
Closed-Form ADOP Expressions for Single-Frequency
GNSS-Based Attitude Determination

D. Odijk, P.J.G. Teunissen, A.R. Amiri-Simkooei
Delft Institute of Earth Observation and Space Systems (DEOS), Delft University of Technology,
Kluyverweg 1, 2629 HS Delft, The Netherlands, e-mail: D.Odijk@TUDelft.nl

Abstract. Integer ambiguity resolution is a prereq-
uisite to high-precision real-time GNSS-based atti-
tude determination. The ADOP is a well-known
scalar measure to infer whether ambiguity resolu-
tion can be expected successful or not. To com-
pute ADOP it is sufficient to have knowledge about
the measurement setup and the measurements noise
characteristics; hence it can be used as a planning
tool. In this contribution we present closed-form
expressions for the ADOP in case of attitude deter-
mination. Using these expressions one may infer the
impact of GNSS design aspects such as number of
satellites, choice of frequency and the precision of
the phase and code observables. In addition, they
are useful to quantify the influence of the number of
antennas in the configuration and the use of geomet-
ric constraints, such as the lengths of the baselines
and/or the angles between the baselines in the con-
figuration. In this article the behavior of the ADOPs
as function of these design aspects will be evaluated
for several GPS attitude determination scenarios.

Keywords. GNSS, attitude determination, baseline
constraints, LAMBDA method, ADOP

1 Introduction

Crucial to GNSS-based attitude determination of
vehicles or platforms is the resolution of the inte-
ger ambiguities of the relative carrier-phase obser-
vations. A widely used approach for this is the
integer least-squares search as implemented in the
LAMBDA method, see e.g. Han et al. (1997), Park
and Teunissen (2003), Dai et al. (2004) and Li et
al. (2005). For successful ambiguity resolution it is
required that the probability that the estimated inte-
ger solution coincides with the correct integers (the
ambiguity success rate) is sufficiently high. One way
to get insight into this is to evaluate the ADOP
(Ambiguity Dilution Of Precision). This ADOP mea-
sure is derived from the variance matrix of the float
ambiguity solution and is thus purely based on the
assumptions in the mathematical model underlying.

In Teunissen and Odijk (1997) closed-form expres-
sions were derived for the ADOP in a range of GPS
positioning scenarios. These ADOP expressions are
then a function of the model assumptions, such as
number of satellites and receivers, number of fre-
quencies and epochs, and the assumptions concern-
ing the stochastic properties of the observations.

In this article we will present closed-form expres-
sions for the ADOP in case of attitude determina-
tion. Hereby we take the following restrictions into
account. First, we only discuss instantaneous attitude
determination, based on a single epoch of single-
frequency phase and code (pseudo-range) data. We
only present expressions for two- or three-antenna
GNSS attitude determination systems. Although
these antennas are usually connected to a common
oscillator, implying that there are no receiver clock
errors, in this article however receiver clock errors
are taking into account because of the presence of
unknown line biases, i.e. differential errors caused
by differences in cable lengths between the antennas
and oscillator. These line biases show up as receiver
clock errors and as a consequence the ambiguities
to be estimated are double-differenced (DD). It is
finally assumed that atmospheric errors do not play a
role since the distances between the antennas are very
short, and that errors due to multipath are absent.

Using the expressions presented in this article one
will also be able to analyze the influence of geometric
constraints on ADOP in case of attitude determina-
tion. These constraints on the baseline lengths and/or
angle between baselines will be treated as stochastic
constraints, to serve two goals: (i) in case of a rigid
antenna platform these constraints can be applied
‘hard’ by setting the standard deviations of the con-
straints to zero, (ii) in case of more flexible platforms
(e.g. in airplanes or ships, when the baselines can be
longer, e.g. a few m) the constraints can be applied
more loosely by setting their standard deviations to
certain appropriate values.

The paper is set up as follows. In Sect. 2 the ADOP
concept is reviewed. Sect. 3 reviews the ADOP
expressions in case of positioning, while Sect. 4
presents the expressions for attitude determination.
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Examples are given in Sect. 5 and finally in Sect. 6
the conclusion follows. We remark that the results
in this paper are given without proof. For proofs we
refer to Odijk and Teunissen (2008).

2 Ambiguity Dilution of Precision

GNSS models for fast and precise relative applica-
tions can all be cast into the following model of lin-
ear(ized) observation equations:

E{y} = Aa + Bb, D{y} = Qy (1)

where E{·} denotes the expectation operator
and D{·} the dispersion operator. The vector y
denotes the normally distributed GNSS data vector
(‘observed-minus-computed’ in case of a linearized
model), whereas vectors a (of order n) and b (of
order o) denote the unknown parameter vectors,
for which A and B are the corresponding design
matrices. Note that a contains the integer carrier-
phase ambiguities, a ∈ Z

n , and b the remaining
(real-valued) parameters, b ∈ R

o. The stochastic
properties of the observations are included in Qy ,
the variance matrix.

The procedure to solve the model in equation (1)
is usually divided into three steps. In the first step
we disregard the integer constraints on the ambigui-
ties and perform a standard least-squares adjustment.
As a result, we obtain the (real-valued) estimates
of a and b, together with their variance-covariance
matrix:

[
â
b̂

]
,

[
Qâ Qâb̂
Qb̂â Qb̂

]
. (2)

This solution is referred to as the ‘float’ solution. In
the second step, the float ambiguity estimate â is used
to compute the corresponding integer ambiguity esti-
mate, denoted as ǎ:

ǎ = F(â) (3)

with F : R
n �→ Z

n , a mapping from the real to the
integer space. Once the integer ambiguities are com-
puted, they are used in a third step to correct the float
estimate of the real-valued parameters b. As a result
we obtain the ‘fixed’ solution:

b̌ = b̂|ǎ = b̂ − Qb̂â Q−1
â (â − ǎ) (4)

If the ambiguity success rate, i.e. the probability that
the estimated integers coincide with the true ambi-
guities, is sufficiently close to one, the precision of

the fixed solution can be described by the following
variance matrix (in which the integer ambiguities are
assumed non-stochastic):

Qb̌ � Qb̂|a = Qb̂ − Qb̂â Q−1
â Qâb̂ (5)

The success of ambiguity resolution depends on
the quality of the float ambiguity estimates: the more
precise the float ambiguities, the higher the proba-
bility of estimating the correct integer ambiguities.
A simple measure to infer the float ambiguity preci-
sion is the Ambiguity Dilution of Precision (ADOP)
defined as (Teunissen, 1997):

ADOP = |Qâ |
1

2n [cyc] (6)

Advantage of this scalar measure is that by taking
the determinant we capture information not only on
the variances but also on the covariances between the
ambiguities. By raising the determinant to the power
1/(2n), the scalar is, like the ambiguities themselves,
expressed in cycles.

The ADOP is linked to the ambiguity success rate
as follows (Teunissen, 1998):

PADOP =
[
2�

( 1

2ADOP

)
− 1

]n
(7)

with Φ(x) =
∫ x
−∞

1√
2π

exp
{
− 1

2v
2
}

dv. Although
this ADOP-based probability PADO P is an approx-
imation of the true success rate of integer least-
squares, in Verhagen (2005) it was by means of
simulations demonstrated that they agree reasonably
well.

Figure 1 shows PADOP as function of ADOP for
varying levels of n (n = 1, . . . , 20). It can be
seen that the ADOP-based success rate decreases for
increasing ADOP and this decrease is steeper the
more ambiguities are involved. In general, Figure 1
shows that if ADOP is larger than about 0.12 cyc
PADOP becomes significantly smaller than 1.

As mentioned in the introduction, in case of atti-
tude determination it is common to include con-
straints on (some of) the parameters. The model
incorporating stochastic constraints on the real-
valued parameters, denoted as c, reads:

E{
[

y
c

]
} =

[
A B
0 C

] [
a
b

]
(8)
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Fig. 1. PADOP versus ADOP for varying n.

The stochastic model, extended for the variance
matrix of the constraints (denoted as Qc), reads:

D{
[

y
c

]
} =

[
Qy 0
0 Qc

]
(9)

The ADOP of the model in presence of constraints
then follows as, see Odijk and Teunissen (2008):

ADOP = ADOP(∞)
[ |Qc+Qč(∞)|
|Qc+Qĉ(∞)|

] 1
2n (10)

with ADOP(∞) the ADOP of the model with-
out constraints. Moreover, the float and fixed
variance matrices of the constrained parameters
are computed as Qĉ(∞) = C Qb̂(∞)CT and
Qč(∞) = C Qb̌(∞)CT , respectively, where Qb̂(∞)
and Qb̌(∞) are the float and fixed variance matri-
ces of the real-valued parameters in absence of con-
straints. It is thus shown that in presence of con-
straints the ADOP can be directly computed from the
ADOP in absence of constraints. It can be proved
that the ratio in equation (10) as raised to the power
1/(2n) is always smaller than or equal to one. Con-
sequently, ADOP ≤ ADOP(∞). This is understand-
able, since addition of constraints makes the model
stronger. In the limiting case, if Qc = 0, the con-
straints maximally contribute to the ambiguity pre-
cision; they have become hard constraints. On the
other hand, if Qc = ∞, the constraints do not have
any weight and do not contribute at all to the ambi-
guity precision; i.e. ADOP = ADOP(∞).

3 Positioning ADOP

In this section the closed-form ADOP expressions for
GNSS-based positioning are reviewed.

Let us first consider a single baseline, i.e. two
GNSS antennas tracking m satellites. In that case,
there are n = m − 1 DD ambiguities. The closed-
form expression for the single-frequency single-
epoch ADOP was derived in Teunissen (1997) as

ADOPpos
r=2 = m

1
2(m−1)

σφ

λ

(
1+ σ 2

p

σ 2
φ

) 3
2(m−1)

(11)

with m the number of satellites tracked, λ the wave-
length, σφ the standard deviation of the single-
differenced phase observables and σp the standard
deviation of the single-differenced code observables.
Usually, in case of GPS, σ 2

p/σ
2
φ ≈ 104, which

implies that the term between the brackets in equa-
tion (11) is relatively large.

In case we have more than two – say r – antennas
simultaneously tracking the same m satellites, then
the ADOP for the (r − 1)(m − 1) DD ambiguities
(r ≥ 2) in the network can be related to the single-
baseline ADOP as (Teunissen and Odijk, 1997)

ADOPpos
r = 1

2

√
2 r

1
2(r−1) ADOPpos

r=2
(12)

It can be seen that for the purpose of ambi-
guity resolution the contribution of an additional
receiver/antenna is low: when going from two to
three antennas the ADOP of the network is only 0.93
times its single-baseline counterpart.



Closed-Form ADOP Expressions for Single-Frequency GNSS-Based Attitude Determination 203

4 Attitude Determination ADOP

The ADOP expressions for positioning turn out to
play a role in the expressions for attitude determi-
nation. This relation will be revealed in the current
section for attitude determination based on two and
three antennas, respectively.

4.1 Two Antennas

In two-antenna attitude determination one tries to
solve for pitch/elevation α and heading/azimuth/yaw
γ of the baseline, plus its length l, which are
related to the local East-North-Up coordinates as, see
Figure 2:

⎡

⎣
E12
N12
U12

⎤

⎦ =
⎡

⎣
l cosα sin γ
l cosα cos γ

l sin α

⎤

⎦ (13)

In absence of any constraint, it can be shown that
the ADOP in case of two-antenna attitude determi-
nation equals its single-baseline position counterpart
(i.e. a reparametrization of the position vector does
not affect ADOP). In presence of a constraint on
the length of the baseline, having standard deviation
σl , the ADOP can be easily obtained using equa-
tion (10), as

ADOPatt
r=2 = ADOPpos

r=2

[
σ 2

l +σ 2
ľ
(∞)

σ 2
l +σ 2

l̂
(∞)

] 1
2(m−1)

(14)

with ADOPpos
r=2 as in equation (11) and σl̂(∞) and

σľ(∞) the standard deviation of the float and fixed
baseline lengths in absence of the constraint, respec-
tively. To obtain σ 2

l̂
(∞) and σ 2

ľ
(∞) we need to lin-

earize
l(∞) =

√
E2

12 + N2
12 +U2

12 (15)

i.e. the baseline length in absence of the con-
straint, completely determined by the East-North-Up

N

E

U

l

γ
α

E12

N12

U12

1

2

Fig. 2. Attitude determination based on a single baseline.

coordinates. Application of the the variance propaga-
tion law results in:

σ 2
l̂
(∞) = μT Qĝμ, σ 2

ľ
(∞) = μT Qǧμ (16)

with μ = 1
l0 (E

0
12, N0

12,U
0
12)

T a unit vector based
on the (approximated) position coordinates and g =
(E12, N12,U12)

T the position vector itself, with Qĝ
and Qǧ its float and fixed variance matrices, respec-
tively.

4.2 Three Antennas

If a third antenna is added to the system, such that the
baseline between antennas 1 and 3 is non-collinear
with the baseline between 1 and 2, in addition to the
pitch and heading also the roll angle β can be deter-
mined (see Figure 3). With three antennas it becomes
possible to determine the attitude by introducing a
body frame (denoted using u, v,w) fixed to the vehi-
cle, with the first antenna chosen as the origin of the
body frame and the plane through the three antenna
positions defining the (u, v)-plane. Thew-axis is per-
pendicular to this plane. Both frames are connected
as (for i = 1, 2, 3):

⎡

⎣
E1i

N1i

U1i

⎤

⎦ = Rw(γ )Ru(−α)Rv(β)
⎡

⎣
ui

vi

wi

⎤

⎦ (17)

with Ru , Rv and Rw rotation matrices. The body
coordinates of the antennas are (u1, v1, w1) =
(0, 0, 0), (u2, v2, w2) = (0, l1, 0) and (u3, v3, w3) =
(l2 sinϕ, l2 cosϕ, 0), with l1 and l2 the baseline
lengths and ϕ the angle between both baselines.

N
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N
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u

w
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γ

β
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l2

l2sinφ 

l2cosφ

φ

Fig. 3. Attitude determination based on three antennas.
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In absence of constraints on the baseline lengths
and angle, there are now 6 unknowns: the three
Euler angles (α, β and γ ), plus the two baseline
lengths and baseline angle. Thus the 6 position coor-
dinates are reparametrized into 6 other parameters.
As in the dual-antenna case, it can be proved that
the three-antenna attitude ADOP equals the three-
antenna positioning ADOP, since in the latter case
there are also 6 unknowns (coordinates). In presence
of constraints on both baseline lengths, the ADOP
becomes, using equation (10):

ADOPatt
r=3(σϕ=∞)=ADOPpos

r=3

[ |Ql+Q
ľ
(∞)|

|Ql+Q
l̂
(∞)|

] 1
4(m−1) (18)

with Ql the variance matrix of the two length con-
straints and Ql̂ (∞) extracted from:

⎡

⎣
Ql̂(∞) Ql̂ϕ̂ (∞)
Q
ϕ̂l̂(∞) σ 2

ϕ̂
(∞)

⎤

⎦=
[
μT Qĝμ μT Qĝη

ηT Qĝμ ηT Qĝη

]

(Note: Qľ(∞) is computed analogously based on
Qǧ(∞)). Here μ = blkdiag(μ1, μ2) where μ1
and μ2 are unit vectors based on the (approx-
imated) coordinates of antennas 2 and 3, g =
(E12, N12,U12, E13, N13,U13)

T and η a 6×1-vector
obtained when the following expression is linearized:

ϕ(∞) = arccos E12 E13+N12 N13+U12U13
l1l2

(19)

where use is made of the inner product between the
two baseline vectors. Now assume – in addition to
the baseline length constraints – also a constraint on
the baseline angle, having a standard deviation σϕ .
Then the ADOP in presence of both types of con-
straints can be computed from the ADOP in presence
of baseline length constraints only, see equation (18):

ADOPatt
r=3=ADO Patt

r=3(σϕ=∞)
[
σ2
ϕ+σ2

ϕ̌
(σϕ=∞)

σ2
ϕ+σ2

ϕ̂
(σϕ=∞)

] 1
4(m−1)

(20)

with σ 2
ϕ̂
(σϕ = ∞) computed as

σ 2
ϕ̂ (σϕ = ∞) = σ 2

ϕ̂ (∞)−
Q
ϕ̂l̂(∞)

[
Ql + Ql̂ (∞)

]−1
Ql̂ϕ̂ (∞) (21)

The ambiguity-fixed σ 2
ϕ̌
(σϕ = ∞) is computed anal-

ogously by considering the fixed variance matrices.

5 Examples

As an illustration we computed instantaneous
ADOPs for GPS-based attitude determination, using
the presented closed-form expressions. In these com-
putations we used the receiver-satellite geometry of
permanent GPS station Delft (52.0◦N, 4.4◦E), the
Netherlands, for 1 January 2003 (00–24 h UTC; 30s
sampling interval; cut-off elevation: 15deg). Single-
frequency (L1) phase and code data were assumed
having (single-differenced) standard deviations of
σφ =

√
2· 3 mm and σp =

√
2· 30 cm.

In the dual-antenna case the computations have
been conducted using α0 = γ 0 = 0, and with this
choice the a priori coordinates are (E0

12, N0
12,U

0
12) =

(0, l0, 0). Note that this choice only affects ADOP
in presence of a (soft) baseline length constraint,
through vectorμ in equation (14). It was numerically
verified that with other choices for α0 and γ 0 ADOP
is hardly changed. Concerning the a priori baseline
length l0, this is set to l0 = 1 m in the computa-
tions, although this choice does not affect ADOP at
all since it gets eliminated in vector μ (which equals
(0, 1, 0)T in this case).

In the triple-antenna case the a priori Euler angles
were set to α0 = β0 = γ 0 = 0, which means
that the body frame coincides with the local East-
North-Up frame. It was numerically verified that this
a priori attitude hardly affects ADOP. The two base-
line lengths were chosen as l0

1 = l0
2 = 1 m and

this choice only affects ADOP in case of a con-
straint on the baseline angle. It should be realized
that since both σϕ̂(σϕ = ∞) and its fixed counter-
part are inversely proportional to the baseline length
(see equation (21)). This implies that the standard
deviation of the baseline angle constraint is allowed
to be larger in case the baseline lengths are shorter
(for example if σϕ is set to 5 deg in case the baseline
lengths are 1 m, then the same ADOP level is reached
in case the baseline lengths are 0.1 m, but with σϕ
taken equal to 50 deg!). The a priori baseline angle
was in all computations set to ϕ0 = 90 deg, since
it turned out that ADOP is hardly changed by other
choices of this angle.

5.1 Two Antennas

In the dual-antenna case, we first computed the
ADOPs and ADOP-based success rates in absence
of a baseline length constraint (σl = ∞). These
ADOPs, corresponding to their counterparts in case
of single-baseline positioning, are plotted for the day
in Figure 4. It can be seen that the ADOP can be
large; almost 3 cycle in case of 4 satellites. The
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Fig. 4. Dual-antenna case. Shown are the ADOPs (left) and ADOP-based success rate PADOP (right). The first row shows the
results for σl = ∞ (no constraint); the second row the results for σl = 10 cm; the third row those for σl = 1 cm, while the fourth
row shows the results for σl = 0 (hard constraint). The last row gives the number of satellites during the day.

corresponding success rate is close to zero. Only with
a large number of satellites, at least 9, ADOP is suf-
ficiently small such that the success rate approaches
to 1. Better results are obtained in case the base-
line length is constrained. Using a standard devia-
tion of σl = 10 cm, though the ADOPs are smaller
than without constraint, for many parts of the day the
ADOP-based success rate is still insufficient. With
a standard deviation of the constraint of 1 cm how-
ever, for many times (with at least 6–7 satellites)
the ADOP is sufficiently small such that the success
rate approaches to 1. Even better results are obtained
when the baseline length is incorporated as hard con-
straint (σl = 0).

5.2 Three Antennas

In the triple-antenna case, the variance matrix of the
two baseline lengths is assumed as a scaled iden-
tity matrix: Ql = σ 2

l I2. We first computed ADOPs
in absence of any constraints (σl = σϕ = ∞),
see Figure 5. As a result we obtain ADOPs that
correspond to those of network-based positioning.
Compared to the dual-antenna case, the ADOPs are
decreased only marginally. Addition of two baseline
length constraints with σl = 1 cm lower the ADOPs
and hence increase the ADOP-based success rates
significantly during the day. If we add a constraint on
the angle between both baselines of σϕ = 5 deg as
well, the success rates are close to 1, except during
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periods with 5 satellites or less. The best results are
of course obtained if the baseline lengths and angle
may be hard constrained (σl = σϕ = 0). In that
case only during the (short) periods of having 4 satel-
lites the ADOP-based success rate is not close to 1.
Note especially in this scenario the benefits of triple-
antenna attitude determination: in the dual-antenna
case still for some considerable time of the day the
success rate is not sufficiently close to 1, despite the
hard constrained baseline length.

6 Conclusion

In this article closed-form expressions have been pre-
sented for GNSS-based attitude determination. It was
shown that the ADOP of attitude determination cor-
responds to the ADOP of positioning in absence of
constraints on baseline lengths and/or baseline angle.
It was also demonstrated that the contribution of con-
straints to ADOP becomes immediately clear since
they appear as additional (scaling) factors in the
closed-form ADOP expressions.
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