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Abstract 

The reaction of hydrated lanthanoid chlorides with tribenzoylmethane and an alkali metal 

hydroxide consistently resulted in the crystallization of neutral tetranuclear assemblies of 

formulation [Ln(Ae∙HOEt)(L)4]2 (Ln = Eu
3+

, Er
3+

, Yb
3+

; Ae = Na
+
, K

+
, Rb

+
). Analysis of the 

crystal structures of these species revealed a coordination geometry that varied from slightly 

distorted square antiprismatic to slightly distorted triangular dodecahedron, with the specific 

geometrical shape being dependent on the degree of lattice solvation and identity of the alkali 

metal. The near-infrared (NIR) emitting assemblies of Yb
3+

 and Er
3+ 

showed remarkably 

efficient emission, characterized by significantly longer excited-state lifetimes (τobs ~ 40-47 

μs for Yb
3+

 and τobs ~ 4-6 μs for Er
3+

) when compared to the broader family of lanthanoid β-

diketonate species, even in the case of perfluorination of the ligands. The Eu
3+

 assemblies 

possess bright red emission and a luminescence performance (τobs ~ 0.5 ms, Φ
L

Ln ~ 35-37%, 

ηsens ~ 68-70%) more akin to the β-diketonate species. The results highlight that the β-

triketonate ligand offers a tuneable and facile system for the preparation of efficient NIR-

emitters, without the need for more complicated perfluorination or deuteration synthetic 

strategies.  

 

Introduction 

The luminescent properties of the lanthanoid trivalent cations are useful in a wide range of 

applications.
[1–7]

 In particular, complexes of these elements that exhibit emission in the near-

infrared (NIR) region have been highly sought after in the biomedical area,
[2,8–10]

 as NIR 

photons offer deeper tissue penetration and are less affected by scattering.
[11]

 NIR emission is 

also used in optical devices such as night-vision technologies and in telecommunication.
[9,12–

15]
 The great challenge in the design of efficient NIR emitting lanthanoid complexes is 

quenching of the excited-state via multiphonon relaxation caused by high frequency 

stretching vibrations such as OH, NH, and CH bonds.
[16–18]

 Given that, in general, organic 

sensitizing chromophores are required to bypass the poor molar absorptivity of direct 

lanthanoid excitation, it is rather complicated to deplete the lanthanoid complexes of these 

types of bonds, which are common in organic molecules. Attempts to remove such quenching 

pathways include the synthesis of ligands with less of such high frequency oscillators,
[19–21]

 as 

well as dissolution of lanthanoid complexes in deuterated solvents.
[22,23]

 Strategies such as 

perfluorination and quantitative deuteration of ligands have been explored with success to 



minimize the extent of quenching and improve the NIR emission of lanthanoid 

complexes,
[24,25]

 especially in the case of ligands belonging to the β-diketonate class.
[26–29]

 

Lanthanoid β-diketonate complexes have been proven to be robust, thermally stable, and 

suitable for applications in materials science.
[30–32]

 However, synthetic routes towards 

perfluorinated ligands are significantly more complicated and somewhat hinder ligand 

design, and deuteration facilities are not routinely accessible within synthetic chemistry 

laboratories.  

We have reported the photophysical properties of a novel tetranuclear assembly, 

[Yb(K∙HOEt)(L)4]2, where the L
-
 ligand is the β-triketonate tribenzoylmethanide.

[33]
 Given 

the considerably detailed investigation of lanthanoid β-diketonate complexes to date,
[34]

 it 

was surprising that the β-triketonate analogues were rather unexplored. Only a couple of 

reports in the late sixties described the emissive properties of lanthanoid β-triketonate 

complexes without any structural studies.
[35–37]

 Remarkably, the [Yb(K∙HOEt)(L)4]2 

assembly proved to be a highly efficient NIR emitter when compared to the photophysical 

performance of NIR-emitting lanthanoid β-diketonate complexes. Furthermore, we were able 

to demonstrate that the photophysical properties of such an assembly can be exploited in the 

emitting layer of Organic Light Emitting Diodes fabricated by sublimation. Our preliminary 

investigation demonstrated that the performance of these NIR-OLEDs outclassed any 

previously reported NIR-OLED based on lanthanoid complexes. 

We have now extended our investigation to determine if these tetranuclear assemblies can be 

formed with other lanthanoid (Ln) and alkali element (Ae) metal cations. In particular, we 

have focussed on the NIR emitting Yb
3+

 and Er
3+

 cations, in combination with Na
+
, K

+
 and 

Rb
+
 cations. The results demonstrate that this tetranuclear assembly is extremely robust. 

Furthermore, the photophysical data show that these assemblies are consistent highly efficient 

NIR emitters, with photophysical properties second only to complexes where perfluorination 

and deuteration strategies had been used in the preparation of β-diketonate ligands. As a 

comparison, we have also synthesized the Eu
3+

/Ae
+
 analogues, which were found to be bright 

red-emitters, albeit characterized by a photophysical performance typical of β-diketonate 

complexes. 

 



Results and Discussion 

 

Synthesis of the tetranuclear assemblies 

The robustness of the assembly structure to variations in the alkali metal and lanthanoid 

cation was investigated. The tribenzoylmethane ligand LH (2-benzoyl-1,3-diphenyl-1,3-

propandione) was prepared as previously reported, by treatment of dibenzoylmethane with 

NaH and benzoyl chloride in diethyl ether.
[33]

 The synthesis of the tetranuclear assemblies 

[Ln(Ae∙HOEt)(L)4]2 was trialled following the previously reported method for isolation of 

[Yb(K∙HOEt)(L)4]2, where LH is reacted with a hydrated lanthanoid chloride in ethanol and 

in the presence of alkali metal hydroxides (Figure 1).
[33]

 For each Ln
3+

/Ae
+
 combination 

(Ln
3+

 = Eu
3+

, Er
3+

, Yb
3+

; Ae
+
 = Na

+
, K

+
, Rb

+
), structural investigation by X-ray diffraction 

revealed the targeted [Ln(Ae∙HOEt)(L)4]2 assembly. Changing the solvent from ethanol to n-

butanol was also trialled using Eu
3+

 and K
+
, which yielded the analogous [Eu(K∙HOBu)(L)4]2 

assembly. Based on these results, this family of tetranuclear assemblies is remarkably robust, 

with the observed structure being maintained while systematically changing the lanthanoid, 

the alkali metal, or the alcoholic solvent. Aside from X-ray diffraction studies, the complexes 

were analyzed by means of IR spectroscopy and elemental analyses. The latter, in particular, 

revealed the presence of variable degrees of lattice solvent molecules, consistent with the 

structure determinations. 

 

Figure 1 – Synthetic pathway to lanthanoid assemblies bearing β-triketonate ligands. Ln3+ = Eu3+, Er3+, Yb3+; 

Ae
+
 = Na

+
, K

+
, Rb

+
. 



 

X-ray diffraction studies and coordination geometries 

The formally neutral [Ln(Ae·HOEt)(L)4]2 assemblies illustrated herein are analogous to the 

previously reported [Yb(K·HOEt)(L)4]2 (Figure 2 and Figures S1-S9). However, it was 

determined that, along with unsolvated structures, the assemblies can also crystallize as 

different solvates including; [Ln(Ae·HOEt)(L)4]2·2(EtOH), and 

[Ln(Ae·HOEt)(L)4]2·2(H2O)(EtOH). In fact, for [Yb(K·HOEt)(L)4]2, both the unsolvated and 

solvated structures have now been identified by single crystal X-ray diffraction, the latter 

incorporating two molecules of water and one of ethanol (for a comparison of solvate 

structures see Supporting Information, Figure S10). The [Eu(K∙HOBu)(L)4]2 assembly 

crystallized as a solvate of formula [Eu(K·HOBu)(L)4]2·2(H2O)(BuOH), but the core 

structure of the assembly does not seem to be strongly influenced by the change in the 

coordinated alcohol molecules.  

 

 

Figure 2 – Plot of [Eu(K∙HOEt)(L)4]2, with displacement ellipsoids drawn at the 50% probability level. 

Hydrogen atoms and solvent molecules have been omitted for clarity. 

 

Interestingly, it was noted that the presence (or absence) and the nature of the lattice solvent 

molecules as well as the identity of the Ae
+ 

cation have a non-negligible influence on the 

specific geometry of the coordination environment around the lanthanoid center. In fact, four 

different geometrical arrangements have been identified through an analysis of all the crystal 

structures reported herein. The specific geometries vary from slightly distorted square 

antiprismatic to slightly distorted triangular dodecahedron (Figure 3). The variation of the 



geometries between square antiprismatic and triangular dodecahedron was assessed and 

confirmed using Shape Version 2.1 software (see Supporting Information, Table S1).
[38,39]

 

 

 

 

Figure 3 - View of the various geometries from distorted square antiprismatic (A) towards distorted triangular 

dodecahedron (D). The coordination A corresponds to the unsolvated [Ln(Na·HOEt)(L)4]2 assemblies (Ln3+ = 

Eu3+, Yb3+, and Er3+. B corresponds to the unsolvated [Ln(Ae·HOEt)(L)4]2 (Ln3+/Ae+ = Er3+/Rb+, Yb3+/K+,[33] 

and Yb3+/Rb+). C corresponds to solvated [Ln(Ae·HOEt)(L)4]2·2(H2O)(EtOH) (Ln3+/Ae+ = Er3+/K+, Yb3+/K+). D 

corresponds to solvated [Ln(Ae·HOEt)(L)4]2·2(EtOH) (Ln3+/Ae+ = Eu3+/K+, Eu3+/Rb+). 

 

From an analysis of the structures, it becomes evident that all the unsolvated species bearing 

Na
+
 have a coordination geometry that is the closest to square antiprismatic, irrespective of 

the lanthanoid cation. From this arrangement, a slight distortion is observed for the 

unsolvated structures bearing Er
3+

/Rb
+
, Yb

3+
/K

+
,
[33]

 and Yb
3+

/Rb
+
. Further distortion is 

evident for the Er
3+

/K
+
 and Yb

3+
/K

+ 
structures that appear solvated by two molecules of water 

and one of ethanol. Lastly, closer to a triangular dodecahedron, lie the Eu
3+

/K
+
 and Eu

3+
/Rb

+ 

assemblies with two lattice ethanol molecules. 

As it might be expected, the [Eu(K∙HOBu)(L)4]2 assembly is different from any of the other 

assemblies, highlighting a Eu
3+

 coordination that is somewhat more distorted from both 

regular polyhedra (see Supporting Information, Table S1).
[38]

  

Selected bond distance values are reported in Table 1. The average Ln-O distance decreases 

from Eu
3+

 (~2.38 Å) to Yb
3+

 (~2.30 Å), consistent with considerations based on the 

lanthanoid contraction. The Ln···Ln distance is always greater than 8.70 Å, which is long 



enough to suggest that direct energy migration between the two lanthanoid centers within the 

assembly should not be occurring.
[40]

  

 

Table 1 – Selected distances (Å) between the two lanthanoid cations (Ln···Ln) within the tetranuclear 

assemblies, between the lanthanoid centers and the ethanol/n-butanol OH group (Ln···OH), and average Ln-O 

bond distances within the first coordination sphere. Grouped by the geometry of the coordination in Figure 3. 

Geometry Assembly Ln···Ln Ln···OH Ave. Ln-O 

A [Eu(Na∙HOEt)(L)4]2 

[Er(Na∙HOEt)(L)4]2 

[Yb(Na∙HOEt)(L)4]2 

8.980 

8.925 

8.917 

4.355 

4.339 

4.359 

2.383 

2.324 

2.305 

B [Er(Rb∙HOEt)(L)4]2 

[Yb(K∙HOEt)(L)4]2 
[a] 

[Yb(Rb∙HOEt)(L)4]2 

8.813 

8.804 

8.792 

6.062 

5.720 

6.080 

2.325 

2.304 

2.303 

C [Er(K∙HOEt)(L)4]2 

[Yb(K∙HOEt)(L)4]2 

9.145 

9.128 

6.239 

6.252 

2.316 

2.299 

D [Eu(K∙HOEt)(L)4]2 

[Eu(Rb∙HOEt)(L)4]2 

8.968 

8.949 

5.861 

6.096 

2.380 

2.381 

Other [Eu(K·HOBu)(L)4]2 9.271 6.297 2.382 

[a] crystal structure reported previously.[33] 

 

The position of the ethanol (or n-butanol) molecule coordinated to the Ae
+
 cation is of 

relevance, as the high frequency of the OH oscillator may provide outer sphere multiphonon 

relaxation pathways that are able to quench the lanthanoid excited-states. The shortest 

Ln···OH distances are present in the assemblies bearing Na
+
 (~4.5-5.0 Å), as the Na

+
 cation 

binds to two μ-O atoms bridging to the Ln
3+

, while the larger K
+
 and Rb

+
 ions bind to three μ-

O bridged atoms. The Na
+ 

ion is small enough to allow the ethanol OH to engage in a 

hydrogen bonding interaction with the third μ-O atom, while the K
+
 and Rb

+
 complexes 

effectively disallow this interaction (see Supporting Information, Figure S10). The Ln···OH 

distances slightly increase in the assemblies bearing the larger Rb
+
 ion compared to the K

+
 

ion (K
+
, 5.60-5.70 Å; Rb

+
, 6.00-6.10 Å). 

 



Photophysical Investigation 

The triplet 
3
ππ* excited-state of L

-
 was previously reported to be at 20,704 cm

-1
,
[33]

 which is 

of a sufficient energy to sensitize the metal-centered emission of Yb
3+

, Er
3+

 and Eu
3+

. All of 

the assemblies reported in this work were found to be emissive either in the NIR or visible 

region (Figure 4; for photos of all emissions - see Supporting Information, Figures S11-S12). 

In each case, the emission originates as a consequence of the antenna effect, as indicated by 

the broad excitation profiles between 250 and 500 nm (see Supporting Information, Figures 

S14-S15, S18-S20, S24-S27) analogous to the absorption spectrum of the L
-
 ligand in ethanol 

(see Supporting Information, Figure S13). All the emission spectra were found to be 

independent from the excitation wavelength.  

 

 

Figure 4 – Solid state emission of [Eu(K∙HOEt)(L)4]2 (left) and [Yb(Rb∙HOEt)(L)4]2 (right) after excitation at 

350 nm. Cut-on filter is 550 nm for Eu3+, and 900 nm for Yb3+. The NIR emission of Yb3+ was captured by 

removing the infrared filter from the camera to allow wavelengths above 700 nm to be detected by the 

photodiode. 

 

Photophysical Properties of the NIR emitting Yb
3+

 and Er
3+

 assemblies in the solid state 

The energy difference between the ligand 
3
ππ* state and the 

2
F5/2 Yb

3+
 excited-state is 

~10,454 cm
-1

, which should favor an efficient energy transfer.
[41,42]

 In the case of Yb
3+

, 

energy transfer via a ligand-to-metal charge transfer state might also be occurring.
[43,44]

 

Characteristic NIR fluorescent emission was observed from the [Yb(Ae·HOEt)(L)4]2 (Ae
+
 = 

Na
+ 

and Rb
+
) assemblies in the 900-1100 nm region (Figure 5), analogously to the reported 

[Yb(K·HOEt)(L)4]2.
[33]

 The emission is attributed to the 
2
F7/2←

2
F5/2 transition, which is split 

into four main observable bands due to crystal field effects.
[16]

 The high energy shoulder 

around 950 nm in the emission spectra can be attributed to emission from “hot” excited-



states.
[45]

 Slight differences in the relative intensities in the bands are ascribed to the various 

degree of distortion in the coordination geometries.  

 

 

Figure 5 - Solid state normalized emission spectra (λex = 350 nm) of the [Yb(Ae·HOEt)(L)4]2 assemblies. Ae+ = 

Na+  (blue trace) and Rb+ (black trace). The emission profile of [Yb(K·HOEt)(L)4]2 was reported elsewhere.[33] 

 

Table 2 – Selected photophysical data of NIR emitting Ln3+/Ae+ complexes in the solid state. 

 τobs (μs) Φ
Ln

Ln (%)
[a]

 

[Yb(Na∙HOEt)(L)4]2 37.0 3.1 

[Yb(K∙HOEt)(L)4]2
[b] 

46.7 3.9 

[Yb(Rb∙HOEt)(L)4]2 44.4 3.8 

[Er(Na∙HOEt)(L)4]2 4.8 0.7 

[Er(K∙HOEt)(L)4]2 5.0 0.8 

[Er(Rb∙HOEt)(L)4]2 5.8 0.9 

[a] Intrinsic quantum yields were calculated using τR values of 1.2 ms for Yb3+ and 0.66 ms[16] for Er3+. [b] 

Previously reported values.
[33]

 

 

The excited-state lifetime (τobs) for [Yb(Ae·HOEt)(L)4]2 (Ae
+
 = Na

+ 
and Rb

+
) were fit to a 

monoexponential function, giving values of 37.0 µs and 44.4 μs, respectively (see Supporting 



Information, Figures S16-S17). These values (reported in Table 2) are significantly long-

lived and amongst the longest recorded for solid state Yb
3+

 species bound to β-diketonate 

ligands, for which typical values are ~5 μs.
[29]

 The values of τobs for the assemblies reported 

herein are even longer than those of complexes whose ligands were perfluorinated to reduce 

the extent of multiphonon relaxation caused by CH bonds (~12 μs).
[27]

 Only complexes 

bearing perfluorinated and deuterated β-diketonate ligands appear to have values of τobs 

longer than the family of [Yb(Ae·HOEt)(L)4]2 assemblies (from 47 μs at 53% deuteration, to 

289 μs at 96% deuteration at the α-C position),
[28]

 albeit at the expense of more complicated 

and often not readily available synthetic capabilities. Assuming a radiative lifetime (τR) value 

of 1.2 ms, which is standard for Yb
3+

 β-diketonate complexes,
[46,47]

 the intrinsic quantum 

yields (Φ
Ln

Ln) can be approximated to 3.1 and 3.8% for the Na
+
 and Rb

+
-bearing assemblies, 

respectively. Following the trend reported for τobs, these values are amongst the highest 

recorded Φ
Ln

Ln for the Yb
3+

 β-diketonate family in the solid state, indicating the efficiency of 

the [Yb(Ae·HOEt)(L)4]2 assemblies in preventing quenching via multiphonon relaxation. 

The [Er(Ae·HOEt)(L)4]2 (Ae
+
 = Na

+
, K

+ 
and Rb

+
) assemblies also display fluorescent NIR 

emission in the 1420-1620 nm range, which is attributed to the characteristic 
4
I15/2←

4
I13/2 

transition (Figure 6). The band appears narrow and structured as a result of crystal field 

effects.
[26]

 Again, the structure of the emission band varies slightly due to the relatively 

different crystal field effects present in the three assemblies. The excitation spectra, along 

with the typical broad antenna component, also show a sharp transition at 485 nm consistent 

with the spin-allowed 
4
I15/2→

4
F7/2 intraconfigurational transition.

[48]
  

The values of τobs were fit to a monoexponential decay of 4.8, 5.0, and 5.8 μs for 

[Er(Ae·HOEt)(L)4]2 with Ae
+
 = Na

+
, K

+ 
and Rb

+
, respectively (Table 2, see Supporting 

Information, Figures S21-S23). As per the case of the Yb
3+ 

assemblies, these τobs values are 

longer than those found with perfluorinated Er
3+

 β-diketonate complexes (~1-2 μs)
[26]

 and are, 

to the best of our knowledge, only outclassed in cases when the β-diketonate ligand has been 

both perfluorinated and deuterated (from ~6 μs at 58% deuteration, to ~11 μs at 98% 

deuteration at the α-C position).
[28]

 Therefore, the advantageous reduction of multiphonon 

relaxation observed in the case of Yb
3+

 is consistently maintained for the Er
3+

 assemblies. 

The values of τobs for the Na
+
-bearing assemblies of Yb

3+
 and Er

3+
 are shortened by ~20% 

when compared to their analogous assemblies incorporating either K
+
 or Rb

+
. This effect is 

tentatively attributed to more efficient quenching caused by the closer proximity of the 



ethanolic OH groups in the Na
+
-containing structures, as illustrated by the X-ray diffraction 

studies. 

 

 

Figure 6 - Normalized emission spectra of [Er(Na∙HOEt)(L)4]2 (blue trace, λex = 380 nm), [Er(K∙HOEt)(L)4]2 

(red trace, λex = 370 nm), and [Er(Rb∙HOEt)(L)4]2 (black trace, λex = 400 nm) in the solid state. 

 

Overall, the photophysical data demonstrate that the [Ln(K·HOEt)(L)4]2 assemblies represent 

a family of efficient and bright NIR-emitting species in the case of Yb
3+

 and Er
3+

. Clearly, the 

major observed factor for the improvement of the luminescence performance seems to be 

associated with the removal of quenching effects from the α-CH in the β-triketonate L
-
 

ligand. This new class of β-triketonate ligand may offer a viable and more facile synthetic 

approach to ligand design for lanthanoid NIR-emitting complexes, without the need to rely 

exclusively on perfluorination and deuteration strategies.  

 

Photophysical properties of the red emitting Eu
3+

 assemblies in the solid state 

All of the Eu
3+

 assemblies display the characteristic Eu
3+

-centered line-like emission between 

580 and 750 nm (Figure 7). The triplet state energy of the L
-
 antenna lies 1,704 cm

-1
 above 

the Eu
3+

 
5
D1 excited-state, which is known to be an efficient energy difference to allow 

energy transfer to both the 
5
D1 and 

5
D0 states.

[49]
 In each excitation spectrum, there is a sharp 

band at 465 nm, consistent with an intraconfigurational 
7
F0→

5
D2 transition.

[16]
  

 



 

 

Figure 7 - Normalized emission spectra of [Eu(Na·HOEt)(L)4]2, [Eu(K·HOEt)(L)4]2, [Eu(Rb·HOEt)(L)4]2, and 

[Eu(K·HOBu)(L)4]2 in the solid state (λex = 350 nm). Inset: Close-up of the splitting in the 7F1⟵
5D0 emission 

band. 

 

The spectra display five distinct bands corresponding to the 
7
FJ←

5
D0 (J = 0-4) transitions. 

The profiles of the emission spectra are very similar between all the Eu
3+

 assemblies, 

however slight differences in the fine structure of the bands are consistent with the presence 

of the various degrees of distortion identified in the crystal structures.  

The weak 
7
F0←

5
D0 band has a full-width-half-maximum (FWHM) ranging between 15 and 

59 cm
-1

, apart from the [Eu(K·HOBu)(L)4]2 complex, for which a value could not be 

estimated due to the low intensity. This range is consistent with one unique emitting Eu
3+

 for 

each assembly,
[50]

 in agreement with the fact that the two Eu
3+

 are related by an inversion 

centre located in the centre of the assembly and therefore have identical coordination 

geometries. 



The magnetically allowed 
7
F1←

5
D0 transition is virtually superimposable for the Eu

3+
/K

+
 and 

Eu
3+

/Rb
+
 assemblies, consistent with identical coordination geometries. The splitting pattern 

of three peaks, with the two lower energy ones being quasi-degenerate is consistent with the 

slightly distorted D2d symmetry of the coordination observed in the crystal structure. On the 

other hand, the splitting pattern of the 
7
F1←

5
D0 transition in the Na

+
-bearing assembly is 

different, as it presents three peaks with the two higher energy ones being quasi-degenerate. 

This pattern is in agreement with a slightly distorted square antiprismatic D4d symmetry.
[51,52]

 

The [Eu(K·HOBu)(L)4]2 assembly displays a single broad peak devoid of structure, which 

might be an indication that the bulk sample is obtained as a mixture of differently solvated 

structures. 

The integration of the hypersensitive 
7
F2←

5
D0 transition was compared to that of the 

7
F1←

5
D0 transition, whose intensity is unaffected by the crystal field, to give an 

I(
7
F2←

5
D0)/I(

7
F1←

5
D0) = 15.49, 15.68, 16.03, and 12.76, for [Eu(Na·HOEt)(L)4]2, 

[Eu(K·HOEt)(L)4]2, [Eu(Rb·HOEt)(L)4]2, and [Eu(K·HOBu)(L)4]2, respectively. The ratio is 

quite large in each case, which might be due to the distorted coordination geometries 

promoting partial relaxation of the parity-forbidden nature of the transition via J-mixing 

and/or crystal field mixing.
[53]

 

Lifetime decay and quantum yield data for the Eu
3+

 assemblies are reported in Table 3. 
 
The 

values of τobs were found to be consistently in the 500-540 μs range (Figures S28-S31), with 

overall quantum yields (Ф
L

Ln) measured to be in the 35-37% range. The radiative lifetimes 

could be calculated directly from the emission spectra, obtaining values in the 1.01-1.22 ms 

range. From these data, the intrinsic quantum yields (Ф
Ln

Ln) were determined to be around 

50%, leading to sensitization efficiencies (ηsens) of the L
- 
ligands in 68-73% range. Therefore, 

L
- 

is an efficient sensitizer for Eu
3+

 luminescence. Despite the fact that the ethanolic OH 

group lies closer to the Eu
3+

 centers in the Na
+
 assembly, there does not appear to be a greater 

degree of multiphonon relaxation as observed for the case of Yb
3+

 and Er
3+

. The lack of 

quenching in this case may be due to the fact that OH is a less efficient quencher of the Eu
3+

 

excited-state in comparison to Er
3+

 and Yb
3+

, or that the OH is engaged in hydrogen bonding, 

making it a non-efficient quencher for Eu
3+

-centered emission.
[16]

 Overall the photophysical 

data indicate that the β-triketonate assemblies of Eu
3+

 are efficient and bright red emitters, 

although their performance is akin to that observed for the β-diketonate complexes in the 

solid state, with no major improvement as observed for the Yb
3+

 and Er
3+

 NIR-emitters.
[34]

 



Table 3 - Selected photophysical data of Eu3+ complexes in the solid state and in an ethanolic solution at 298K 

and 77K. 

 
τobs (ms) τR (ms)

[a]
 Φ

Ln
Ln (%) Φ

L
Ln (%) ηsens (%) 

[Eu(Na·HOEt)(L)4]2      

Solid 0.50 1.01 50 35 70 

298K [77K] 0.15 [0.41] 1.16 [1.16] 13 [36]   

[Eu(K·HOEt)(L)4]2      

Solid 0.52 1.03 50 37 73 

298K [77K] 0.18 [0.43] 1.15 [1.11] 16 [39]   

[Eu(Rb·HOEt)(L)4]2      

Solid 0.54 (77%), 

0.37 (23%) 

1.02
[b]

 53
[b]

 36 68 

298K [77K] 

[Eu(K·HOBu)(L)4]2 

Solid 

0.18 [0.43] 

 

0.51 (87%) 

0.18 (13%) 

1.16 [1.15] 

 

1.22
[b]

 

16 [37] 

 

42
[b]

 

  

[a] Radiative lifetime calculated assuming a refractive index of 1.50 for the solid state.[54,55] [b] Calculated using 

the major τobs component. 

 

The assemblies were found to be scarcely soluble in alcoholic solvents such as ethanol and 

methanol, albeit soluble enough to conduct photophysical measurements. On the other hand, 

they were found to be insoluble in either water or other common organic solvents. The 

emission spectra and photophysical data of the Eu
3+

 (Table 3) and Yb
3+

 assemblies in ethanol 

solution were found to be significantly altered (see Supporting Information, Figures S32-

S44). As in the case of the previously investigated [Yb(K·HOEt)(L)4]2,
[33]

 these differences 



may be ascribed to the lability of the lanthanoid and alkali metal cations, thus promoting 

ligand exchange in ethanol solution. 

To further probe the stability of the assemblies in alcoholic solvents, the number of alcohol 

molecules coordinated to the Eu
3+

 center in solution was determined by a comparison of the 

Eu
3+

 excited-state lifetime in methanol and deuterated methanol, using the method proposed 

by Horrocks
[56]

. The [Eu(K·HOEt)(L)4]2 assembly was used as a representative exemplar. 

The measured excited-state lifetime values were τ(CH3OH) = 125 μs and τ(CD3OD) = 153 

μs. These values indicate that about three molecules of methanol are directly coordinated to 

the Eu
3+

 center in solution, providing further evidence that the structure of the assembly is not 

preserved (for photophysical data, see Supporting Information, Figures S45-S47). Although 

we have previously demonstrated that this new class of β-triketonate assemblies can be used 

as precursors for the sublimation of optically active materials in the fabrication of NIR-

OLEDs,
[33]

 solution processing techniques are hindered by the low solubility of the 

assemblies. An effort is now underway to make this class of compounds more soluble in non-

polar solvent by ligand design, an approach that has previously been successful in the 

chemistry of lanthanoid-hydroxo clusters.
[57]

 

 

Conclusion 

Tetranuclear [Ln(Ae·HOEt)(L)4]2 complexes of tribenzoylmethane have been synthesized 

and shown to persist for a range of different metal combinations. The coordination geometry 

around the lanthanoid cation is subtly altered, in the solid state at least, by the nature of the 

alkali metal cation and the degree of solvation present in the crystal lattice. The 

photophysical properties of the NIR emitting complexes of Yb
3+

 and Er
3+

 are particularly 

promising, significantly exceeding the performance of comparable -diketonate complexes in 

the solid state, except where such ligands are both perfluorinated and deuterated. The Eu
3+

 

tetranuclear analogues are bright red-emitters, but with performance similar to -diketonate 

complexes. Solution-phase studies in alcohols showed that the tetranuclear complexes do not 

persist in polar solvents. Work is now underway to modify the -triketonate ligands to 

improve the solubility of the tetranuclear complexes in non-polar solvents.  

   



Experimental Section 

General procedures 

All reagents and solvents were purchased from chemical suppliers and used as received 

without further purification. The ligand, 2-benzoyl-1,3-diphenyl-1,3-propandione (LH), was 

prepared as we have previously reported.
[33]

 Hydrated LnCl3 was prepared by the reaction of 

Ln2O3 with hydrochloric acid, followed by evaporation of the solvent under reduced pressure. 

The [Yb(K·HOEt)(L)4]2 complex was prepared according to our previously published 

procedure.
[33]

 Infrared spectra (IR) were recorded on solid state samples using an attenuated 

total reflectance Perkin Elmer Spectrum 100 FT-IR. IR spectra were recorded from 4000 to 

650 cm
-1

; the intensities of the IR bands are reported as strong (s), medium (m), or weak (w), 

with broad (br) bands also specified. Melting points were determined using a BI Barnsted 

Electrothermal 9100 apparatus. Elemental analyses were obtained at either Curtin University 

(Australia), or the elemental analysis services at the University of Tasmania (Australia).  

Photos of the Eu
3+

 red emissions were captured using a Nikon D300 equipped with an 

aperture of f/9, and an OG550 EOS barrier filter. NIR emissions of Yb
3+

 complexes were 

captured using a Canon 40D with its infrared filter removed to allow wavelengths above 700 

nm to be detected by the photodiode. The camera was equipped with a RM90 barrier filter, 

with an exposure time of five seconds. 

 

Selected Equations 

Using the observed lifetimes (τobs) and calculated quantum yields (Ф
L

Ln); values of the 

radiative lifetime (τR), and intrinsic quantum yield (Ф
Ln

Ln), can be calculated following 

methods proposed by Werts et al.
[46]

 

1

𝜏𝑅
= 14.65 𝑠−1 × 𝑛3  × 

𝐼𝑇𝑜𝑡

𝐼𝑀𝐷
  (equation 1) 

In equation 1, the refractive index (n) of the solvent is used (assumed value of 1.5 in the solid 

state),
[54,55]

 The value 14.65 s
-1

 is the spontaneous emission probability of the 
7
F1←

5
D0 

transition reported previously.
[58]

 ITot is the total integration of the Eu
3+

 emission spectrum, 

and IMD is the integration of the 
7
F1←

5
D0 transition. 

Ф𝐿𝑛
𝐿𝑛 =

𝜏𝑜𝑏𝑠

𝜏𝑅
    (equation 2) 



The sensitization efficiency (ηsens) can be determined using equation 3 below: 

𝜂
𝑠𝑒𝑛𝑠

=
Ф𝐿𝑛

𝐿

Ф𝐿𝑛
𝐿𝑛    (equation 3) 

 

Photophysical Measurements 

Absorption spectra were recorded at room temperature using a Perkin Elmer Lambda 35 

UV/Vis spectrometer. Uncorrected steady state emission and excitation spectra were recorded 

using an Edinburgh FLSP980-stm spectrometer equipped with a 450 W xenon arc lamp, 

double excitation and emission monochromators, a Peltier cooled Hamamatsu R928P 

photomultiplier (185–850 nm) and a Hamamatsu R5509-42 photomultiplier for detection of 

NIR radiation (800-1400 nm). Emission and excitation spectra were corrected for source 

intensity (lamp and grating) and emission spectral response (detector and grating) by a 

calibration curve supplied with the instrument. Quantum yields were measured with the use 

of an integrating sphere coated with BenFlect. 

Excited-state decays (τ) were recorded on the same Edinburgh FLSP980-stm spectrometer 

using a microsecond flashlamp the above-mentioned R928P PMT photomultiplier as the 

detector. The goodness of fit was assessed by minimizing the reduced χ
2
 function and by 

visual inspection of the weighted residuals.  

To record the luminescence spectra at 77 K, the samples were placed in quartz tubes (2 mm 

diameter) and inserted in a special quartz Dewar filled with liquid nitrogen. All the solvents 

used in the preparation of the solutions for the photophysical investigations were of 

spectrometric grade. 

 

General Synthesis of [Ln(Ae·HOEt)(L)4]2 

To a mixture of LH (68-72 mg, 0.21 mmol) and hydrated LnCl3 (20 mg), an aqueous AeOH 

solution (1 M, 206-218 µL, 0.21 mmol) was added. Ethanol (10 ml) was added and the 

mixture heated at reflux for 30 minutes. The resulting mixture was filtered and the filtrate left 

to stand at ambient temperature. Slow evaporation of the solvent over several days afforded 

yellow crystals (10-40 mg).  



[Eu(Na·HOEt)(L)4]2 

M.p. 268-270°C; elemental analysis calcd (%) for C180H132Eu2Na2O26∙1.5(H2O): C 70.63; H 

4.35; found: C 69.68; H 4.11; ATR-IR: ν = 3647 w, 3559 w, 3058 w, 3027 w, 2976 w, 1646 

m, 1596 w, 1583 s, 1542 s, 1491 m, 1448 s, 1368 s, 1311 w, 1277 w, 1270 m, 1179 w, 1150 

w, 1073 w, 1053 w, 1027 w, 999 w, 975 w, 898 m, 823 w, 779 s, 746 s, 694 s, 669 s cm
-1

. 

[Eu(K·HOEt)(L)4]2 

M.p. 244-246°C; elemental analysis calcd (%) for C180H132Eu2K2O26·(H2O): C 69.90; H 4.30; 

found: C 69.13; H 3.93; ATR-IR: ν = 3644 w, 3568 w, 3057 w, 3024 w, 1645 m, 1610 w, 

1584 s, 1543 s, 1491 m, 1448 m, 1370 s, 1311 m, 1278 m, 1180 w, 1151 m, 1073 w, 1027 w, 

1013 w, 999 w, 925 w, 898 m, 823 w, 780 w, 748 m, 694 m, 669 w cm
-1

. 

[Eu(K·HOBu)(L)4]2 

M.p. 238-240°C; elemental analysis calcd (%) for C184H140Eu2K2O26: C 70.18; H 4.48; found: 

C, 70.43; H, 4.79; ATR-IR: ν = 3405 br w, 3057 w, 3027 w, 2959 w, 2932 w, 2870 w, 1593 

m, 1546 s, 1509 s, 1476 s, 1461 m, 1441 w, 1416 m, 1282 w, 1219 w, 1180 w, 1154 w, 1060 

w, 1022 w, 987 w, 940 w, 811 w, 782 w, 752 w, 719 m, 690 w cm
-1

. 

[Eu(Rb·HOEt)(L)4]2 

M.p. 247-248°C; elemental analysis calcd (%) for C180H132Eu2Rb2O26: C 67.86; H 4.18; 

found: C 67.48; H 4.07; ATR-IR: ν = 3647 w, 3567 w, 3057 w, 3025 w, 1646 m, 1584 s, 

1543 s, 1488 m, 1448 m, 1369 s, 1311 m, 1276 m, 1178 w, 1152 m, 1073 w, 1027 w, 1014 w, 

999 w, 975 w, 927 w, 898 m, 823 w, 780 w, 749 m, 694 m, 669 w cm
-1

.  

[Er(Na·HOEt)(L)4]2 

M.p. 276-278°C; elemental analysis calcd (%) for C180H132Er2Na2O26·2(H2O): C 69.13; H 

4.38; found: C, 69.68; H, 3.88; ATR-IR: ν = 3652 w, 3557 w, 3058 w, 2021 w, 2979 w, 1646 

m, 1612 w, 1584 s, 1547 s, 1491 m, 1447 s, 1373 s, 1311 s, 1271 m, 1150 m, 1072 w, 1052w, 

1027 w, 1013 w, 998 w, 978 w, 933 w, 923 w, 899 m, 823 w, 780 s, 747 s, 694 s, 669 s cm
-1

. 

[Er(K·HOEt)(L)4]2 

M.p. 244-246°C; an accurate elemental analysis could not be achieved for this complex 

possibly due to the presence of multiple solvates; ATR-IR: ν = 3654 w, 3573 w, 3057 w, 

3022 w, 1646 m, 1615 w, 1584 s, 1546 s, 1493 m, 1449 m, 1372 s, 1315 m, 1277 m, 1183 w, 

1152 m, 1074 w, 1030 w, 1017 w, 998 w, 973 w, 930 w, 898 m, 827 w, 780 w, 749 m, 698 

m, 670 w cm
-1

. 



[Er(Rb·HOEt)(L)4]2 

M.p. 242-244°C; elemental analysis calcd (%) for C180H132Er2Rb2O26·0.5(H2O): C 67.03; H 

4.16; found: C 66.70; H 3.73; ATR-IR: ν = 3643 w, 3057 w, 1645 m, 1615 w, 1584 s, 1546 s, 

1492 m, 1448 m, 1372 s, 1311 m, 1277 m, 1182 w, 1152 m, 1073 w, 1027 w, 1014 w, 1002 

w, 980 w, 925 w, 897 m, 823 w, 780 w, 749 m, 694 m, 668 w cm
-1

. 

[Yb(Na·HOEt)(L)4]2 

M.p. 260-262°C; elemental analysis calcd (%) for C180H132Yb2Na2O26∙3(H2O): C 68.48; H 

4.41; found: C 68.37; H 4.09; ATR-IR: ν = 3643 w, 3555 w, 3054 w, 2921 w, 2853 w, 1645 

m, 1613 w, 1590 s, 1547 s, 1490 m, 1441 s, 1397 w, 1364 s, 1328 w, 1294 w, 1270 m, 1181 

w, 1154 w, 1093 w, 1073 w, 1029 w, 998 w, 932 w, 900 m, 824 w, 783 s, 754 s, 695 s, 671 s 

cm
-1

. 

[Yb(Rb·HOEt)(L)4]2 

Crystals appear as pale yellow needles; m.p. 244-245°C; elemental analysis calcd (%) for 

C180H132Yb2Rb2O26: C 66.98; H 4.12; found: C 66.80; H 3.97; ATR-IR: ν = 3635 w, 3468 w, 

3057 w, 3020 w, 1643 m, 1611 w, 1585 s, 1548 s, 1492 m, 1448 m, 1374 s, 1311 m, 1277 m, 

1177 w, 1153 m, 1073 w, 1027 w, 1014 w, 999 w, 975 w, 929 w, 898 m, 824 w, 780 w, 749 

m, 694 m, 669 w cm
-1

. 

 

X-ray Crystallography 

Crystallographic data for the structures were collected at 100(2) K on an Oxford Diffraction 

Gemini or Xcalibur diffractometer fitted with Mo Kα or Cu Kα radiation. Following 

absorption corrections and solution by direct methods, the structures were refined against F
2
 

with full-matrix least-squares using the program SHELXL-97 or SHELX-2014.
[59]

  

Unless stated below, anisotropic displacement parameters were employed for the non-

hydrogen atoms. All hydrogen atoms were added at calculated positions and refined by use of 

a riding model with isotropic displacement parameters based on those of the parent atom. 

CCDC-1401028 [Eu(Na·HOEt)(L)4]2, CCDC-1401029 [Eu(K·HOEt)(L)4]2, CCDC-1401030 

[Eu(K·HOBu)(L)4]2, CCDC-1401031 [Eu(Rb·HOEt)(L)4]2, CCDC-1401033 

[Er(Na·HOEt)(L)4]2, CCDC-1401034 [Er(K·HOEt)(L)4]2, CCDC-1401035 

[Er(Rb·HOEt)(L)4]2, CCDC-1401036 [Yb(Na·HOEt)(L)4]2, CCDC-1401037 

[Yb(K·HOEt)(L)4]2, and CCDC-1401038 [Yb(Rb·HOEt)(L)4]2 contain supplementary 



crystallographic data, and can be obtained free of charge via 

http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic 

Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax: (+44) 1223-336-033; or e-

mail: deposit@ccdc.cam.ac.uk 

X-ray data refinement 

[Eu(Na·HOEt)(L)4]2. Empirical formula C180H132Eu2Na2O26; MW = 3060.79. λ = 0.71073 Å. 

Triclinic, Space group P1̄, a = 13.8309(3), b = 14.6650(3), c = 18.1873(4) Å, α = 

104.903(2)°, β = 90.612(2)°, γ = 90.238(2)°, Volume = 3564.55(13) Å
3
, Z = 1; ρc = 1.426 

Mg/m
3
, µ = 0.955 mm

-1
, crystal size 0.21 x 0.14 x 0.05 mm

3
; θmin, max = 3.58, 32.71°. 

Reflections collected = 51951, unique reflections = 23685 [R(int) = 0.0519]. Max./min. 

transmission = 1.00/0.947. Number of parameters = 946, S = 1.005. Final R indices [I>2σ(I)] 

R1 = 0.0490, wR2 = 0.1003; R indices (all data) R1 = 0.0675, wR2 = 0.1084. Largest diff. 

peak and hole = 4.845 and -1.972 e. Å
-3

.  

[Eu(K·HOEt)(L)4]2∙2EtOH. Empirical formula C184H144Eu2K2O28; MW = 13185.10. λ = 

1.54178 Å. Triclinic, Space group P1̄, a = 13.9581(4), b = 14.8305(5), c = 19.6602(7) Å, α = 

80.186(3)°, β = 72.466(3)°, γ = 90.124(3)°, Volume = 3817.7(2) Å
3
, Z = 1; ρc = 1.385 Mg/m

3
, 

µ = 6.914 mm
-1

, crystal size 0.275 x 0.105 x 0.05 mm
3
; θmin, max = 2.40, 67.31°. Reflections 

collected = 36759, unique reflections = 13559 [R(int) = 0.0594]. Max./min. transmission = 

0.718 and 0.247. Number of parameters = 1069, S = 1.038. Final R indices [I>2σ(I)] R1 = 

0.0542, wR2 = 0.1403; R indices (all data) R1 = 0.0621, wR2 = 0.1482. Largest diff. peak and 

hole = 2.414 and -0.905 e. Å
-3

. One phenyl ring, and both the coordinated and uncoordinated 

ethanol solvent molecules were modelled as being disordered over two sets of sites with 

occupancies constrained to 0.5 after trail refinement.  

[Eu(K·HOBu)(L)4]2·2(H2O)(BuOH). Empirical formula C188H154Eu2K2O29; MW = 3259.22. 

λ = 0.71073 Å. Triclinic, Space group P1̄, a = 14.5832(5), b = 16.4263(5), c = 18.3874(7) Å, 

α = 63.817(3)°, β = 89.549(3)°, γ = 82.095(3)°, Volume = 3908.2(3) Å
3
, Z = 1; ρc = 1.385 

Mg/m
3
, µ = 0.924 mm

-1
, crystal size 0.47 x 0.39 x 0.13 mm

3
; θmin, max = 2.08, 30.00°. 

Reflections collected = 59227, unique reflections = 22751 [R(int) = 0.0442]. Max./min. 

transmission = 0.900 and 0.735. Number of parameters = 1075, S = 1.040. Final R indices 

[I>2σ(I)] R1 = 0.0433, wR2 = 0.1016; R indices (all data) R1 = 0.0584, wR2 = 0.1093. 

Largest diff. peak and hole = 2.148 and -1.008 e. Å
-3

. Two phenyl rings were modelled as 

being disordered over two sets of sites with occupancies refined to 0.732(6) and its 



complement. The atoms of the minor components were refined with isotropic displacement 

parameters. The solvent was modelled as an n-butanol disordered about an inversion center 

and a water molecule on general positions. 

[Eu(Rb·HOEt)(L)4]2∙2EtOH. Empirical formula C184H144Eu2O28Rb2; MW = 3277.84. λ = 

0.71073 Å. Triclinic, Space group P1̄, a = 14.0028(3), b = 14.7844(3), c = 19.7354(4) Å, α = 

80.113(2)°, β = 72.448(2)°, γ = 90.143(2)°, Volume = 3831.20(14) Å
3
, Z = 1; ρc = 1.421 

Mg/m
3
, µ = 1.517 mm

-1
, crystal size 0.29 x 0.26 x 0.19 mm

3
; θmin, max = 2.39, 32.15°. 

Reflections collected = 82925, unique reflections = 25128 [R(int) = 0.0411]. Max./min. 

transmission = 0.801 and 0.744. Number of parameters = 1087, S = 1.038. Final R indices 

[I>2σ(I)] R1 = 0.0343, wR2 = 0.0677; R indices (all data) R1 = 0.0451, wR2 = 0.0718. 

Largest diff. peak and hole = 0.932 and -0.552 e. Å
-3

.  

 [Er(Na·HOEt)(L)4]2. Empirical formula C180H132Er2Na2O26; MW = 3091.35. λ = 1.54178 Å. 

Triclinic, Space group P1̄, a = 13.9483(4), b = 14.5978(5), c = 18.0419(4) Å, α = 

104.810(2)°, β = 90.329(2)°, γ = 89.553(2)°, Volume = 3551.42(18) Å
3
, Z = 1; ρc = 1.445 

Mg/m
3
, µ = 2.812 mm

-1
, crystal size 0.22 x 0.15 x 0.07 mm

3
; θmin, max = 2.53, 67.26°. 

Reflections collected = 35217, unique reflections = 12613 [R(int) = 0.0352]. Max./min. 

transmission = 0.829 and 0.670. Number of parameters = 951, S = 1.033. Final R indices 

[I>2σ(I)] R1 = 0.0363, wR2 = 0.0899; R indices (all data) R1 = 0.0408, wR2 = 0.0936. 

Largest diff. peak and hole = 1.639 and -0.573 e. Å
-3

. 

[Er(K·HOEt)(L)4]2∙2(H2O)(EtOH). Empirical formula C182H142Er2K2O29; MW = 3205.68. λ 

= 0.71073 Å. Triclinic, Space group P1̄, a = 14.9371(5), b = 15.5737(6), c = 18.1585(7) Å, α 

= 114.504(4)°, β = 91.285(3)°, γ = 98.795(3)°, Volume = 3781.1(2) Å
3
, Z = 1; ρc = 1.408 

Mg/m
3
, µ = 1.233 mm

-1
, crystal size 0.46 x 0.07 x 0.04 mm

3
; θmin, max = 2.28, 30.33°. 

Reflections collected = 36741, unique reflections = 20185 [R(int) = 0.0383]. Max./min. 

transmission = 0.954 and 0.745. Number of parameters = 990, S = 1.041. Final R indices 

[I>2σ(I)] R1 = 0.0427, wR2 = 0.0883; R indices (all data) R1 = 0.0544, wR2 = 0.0926. 

Largest diff. peak and hole = 1.076 and -0.653 e. Å
-3

. The solvent molecules were modelled 

as an ethanol molecule disordered about a crystallographic inversion center and a water 

disordered over two sites with occupancies refined to 0.67(2) and its complement. 

[Er(Rb·HOEt)(L)4]2. Empirical formula C180H132Er2O26Rb2; MW = 3216.31. λ = 0.71073 Å. 

Triclinic, Space group P1̄, a = 14.2006(3), b = 14.4538(4), c = 18.0067(4) Å, α = 

102.245(2)°, β = 89.699(2)°, γ = 88.888(2)°, Volume = 3610.99(15) Å
3
, Z = 1; ρc = 1.479 



Mg/m
3
, µ = 1.900 mm

-1
, crystal size 0.31 x 0.19 x 0.06 mm

3
; θmin, max = 2.20, 29.00°. 

Reflections collected = 37245, unique reflections = 19183 [R(int) = 0.0298]. Max./min. 

transmission = 0.897 and 0.680. Number of parameters = 946, S = 1.092. Final R indices 

[I>2σ(I)] R1 = 0.0530, wR2 = 0.1226; R indices (all data) R1 = 0.0631, wR2 = 0.1270. 

Largest diff. peak and hole = 2.651 and -2.067 e. Å
-3

.  

 [Yb(Na·HOEt)(L)4]2. Empirical formula C180H132Na2O26Yb2; MW = 3102.91. λ = 0.71073 

Å. Triclinic, Space group P1̄. a = 14.0236(5), b = 14.5560(6), c = 18.0333(6) Å, α = 

104.724(3)°, β = 90.128(3)°, γ = 89.234(3)°, Volume = 3559.9(2) Å
3
, Z = 1; ρc = 1.447 

Mg/m
3
, µ = 1.389 mm

-1
, crystal size 0.42 x 0.30 x 0.075 mm

3
; θmin, max = 2.749, 27.00°. 

Reflections collected = 58235, unique reflections = 15529 [R(int) = 0.0642]. Max./min. 

transmission = 0.901 and 0.643. Number of parameters = 951, S = 1.109. Final R indices 

[I>2σ(I)] R1 = 0.0531, wR2 = 0.1380; R indices (all data) R1 = 0.0582, wR2 = 0.1415. 

Largest diff. peak and hole = 4.980 and -2.350 e. Å
-3

.  

[Yb(K·HOEt)(L)4]2∙2(H2O)(EtOH). Empirical formula C182H142K2O29Yb2; MW = 3217.24. 

λ = 1.54178 Å. Triclinic, Space group P1̄, a = 14.9691(6), b = 15.5713(7), c = 18.1646(8) Å, 

α = 114.386(4)°, β = 91.488(4)°, γ = 98.946(4)°, Volume = 3790.1(3) Å
3
, Z = 1; ρc = 1.410 

Mg/m
3
, µ = 3.326 mm

-1
, crystal size 0.12 x 0.04 x 0.02 mm

3
; θmin, max = 3.00, 67.05°. 

Reflections collected = 40531, unique reflections = 13400 [R(int) = 0.0742]. Max./min. 

transmission = 1.00 and 0.89. Number of parameters = 991, S = 1.01. Final R indices 

[I>2σ(I)] R1 = 0.0442, wR2 = 0.0925; R indices (all data) R1 = 0.0624, wR2 = 0.0987. 

Largest diff. peak and hole = 0.898 and -0.757 e. Å
-3

. The solvent molecules were modelled 

as an ethanol molecule disordered about a crystallographic inversion center and a water 

disordered over two sites with occupancies refined to 0.69(3) and its complement. 

[Yb(Rb·HOEt)(L)4]2. Empirical formula C180H132O26Rb2Yb2; MW = 3227.87. λ = 0.71073 

Å. Triclinic, Space group P1̄, a = 14.2183(4), b = 14.4303(3), c = 17.9542(5) Å, α = 

102.094(2)°, β = 89.682(2)°, γ = 88.527(2)°, Volume = 3600.56(16) Å
3
, Z = 1; ρc = 1.489 

Mg/m
3
, µ = 2.038 mm

-1
, crystal size 0.33 x 0.15 x 0.09 mm

3
; θmin, max = 2.84, 31.97°. 

Reflections collected = 77555, unique reflections = 23506 [R(int) = 0.0470]. Max./min. 

transmission = 0.841 and 0.661. Number of parameters = 946, S = 1.064. Final R indices 

[I>2σ(I)] R1 = 0.0535, wR2 = 0.1246; R indices (all data) R1 = 0.0695, wR2 = 0.1331. 

Largest diff. peak and hole = 3.188 and -3.241 e. Å
-3

.  
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Lanthanoid/Alkali Metal β-Triketonate Assemblies: A Robust Platform for Efficient 

NIR Emitters 
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The reaction of hydrated LnCl3, an alkali metal hydroxide, and tribenzoylmethane affords a 

series of lanthanoid/alkali metal tetranuclear assemblies (Ln = Eu, Er, Yb; Ae = Na, K, Rb). 

In the solid state the complexes are emissive, with the NIR emitting Yb
3+

 and Er
3+

 species 

presenting excited-state lifetimes which outclass all other species in the β-diketonate class in 

even when the ligands have been perfluorinated to reduce the effect of multiphonon 

relaxation. This result opens the door for the β-triketonate class of ligand to be a viable 

alternative to β-diketonates in the field of light emitting technologies. 
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