appear to accompany the spirals, which warrants further 

study.  
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Discussion 

As important components in the extracellular matrix, elastin and collagen usually have been studied 

conjointly 
28-31

. Compared with collagen, the elastic fibres in connective tissues have received less 

attention. This is likely to be a methodological issue related to the difficulty of elastic fibre 

detection using traditional optical microscopy and electron microscopy 
16; 32

. Due to the 

development of microscopy and staining techniques, the fine structure of elastic fibres, together 

with the collagen fibres and cells can now be well presented in a 3-dimensional network 
32; 33

. By 

utilizing these techniques, observations of elastin fibre networks within different tissues are 

increasing 
23; 24; 34-37

.  

Elastin 

In this study, three forms of elastin were observed in the mid-portion of Achilles tendon: (1) peri-

cellular elastin meshwork that enveloped the tenocytes, which is consistent with the studies of 

bovine deep digital flexor tendons 
36

 and human rotator cuff 
31

; (2) elastin fibres that were 

distributed along the fascicles and the endotenon; (3) elastin that formed a thin membrane in the 

endotenon. Even though the elastin content is much less than collagen, the longitudinal and 

transverse distributed elastin appears to play an important role in Achilles tendon. 

 Firstly, the attachment between elastic fibres and tenocytes appear to be in series. As is known, the 

extracellular matrix of tendon is synthesized and maintained by tenocytes and tenoblasts, and when 

load is applied on the tendon, the extracellular matrix transfers the load information to the cells 
7
. 

Considering the anatomical relationship — the series connection between the elastin and tenocytes, 

the elastin could act as a medium to transfer mechanical information to cells and also act as a 

direction guide to the cells during movement. Secondly, the elastin meshwork around tenocytes 

could not only provide physical protections to tenocytes, and could also modulate the force 

transmitted to tenocytes to ensure the force can be transmitted more evenly. Moreover, the two 

forms of elastin in the endotenon enable sliding and recoil between adjacent bundles and fascicles, 
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and this feature of elastin fibres is similar to ligaments 
38

. However, future studies are required to 

investigate the mechanotransduction process between tenocytes and the extracellular matrix. 

Some most recent studies 
28; 29; 33; 39

 have also ascertained that elastin plays an important role in the 

microstructure and mechanical properties of tendons and ligaments. Elastin has also been suggested 

to be responsible for retaining the collagen crimp within tendons and ligaments, and has a crucial 

role in the resistance of the tensile and transverse shear forces within ligaments 
28; 29; 33

. Using 

immunofluorescent methods, Ritty 
40

 reported the distribution of elastin and elastic fibre-related 

proteins in flexor tendons. These findings and methods could be utilized in further studies to get a 

better understanding of elastin’s role in Achilles tendons. 

Collagen 

Collagen fibres are the most abundant and important component in tendons. The representative 

phenomenon ‘crimp’ can be easily observed by optical microscopy and electron microscopy, and it 

has been studied in depth regarding the morphology together with other parameters 
4; 41; 42

. In this 

study, the high quality of collagen fibril images has confirmed the present understood hierarchical 

system of tendon tissue, and it is presumed that the collagen fibres are actually a group of collagen 

fibrils with the same orientation. The reason that the terminology of “collagen fibres” is widely used 

in many tendon studies could be due to the limited capabilities of optical microscopy and traditional 

staining techniques, which are widely used in tendon studies. Meanwhile, it has been reported 
43

 

that collagen fibres which are oriented longitudinally and transversely run cross each other forming 

spirals. From the 2D longitudinal image series in Fig. 5 and the 3D transverse images in Fig. 7, the 

spatial spirals which are formed by collagen fibril bundles can be observed in the Achilles tendon. 

Apparently, compared to the organized crimp areas, such orientations which can be called “twists”, 

“spirals”, “plaits”, or “twirls” in transverse sections, may improve the mechanical properties of the 

tendon. Functionally, they may increase the tensile strength of the tendon and optimise transmission 

of the tensile forces of muscle during activities. It may be the first time that this structure has been 

displayed in detailed 3D images containing both collagen and elastin in Achilles tendons. However, 
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future studies are required to determine the patterns of the occurrence of the twisted areas along the 

longitudinal and lateral directions of Achilles tendons. Simultaneously, the spirals appear to be 

normally accompanied by small spaces, which might be filled by ground substance rich in 

proteoglycans and other proteins that cannot be imaged by the SHG imaging technique. These 

spaces possibly work as buffer areas to absorb the tension created by twisting. Future studies could 

explore the distribution of the solid components within the ground substance in this buffer area. 

Using SHG and confocal microscopy, a close spatial relationship between tenocytes and the elastic 

fibres has been detected in micron scale in this study. Study
44

 that utilized electron microscopy to 

show the ultra-microstructure of rabbit Achilles tendons in nanometre scale matches our 

observation perfectly that elastin has a close relationship with tenocytes’ plasma membrane. Studies 

in different scales and dimensions may build up a comprehensive view of the tendon’s structure, 

which may contribute to the understanding of its functional mechanism. On the other hand, the 

elastic fibres localized along the tendon’s axis are consistent with the collagen bundles, but show 

gentle curves rather than the collagen bundles’ sharp kinks. This appearance can be related to the 

elastic fibres’ mechanical function 
28; 29

 of retaining the collagen crimp pattern. The gently curved 

elastic fibres appear to be able to hold the collagen bundles’ crimp, but more evidence is still 

needed to fully assess and explain the mechanism.  

In conclusion, a strong association of orientations between the elastin and tenocytes within the 

longitudinal collagen fibril framework has been demonstrated, and the techniques can show this 

association remains when the collagen fibrils become oblique and spiral. This anatomical structural 

knowledge may enrich the theory of mechanical and biological information transduction in tendon 

tissue, and may pave the way to develop novel imaging techniques for investigating tendon 

pathology 
10; 45

. This study has shown that the structure of the collagen fibrils and elastic fibres in 

the longitudinal and transverse sections of tendons are more complex than previously reported. 

With these imaging techniques and suitable analysis methods 
46; 47

, further studies can focus on the 

quantitative evaluation of elastic fibre meshwork in relation to tenocytes and collagen matrix, like 
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the density analysis and their interconnectivity, and the structure and texture deviation in aged 

tendons or under different pathological conditions. 
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Figure Legends 

Figure 1  

The procedures of image processing and 3D image construction. 

 

Figure 2  

Representative images of longitudinal 2D images of Collagen (green), elastin  (cyan) and cells  (red) 

with different magnifications using Confocal and SHG microscopy. Arrows indicate the elastic 

fibres. “j” shows the comparison of elastic fibres signal before and after background subtracting. 

The double headed arrow in “e” shows a crimp. 

 

Figure 3  

Representative longitudinal observations of 3D network of elastin-tenocytes and collagen-elastin-

tenocytes from different angles of views. At rest state, the collagen fibrils (green) and elastic fibres  

(cyan) are crimped. The tenocytes (red) and elastic fibres show series connections and are 

consistent with the long axis of the tendon. The area highlighted by rectangle in “b” shows the 

spatial spiral or plait of the tendon texture. Rectangles highlighted areas in “a” and “b” are shown in 

detail in Fig. 4 and Fig. 5. The volume size is 375 µm × 375 µm × 28 µm. 

Figure 4  

The localisation of the elastin-tenocytes network shows the close relationship between tenocytes 

(red) and the elastin (cyan). The images correspond to the regions highlighted in Figure 3a.  “a” and 

“b” are the same location, while “b” shows an elastin pericellular meshwork which can also be seen 

in “c” and “d”. Arrows in “d”-“f” indicate the way that elastic fibres attach to the tenocytes in the 

twist area, crimp peaks and flat region.  
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Figure 5  

The longitudinal observation of a spiral corresponds to the region highlighted in Fig.3b. Collagen 

fibrils are green, tenocytes are red and elastic fibres are cyan. All the images are in the same scale. 

“a” and “b” are 3D images. “c”-“i” are 2D images and the numbers at the lower right corner 

indicate the depths of the images in the stack. White lines with arrowhead in “c”-“i” indicate a 

group of collagen fibrils going deeper toward an upper right direction. Yellow lines with arrowhead 

in “e”-“g” indicate two groups of collagen fibril bundles form into one group and go deeper through 

the gap. White arrowhead in “f” indicates the gap between bundles.   

 

Figure 6 

2D z - project of collagen fibrils (a), elastic fibres (d) and tenocytes (g) was reconstructed from the 

corresponding image stack, respectively. The corresponding 2D FFTs of the collagen (b), elastic 

fibres (e) and tenocytes (h) were used to objectively indicate the predominant alignment of the three 

components in Achilles tendons, which is along the vertical axis direction, but shown in the FFTs as 

along the horizontal axis. The two distinctive intensity distributions in the FFT of the collagen 

fibrils (b) at about 30° and 150° to the horizontal axis are related to the crimps of the collagen fibrils.  

The FFT alignment graphs of the collagen fibrils (c), elastic fibres (f) and tenocytes (i) were used to 

numerically study the alignment characteristics of the three components of Achilles tendons.  “j” is 

a 3D image reconstructed from the merged image stacks of the collagen fibrils, elastic fibres and 

tenocytes. “k” is a FFT Alignment graph in which the grey value of the collagen fibrils, elastic fibre 

and tenocytes were normalised data for easily assessing their orientation characteristics. The 

volume size of the 3D image “j” is 375 µm × 375 µm × 28 µm. 
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Figure 7  

Representative 3D transverse observation of the microstructure of Achilles tendons. Collagen fibrils 

are green, tenocytes are red and elastic fibres are cyan. “a” and “b” are from the same location. “c”-

“e” are magnified spiral structures from white arrows indicated areas in “a”. “f” is the elastin-cell 

structure of “e”. Yellow arrow in “a” and “e” indicates the collagen fibrils in endotenon. Yellow 

arrowheads in “b” and “f” indicate the morphology of elastin in endotenon. White solid arrowheads 

in “b” indicate the elongated tenocytes. White hollow arrowhead in “b” indicates the cells in 

endotenon. The spiral structure appears to be accompanied by a small space that is indicated by “*” 

in “c”-“e”. The volume size of “a” and “b” is 238 µm × 238 µm × 20 µm. 
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