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Abstract 

Successful mineral trapping of carbon dioxide faces the challenge of effectively titrating a CO2-charged acidic injection solution to 

pH conditions favorable to carbonate precipitation -using the rock as primary alkalinity source. To illustrate the magnitude of this 

task, buffer capacities of seawater solutions equilibrated with different partial pressure of CO2 are presented, under open and closed 

conditions. A number of mechanisms can be evoked to overcome the large buffer intensity of the injection fluid, including dilution, 

dissolution kinetic catalysis and increasing reaction temperature. Buffer capacity – pH plots are presented to aid in understanding 

how buffer capacity changes as a function of the presence and concentration of key solutes, like fluoride. 
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1. Introduction 

Mineral sequestration is the fixation of CO2 as stable carbonate minerals that provide a long-lasting, 

thermodynamically stable, and environmentally benign carbon storage solution. One option of CO2 mineralization is 

injecting the gas after its dissolution into water into silicate rocks rich in divalent metal cations such as (ultra)mafic 

rocks [1]. The carbonation creates carbonic acid providing the protons required for rock dissolution and the release of 

divalent cations into solution. However, the mass of water required to fully dissolve one ton of CO2 is large. At 25 bar 

pCO2, 27 tons of pure water are required to dissolve a ton of CO2. Likewise, the rock demand for mineral sequestration 

of carbon is huge. It takes at least 2.5 tons of basaltic glass to bind one ton of CO2, assuming that the glass dissolves 

completely and that all divalent cations precipitate in carbonates [2]. To optimize this process, the fraction of liberated 

divalent cations that are eventually bound in carbonates versus other secondary minerals, such clays or zeolites, must be 

maximized. 

Dissolved divalent metals can react with dissolved CO2 to precipitate carbonate minerals according to: 

 

M
2+

(aq) + H2O + CO2(aq) ↔ MCO3(s) + 2H
+ 

                                                    (1) 

 

This reaction illustrates the pH dependence of carbonate precipitation/dissolution. The reaction will proceed to the 

right only if the generated protons are consumed via host rock dissolution. However, field and experimental results 

suggest that the slowest and thus rate limiting step in mineral fixation of carbon in basaltic rock is the dissolution of 

silicate minerals and glasses. This study attempts to address the question whether sufficient alkalinity is generated by 

host rock dissolution to allow carbonate mineral precipitation. While reaction path models, for example PHREEQC [3], 

indicate silicate dissolution and carbonate precipitation will happen over time, such model calculations commonly 

assume batch conditions and do not take the continuous supply of carbonic acid to the system into account. This study 
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presents the results of calculations aimed at quantifying the buffer capacity of various CO2 charged waters and how they 

evolve in open and closed systems and in the presence/absence of specific solute ions. 

2. Background 

The buffer capacity ß (alternatively termed buffer index or intensity) describes the resistance of a solution to a pH 

change when either an acid or base are added (buffer solutions have therefore a large ß). Graphically, ß is the tangent 

line to any point on a titration curve (see Figure 1). The flatter the tangent line the smaller the amount of acid/base that 

has to be added to induce a change in pH and therefore the lower the buffer capacity. Conversely, a steep slope signifies 

that the solution has a high buffer capacity as the pH barely changes while base/acid is added. While the concept of 

buffer capacity has been treated extensively in (aquatic) chemistry textbooks [4, 5], its mathematical application and 

implication to fluid-rock interactions in carbon sequestration systems has not been explored. Of the few studies 

involving ß, [6] used the buffer capacity to describe the potential of basaltic rocks to buffer the pH of groundwater and 

[7] employed ß to define the ‘proton driving force for reaction’ in their studies on weathering phenomena in the Critical 
Zone. 

ß can be described mathematically as the partial derivative of the change in alkalinity (A) with pH, either at constant 

pCO2 or constant total carbon content CT [8]: 

 

ß (pCO2, CT) = d(A)/dpH                                                                             (2) 

 

 

Figure 1 Titration curve for seawater that was equilibrated with a pCO2 of 10 bar (initial pH 3.2) with equimolar steps 

of 1M NaOH. The slopes show the tangent lines at two different, but rather close alkaline pH. EP = 

equivalence point; for further explanation, see text. 

 

Figure 1, which was generated with PHREEQC, also depicts five inflection points (3 equivalence points (EP) and 2 

pK). EP1 represents the equivalence point of H2CO3* (H2CO3+CO2, f=0), EP2 stands for the equivalence point of 

HCO3
-
 (f=1), and the third EP corresponds to the equivalence point of CO3

2-
 (f=2)

2
. Together with the two pK for the 

dissociation of carbonic acid these inflection points indicate that the tangent line at these specific pH go either through a 

maximum or minimum, respectively. This analysis can be used to determine if the system is well or poorly buffered. 

This is critical for CO2 sequestration as it requires a combination of both, abundant protons to generate divalent cations 

from the silicate rock and a relatively unbuffered system that allows the fluid to evolve towards higher pH where these 

divalent cations can lock up carbon dioxide in carbonates. 

3. Results and Discussion 

Water availability is critical for CO2 mineralization and may restrict its application in regions/countries with drinking 

water supply issues. In contrast, seawater is politically less sensitive and easier/cheaper to obtain when injection sites 

are close to or even in the ocean, such as sequestration in seafloor basalts [9]. Therefore it is essential to quantify the 

 

2
 f =(CB-CA)/CT where CB-CA is the concentration of net strong base and CT stands for the sum of individual carbon 

species 
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buffer capacity of injection solutions prior to and during their interaction with the host matrix. This study presents and 

discusses values of ß (eq/kg) that were calculated from total seawater alkalinity (2.3 meq/kg) at different concentrations 

of CO2(aq). The total alkalinity TA can be defined as [10]: 

 

�� = ��� + ����
� + 2���

	� + 
(��)�
� + �����

� + ����
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Assuming a negligible effect of the phosphate and ammonia on seawater TA and re-writing Eqn. (3) with respect to 

pH and equilibrium constants at 25°C yields: 
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where KC1 and KC2 represent the first and second acidity constants of H2CO3*, and Kw, KB, KSi, KS*, KF, and KS 

denote the equilibrium constants for the dissociation reactions of water, boric acid, silic acid, hydrogen sulphide, 

hydrofluoric acid, and bisulphate, respectively. CT, BT, SiT, S*T, FT, and ST correspond to the total solute concentrations 

of carbon dioxide, boron, silica, sulphide, fluoride, and sulphate species, respectively. Sulphide concentrations are 

usually very low in seawater but have been kept in this calculation as redox processes may increase the sulphide 

content, enhancing alkalinity. 

All equilibrium constants are expressed in terms of concentrations and were computed based on appendix A in [11] 

taking the effect of temperature, salinity, and ionic strength on the K values into account (Table 1). The minor effect of 

pressure on K values was ignored because a) it could not be retrieved for all relevant equilibrium constants in Table 1 

and b) it was only found for the overall pressure and not partial CO2 pressure. To calculate the partial derivative 

dTA/dpH of Eqn. (4) the following relationship is also required: 

 
�

��
�� =

�

��
10��� = −! × 10�"�� × #�(10)                                             (5) 

 

Figure 2 summarizes the logarithms of ß calculated from Eqns. (4, 5) for three different initial CO2 pressures. The 

five inflection points in Figure 1 correspond to three local minima (all EP) and two local maxima (both pK). It means 

that prior to reaction with the host rock the carbonated injection fluid is relatively unbuffered (EP1) and will, upon rock 

dissolution, rapidly increase in pH. Concomitantly, the buffer capacity rises proportionately, creating effectively a 

resistance to a further pH rise. Note, that with increasing initial pCO2 EP1 shifts to lower pH and ß increases. 

 

Table 1 Input parameters taken from [11] to calculate buffer capacities at standard conditions (25°C, 1bar, S=35, I=0.70 

molal). The total concentrations of boron (BT), fluoride (FT), and sulphate (ST) were calculated as a function of 

salinity [11], while those of silica (SiT) and sulphide (S*T) were estimated. 

 

pKH pKw pKC1 pKC2 pKB pKSi pKS* pKF pKS 
1.547 13.217 5.847 8.966 8.597 9.384 6.510 2.518 0.999 

 

pBT pSiT pS*T pFT pST 
3.381 5.180 6.000 4.155 1.549 

 

This model is, however, only valid under circumstances where the total carbon content CT remains constant, i.e., 

under closed conditions and in the absence of carbonate mineral precipitation. Such conditions may occur in zones of 

low permeability. However, close to the injection well and along preferential flow paths (via fracture flow), the system 

is certainly not closed as exchange of dissolved total carbon between fluid fractions of different reaction progress may 

occur. In such cases, calculations need to take account of changes in total dissolved carbon concentrations. The 

fundamental difference in the derivation of ß from closed versus open systems is that in the former case ß is calculated 

assuming a constant CT while under open conditions, a constant pCO2 is assumed. Thus, the second and third terms of 

Eqn. (4) which relate to the carbon species have to be replaced with: 

 

�� =  ∙∙∙∙∙∙∙∙∙∙  
(pCO	 × ��� × ��)

%&�'*
+

2 × pCO	 × ��� × ��	 × ��

%&�,'*
 ∙∙∙                                             (6) 
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where KH stands for the Henry’s constant of CO2. The results of open system calculations are shown in Figure 3. ß 

derived from open system models exhibit V-shaped curves whose left sides correspond to the closed system curves. It is 

shortly after the first minimum that the open system curves increase monotonically without reaching a local maximum 

in their buffer capacity. This increase is due to the conversion of infinite amounts of CO2(aq) to HCO3
-
 as the pH 

increases. At pK1 (~5.9) ß from open system models are already 3.6 times higher than ß from corresponding closed 

system calculations. Extrapolating this difference to the second equivalence point (~7.4) would yield a 800fold increase 

in ß for the open system. This means that if injection and subsequent subsurface reactions were continuously taking 

place in an open system neutral pH would be very difficult to attain. 

 

 

Figure 2 The buffer capacity ß of seawater (SW) as a function of pH for a closed system (CT = constant). The three 

curves represent three initial pCO2 (1, 10, 40 bar, from bottom to top) at carbonation. While they display the 

same shape their ß values vary in size because CT is different in all cases. 

 

 

Figure 3 The buffer capacity ß of seawater as a function of pH for a closed (CT = constant) and open system (pCO2 = 

constant). The three wave-like curves are the same as in Figure 2 (i.e., closed system at 1, 10, and 40 bar pCO2) 

while the three V-shaped curves represent open conditions during CO2 mineralization: CT ≠ constant and 
solution is in permanent equilibrium with a pCO2 of 1, 10, and 40 bar, respectively. 

 

These observations indicate that with increasing pCO2 the buffer capacity of the injected solution could become a 

major hurdle for mineralization efforts. Titration of 1 kg of this acid solution at a pCO2 of 40 bar with a strong base, 

such as NaOH, requires a staggering 500 mmol to reach a pH of 5.6 (for the closed system, modeled with PHREEQC). 
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Note, that an unbuffered solution would attain a pH of 13.5! This alkalinity is equivalent to that obtained from the 

dissolution of 150 g of MORB basalt provided that every proton is consumed by the dissolution reaction and based on a 

basalt molecular weight around 300 g/mol (cf. Table 1 in [12]). It is unlikely that, under the above mentioned injection 

conditions, per kilo of injection solution 150 g of basalt will dissolve to reach this pH. Thus, to attain a pH regime that 

can sustain carbonate precipitation additional processes need to occur, such as dilution of the injection fluid with the 

groundwater flow, enhanced dissolution kinetics of the host rock, and increase in temperature to reduce carbonate 

solubility. Figure 4 summarizes the crucial interplay between the key parameters total alkalinity (TA), dissolved 

inorganic carbon (DIC), and buffer capacity (ß). At the onset of injection, i.e., during carbonation, TA does not change. 

The dissolution of CO2 into the fluid increases DIC which is limited by the solubility of CO2 as a function of salinity, 

temperature, and pCO2. This increase in DIC, however, does not affect TA because the acidity stems from the 

dissociation of carbonic acid creating equal amounts of protons and bicarbonate. Once the injected fluid starts 

dissolving the host rock (open circle) TA rises because protons are consumed and cations released. This reaction does 

not consume DIC but it changes the distribution of carbon species enhancing the amount of amphiprotic bicarbonate 

during this process. It is this amphiprotic character of bicarbonate that causes the rise in ß (illustrated by the open 

arrows in Figure 4) culminating in a local maximum at pKC1 which occurs roughly after a 300fold increase in TA, from 

2.3 to 640 mmol/kg (300xSW in Figure 4, modeled with PHREEQC). The hatched lines stand for the solubility of 

magnesite (mag), calcite (cc), and siderite (sid), respectively. Titration and speciation calculations with PHREEQC 

under varying pCO2 (=DIC) and incrementing pH (=TA) conditions yielded CO3
-2

 solute concentrations that were 

compared to the respective solubility products of the above-mentioned carbonates, at 25°C (assuming metal 

concentrations equal to carbonate concentrations). Siderite is the least soluble carbonate of this comparison and requires 

relatively less alkalinity to reach saturation. This means that the pH does not have to go all the way against the buffer 

capacity to start (Fe)carbonate precipitation. However, as the slanted arrow indicates, carbonate precipitation reduces 

DIC by one and TA by two units, respectively. It is therefore not sufficient to reach saturation to sustain 

carbonatization, TA has to be replenished constantly. 

 

 

Figure 4 Relationship between total alkalinity (TA), dissolved inorganic carbon (DIC), and buffer capacity (ß) during 

the various stages of mineral sequestration: injection, dissolution, and precipitation. The open circle represents 

injection of carbonated seawater at 40 bar pCO2. SW and 300x SW denote seawater alkalinity (2.3 mmol/kg), 

multiplied by 300 (690 mmol/kg). The buffer capacity increases with increasing TA during dissolution (open 

arrows). Mag, cc, and sid represent the solubilities at 25°C of magnesite, calcite, and siderite, respectively. See 

text for further explanation on TA and how the solubilities were calculated. 

4. Conclusions 

Calculating the buffer capacity ß of a CO2(aq) system illustrates how much added alkalinity is required for injected 

CO2 rich waters to attain carbonate mineral saturation and where the solution might be buffered against further pH 

changes. The linear increase of ß in Figs. 2 and 3 are such barriers. These barriers become tighter around the buffer 

minimum EP1 and will shift towards lower pH with increasing pCO2. Hence, for carbonatization to occur, dilution of 

the initial pressurized fluid upon mixing with (alkaline) groundwater or added seawater may be required. Such a 

dilution and mixing with an alkaline fluid would diminish ß and raise TA. With increasing dispersion of the fluid away 
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from the injection well the system will become more closed creating a local buffer environment where carbonate 

precipitation can readily occur. Another option is the addition of specific ligands to the carbonation process that can 

accelerate dissolution kinetics of silicate minerals and glasses within the tight pH (2-5) envelope and thus produce 

alkalinity. However, dissolution as well as advection and dispersion are factors controlled by kinetics as well as 

hydrology and permeability that could change unfavorably in the reservoir over time. In contrast, enhancing 

temperature in the reservoir would decrease carbonate solubility and promote precipitation. 

 

 

Figure 5 Buffer capacity versus pH of a seawater (SW) and pure water (DI) solution initially equilibrated with 40 bar 

pCO2, under closed conditions. Different curves result when the seawater concentrations of fluoride and 

sulphate in table 1 (pFT, pST) are multiplied by 100 (-100xF, -100xS). 

 

 

Figure 6 Buffer capacity versus pH of a pure water (DI) and seawater (SW) solution initially equilibrated with 10 and 

40 bar CO2, under closed conditions. DI-carbonated fluids have larger amplitudes resulting in larger ß values. 

 

Creating ß vs. pH plots also illustrates how the buffer capacity changes as a function of the presence and 

concentration of key seawater ions, such as sulphate and fluoride, which promote dissolution rates of basaltic rocks [13, 

14]. Figure 5 displays how the 40 bar pCO2 curve from Figure 2 is altered in the presence of increased total sulphate 

(ST) and fluoride (FT) concentrations, respectively. Increasing the sulphate concentration of seawater (cf. pST in Table 1) 

by a factor of 100 (-100xS) moves the EP1 minimum towards higher pH but at the expense of an unwanted higher 

initial buffer capacity. In the case of increasing dissolved fluoride concentration (cf. pFT in Table 1), however, a 100fold 

increase (-100xF) has only a marginal effect on ß. It has previously been shown that fluoride has a significant catalytic 

effect on volcanic rock dissolution [13] and so its negligible effect on ß makes it a prime choice as additive to the 
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injection solution. This example illustrates how this type of plot can be employed to modify the injection solution 

chemistry in a way that, by virtue of enhanced alkalinity generation, facilitates carbonate precipitation. The curve for 

de-ionized water (DI) has also been added to Figure 5 and Figure 6 to illustrate how ß changes for DI compared to 

seawater. All extrema of Figure 2 shift towards higher pH in desalinated solutions which is a result of consistently 

higher equilibrium constants (e.g., Kc1, Kc2, Kw) for low ionic strength solutions. Yet, the amplitude of these sinus curves 

increases in DI water meaning that relatively more mass of rock has to be dissolved to raise the pH compared to when 

seawater is the carbonation fluid. 

5. Outlook 

The presented calculations and conclusions are based on different geochemical models that are presumably not 

altogether consistent and therefore bear an inherent error. For example, ß was calculated without any computer code 

(just plain MS Excel
™

) while solubilities of CO2 in seawater (DIC) at different pCO2 were derived from [15, 16] and 

their respective webpage (http://www.geochem-model.org/models/co2-sea). Note that the variation in DIC between 

different models increases with increasing pCO2 (Figure 7) and thus depend on the user’s choice. Preference was given 

to the values obtained from the Duan group as they specifically address CO2 solubilities in seawater. This DIC was 

subsequently introduced into PHREEQC, together with equilibrium constants and total concentrations extracted from 

[11] and compiled in Table 1 to calculate the evolution of TA and pH. Therefore caution must be exerted when 

introducing the presented data into reactive transport codes. Apart from the effect of ionic strength on the diverse 

parameters that make up this study, other caveats that may have affected the results are the ignorance of fugacity and 

redox processes. As to the former, only at 40 bar would it have been more appropriate to talk about fCO2 instead of 

pCO2 as the fugacity coefficient amounts to 0.8 [17]. With respect to the latter, fO2 is certainly a parameter that has to 

be controlled and actually kept at a minimum but not so much because under reducing conditions sulphate could 

potentially be reduced to sulphide, thus increasing TA. Rather, oxidation of ferrous to ferric iron has to be avoided at all 

costs as this would diminish the potential of Fe-carbonate formation. The calculations presented above illustrate the 

need for fast and effective dissolution of the host rock to assure sufficient fluid neutralization for carbonate mineral 

precipitation. Mineral dissolution and precipitation reactions are generally proportional to the reactive surface area. 

Hence, in order to gauge the time required for neutralization, a good estimate of the reactive surface area is required 

which is highly speculative with respect to porosity, pore geometry, size and distribution, surface coatings and vesicle 

fillings, and ratio between glassy and crystalline portions of the basaltic reservoir. A comparable study found a 30-fold 

increase in alkalinity after injection of supercritical CO2 into sandstone (Frio formation, Texas) in only three days [18]. 

However, this increased alkalinity as well as the rise in pH from an initially expected value around 3 to a measured one 

of 6 was not caused by silicate-fluid interactions. The authors ascribed the change in water chemistry to dissolution of 

calcite and Fe oxyhydroxides –contrary to the goals of mineral sequestration. Given that carbonate precipitation will 

eventually fill the rock pores, the key to increasing alkalinity lies in catalyzing the dissolution reactions in the reservoir 

rocks. In this regard, modification of the carbonation solution by addition of specific ligands appears to be a promising 

approach. Yet, more modeling and experimental work is required to refine the presented concept, factoring in time and 

homing in on an ideal carbonation solution for successful mineral trapping of carbon dioxide. 

 

Figure 7 Variation in the determination of DIC from three different sources increases with increasing pCO2. Numbers in 

brackets refer to the reference (25°C, S=35). 
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