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Abstract— The concept of conditioned invariance is extended

for the class of 2-D systems described by Fornasini-Marchesini

models in the most general form proposed by Kurek. Then,

the use of this concept is investigated within the context of

estimation in the presence of unknown inputs.

I. INTRODUCTION

Conditioned invariant subspaces were introduced by

Basile and Marro in [1] as the dual of controlled invariant

subspaces. Their role in relation to the problem of estimation

in the presence of unknown input signals was investigated

by the same authors in [2]. An alternative definition of

conditioned invariance was proposed by Willems in terms

of the existence of observers, [20], also see the recent

textbooks [3, Chapter 4] and [19, Chapter 5].

The purpose of this paper is: (i) to extend the definition of

conditioned invariance and input-containing subspaces given

for 1-D systems in [1], to Fornasini-Marchesini models [7],

[9] in the general form

xi+1, j+1 = A0 xi, j +A1 xi+1, j +A2 xi, j+1 +B0 ui, j

+B1 ui+1, j +B2 ui, j+1

yi, j = C xi, j +Dui, j

(1)

of Kurek [14]; and (ii) to provide a characterisation of such

subspaces in terms of the existence of certain observers. By

general we intend that the Kurek model (1) encompasses

both the so-called first and second forms of Fornasini-

Marchesini models, FM-I [7] and FM-II [9], respectively.

The first (FM-I) can be recovered from (1) by taking

B1 = B2 = 0, while the second (FM-II) can be recovered by

taking A0 = 0 and B0 = 0.

Over the last twenty years, several extensions of impor-

tant geometric concepts, such as controlled invariance, have

been proposed for 2-D latent variable models such as the

Fornasini-Marchesini and Roesser state-space models, [5],

[6], [12], [13]. While definitions of controlled invariance

and output-nulling subspaces are not difficult to establish for

FM-I, FM-II or Kurek models, a definition for conditioned

invariant subspaces is less natural, since duality cannot be

exploited as in the 1-D case. In fact, Fornasini-Marchesini

models are such that their dual is not in the form described by
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(1), or the class corresponding to the FM-I or FM-II mod-

els. To overcome this difficulty, definitions of conditioned

invariance were proposed in [12] for two particular classes

of models, motivated by the the search for duality properties

similar to the 1-D case. The first is yet another subclass of

(1) with A0 = 0, B1 = B2 = 0, see also [8]. The second is a

variation of the FM-II with the output modelled as

yi, j = C1 xi+1, j +C2 xi, j+1 +D1 ui+1, j +D2 ui, j+1,

thus displaying a symmetry between the state and the output

equations (both models were introduced in [12] in the

descriptor form). This model is non-standard, as it involves

mixed dynamics in both the state and in the output equation,

and its relevance in the context of state-space theory of

2-D systems is yet to be understood. For these two model

classes, conditioned invariant subspaces were defined as the

dual of controlled invariant subspaces, and their role in the

state observation was investigated, see also [15].

In this paper, a new definition of conditioned invariance is

provided for the more general class of Fornasini-Marchesini

models in Kurek form. This is not, therefore, dual to the

definitions of controlled invariance presented in the literature

so far. The extension to singular models in Kurek form,

introduced by Kaczorek in [11], can be carried out along

the lines of [15].

Notation. Throughout this paper, we will denote by N

the positive integers including zero. The symbol 0n will

stand for the origin of the vector space R
n. The image and

the kernel of matrix M∈R
n×m will be denoted by imM

and kerM, respectively. The n×m zero matrix is denoted

by 0n×m. Denote by M⊤ and by M† the transpose and

the Moore-Penrose pseudoinverse of M, respectively. For

the sake of brevity we define MD := diag(M,M,M), and,

accordingly, given a subspace J of R
n, the symbol JD

will identify the subspace J×J×J of R
3n, where the

symbol × has been used to denote the Cartesian product.

Given the vector ξ ∈ R
n, the symbol ξ/J denotes the

canonical projection of ξ on the quotient space R
n/J .

Finally, given a triple of matrices M0,M1,M2 ∈ R
n×m, we

define MH := [M0 M1 M2 ] and MV := [M⊤
0 M⊤

1 M⊤
2 ]⊤.
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II. CONDITIONED INVARIANCE AND INPUT-CONTAINING

SUBSPACES

Consider a linear 2-D system Σ described by the difference

equations (1) where, for all i∈N and j ∈ N, xi, j ∈R
n is

the local state, ui, j ∈R
m is the control input, yi, j ∈R

p is the

output, Ak ∈R
n×n and Bk ∈R

n×m for k ∈ {0,1,2}, C ∈R
p×n

and D ∈ R
p×m. For boundary conditions of (1) we intend

assignments of the form xi, j = x̄i, j ∈ R
n for all (i, j) ∈ B,

where

B := ({0}×N)∪ (N×{0}) .

The model described by (1) is usually referred to as a Kurek

model, and it was first introduced in [14] as a generalisation

of the classic models FM-I and FM-II, [7], [8], [9]. In order

to develop a geometric control theory for 2-D systems, the

notions of controlled invariant and output-nulling subspaces

were adapted for FM-I in [5], [13], [17]. These subspaces

play a key role in the so-called exact decoupling problems.

By straightforwardly extending such definitions to the

Kurek model described by (1), we say that a controlled

invariant subspace V is a subspace of R
n satisfying the

inclusion1

AV V ⊆ VD + imBV . (2)

In the 1-D case, a controlled invariant subspace is such

that, for all initial states lying on it, an input function exists

such that the local state trajectory lies completely on that

subspace. For one-dimensional systems, the converse is true

as well: if given an initial state an input function can be

found such that the state lies on a subspace, such subspace

is controlled invariant. It was shown in [5] that this last

implication does not hold in the 2-D case.

An output-nulling subspace V of Σ is a subspace of R
n

satisfying the inclusion
[

AV

C

]
V ⊆ (VD ×0p)+ im

[
BV

D

]
. (3)

From any point of an output-nulling subspaces, there

exists a static feedback control function ui, j = F xi, j,

(i, j) ∈ N × N such that xi, j ∈ V for all (i, j) ∈ N × N

and the output y is identically zero. Clearly, when A0 = 0,

B0 = 0 and D = 0, such definition reduces to that given in [5].

While the concepts of controlled invariance and output-

nulling subspaces are useful when solving exact decoupling

problems, [5], [17], the concept of conditioned invariance

and input-containing subspaces are useful within the context

of estimation in the presence of unknown inputs. Below we

provide a definition and a characterisation for conditioned

invariant and input-containing subspaces. While existing

definitions of conditioned invariance only hold for particular

versions of Fornasini-Marchesini models with a self-dual

structure, the definition proposed here holds for the general

1Recall that AV := [A⊤
0 A⊤

1 A⊤
2 ]⊤ and BV := [B⊤

0 B⊤
1 B⊤

2 ]⊤.

class of Kurek models, whose duals are not in Kurek form.

As such, this definition does not make use of duality.

Definition 1: A conditioned invariant subspace S is a

subspace of R
n satisfying

AH

(
SD ∩ ker

[
C 0p×2n

])
⊆ S . (4)

Lemma 1: Given the s-dimensional subspace S of R
n, let

Q ∈ R
(n−s)×n be such that ker Q = S with Q of full row-

rank. The following statements are equivalent:

1) the subspace S is conditioned invariant for Σ.;

2) two matrices Γ ∈ R
(n−s)×3(n−s) and Λ ∈ R

(n−s)×p exist

such that

QAH = ΓQD +Λ
[

C 0p×2n

]
; (5)

3) a matrix G ∈ R
n×p exists such that

(
AH +G

[
C 0p×2n

])
SD ⊆ S . (6)

The proof of this lemma follows as a particular case of that

of Lemma 2 in the sequel, and therefore it is omitted.

Now, it is shown that conditioned invariant subspaces

are related to the existence of quotient observers for the

autonomous model Σ0 described by

xi+1, j+1 = A0 xi, j +A1 xi+1, j +A2 xi, j+1

yi, j = C xi, j.
(7)

Given a subspace S of R
n, we define an S -quotient

observer to be a finite-dimensional system of the form

ωi+1, j+1 = K0 ωi, j +K1 ωi+1, j +K2 ωi, j+1 +Lyi, j

ζi, j = ωi, j,
(8)

such that if ζi, j = xi, j/S for all (i, j)∈B, then ζi, j = xi, j/S
for all (i, j)∈N×N. In other words, an S -quotient observer

is such that the information modulo S of the state of Σ0

is maintained. In fact, if the boundary conditions of the

observer and of the system Σ0 are such that ζi, j = xi, j/S
for all (i, j) ∈ B, then on the basis of the informations yi, j,

i ≤ k and j ≤ l, the output of the observer at (k, l) takes the

value xk,l/S . Obviously, given an arbitrary subspace S of

R
n, a S -quotient observer does not necessarily exists. But if

this subspace is conditioned invariant, the existence of such

an observer is ensured by the following theorem.

Theorem 1: If the subspace S is conditioned invariant for

Σ0, there exists a S -quotient observer for Σ0.

Proof: Let Γ and Λ be such that (5) holds. Let the system (8)

be defined by KH = Γ and L = Λ. Moreover, let Q∈R
(n−s)×n

be such that ker Q = S with Q of full row-rank, where s is

the dimension of S . Define the new variable ei, j = Qxi, j −

ωi, j, along with the vectors x̂(i, j) = [x⊤i, j x⊤i+1, j x⊤i, j+1 ]⊤ and

ω̂(i, j) = [ω⊤
i, j ω⊤

i+1, j ω⊤
i, j+1 ]⊤, i, j ≥ 0. It follows that

ei+1, j+1 = QAH x̂(i, j)−Γ ω̂(i, j)−ΛC xi, j

=
(
QAH −Λ

[
C 0p×2n

])
x̂(i, j)−Γ ω̂(i, j)

= ΓQx̂(i, j)−Γ ω̂(i, j)

= Γ0 ei, j +Γ1 ei+1, j +Γ2 ei, j+1,
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where (5) has been used and where Γ = [Γ0 Γ1 Γ2 ] has been

partitioned comformably with AH . Now, if for all (i, j) ∈ B

there holds ζi, j = xi, j/S – i.e. if ei, j is zero on B – then

ei, j = 0 for all i, j ≥ 0. As such, it follows that with this

choice of Ki, i = 0,1,2, and L, system (8) is indeed a S -

quotient observer.

As a result of Theorem 1, when it is possible to find Γ

such that the triple (Γ0,Γ1,Γ2) is stable, [9], [14], [10],

the error ei, j goes to zero asymptotically as the index (i, j)

moves away from B. In that case, not only can the observer

maintain information on xi, j modulo S , if ζi, j = xi, j/S on

B, but it can also recover such information with an error

that decreases as (i, j) evolves away from the boundary N

when ζi, j are not equal to xi, j/S on B.

So far, the relation between quotient observers for the

autonomous 2-D system Σ0 and conditioned invariant sub-

spaces has been analysed. When the 2-D system is not

autonomous, i.e. when its structure is given by (1), we

need the notion of input-containing subspaces in order to

guarantee the existence of a quotient observer in the form

given by (8), i.e., which only has the signal y as its input.

Let C̄ := [C 0p×2n ] and D̄ := [ D 0p×2m ]. In the sequel we

concisely identify Σ with the set (AH ,BH ,C̄, D̄).

Definition 2: We define an input-containing subspace S
as a subspace of R

n satisfying

[
AH BH

] (
(SD ×R

3m)∩ker
[

C̄ D̄
])

⊆ S . (9)

The set of input-containing subspaces of Σ will be herein

denoted by the symbol S (Σ). As for the 1-D case, it is

easy to see that the intersection of two input-containing

subspaces is input-containing. It follows that the set S (Σ) is

closed under subspace intersection. The same is not true for

subspace addition. This is due to the fact that the Grassman

manifold of R
n is a non-distributive lattice with respect to

the operations of sum and intersection (and with respect to

the partial ordering given by the standard subspace inclusion

⊆), [3]. As a result of these considerations, it turns out that

the set S (Σ) is a (modular) lower semilattice with respect to

subspace intersection. Thus, the intersection of all the input-

containing subspaces of Σ is the smallest input-containing

subspace of Σ, and is usually denoted by S ⋆. For input-

containing subspaces, a generalised version of Lemma 1

holds.

Lemma 2: Given the s-dimensional subspace S of R
n, let

Q∈R
(n−s)×n be such that kerQ = S with Q of full row-rank.

The following statements are equivalent:

1) the subspace S is input-containing for Σ.

2) two matrices Γ ∈ R
(n−s)×3(n−s) and Λ ∈ R

(n−s)×p exist

such that

Q
[

AH BH

]
= Γ

[
QD 0

]
+Λ

[
C̄ D̄

]
. (10)

3) a matrix G ∈ R
n×p exists such that

(AH +GC̄)SD ⊆ S
im(BH +GD̄) ⊆ S

(11)

Proof: We prove that (9) and (10) are equivalent. Since

ker Q = S , it follows that the subspace SD ×R
3m can be

written as the null-space of [ QD 0 ], so that (9) can be

written as

Q
[

AH BH

] (
ker

[
QD 0

]
∩ker

[
C̄ D̄

])
= 0,

which in turn leads to the inclusion ker [ QD 0 ] ∩

ker [ C̄ D̄ ] ⊆ ker Q [ AH BH ]. It follows that (10) holds for

some matrices Γ and Λ.

We now prove that (9) and (11) are equivalent. To this

end, let us first write (11) in the form

[
AH +GC̄ BH +GD̄

]
(SD×R

3m)⊆S . (12)

Let Ξi = [ξ i⊤
0 ξ i⊤

1 ξ i⊤
2 ]⊤ and Wi = [wi⊤

0 wi⊤
1 wi⊤

2 ]⊤ be

such that the vectors

[
Ξ1

W1

]
,

[
Ξ2

W2

]
, . . . ,

[
Ξs

Ws

]
are a

basis of SD ×R
3m adapted to (SD ×R

3m)∩ ker [ C̄ D̄ ],

i.e., the vectors

[
Ξ1

W1

]
,

[
Ξ2

W2

]
, . . . ,

[
Ξr

Wr

]
, r ≤ s, are a

basis of (SD ×R
3m)∩ ker[C̄ D̄ ]. Define yi = C ξ i

0 + Dwi
0

for i = 1, . . . ,s. It follows that yi = 0 for i = 1, . . . ,r and the

vectors yr+1, . . . ,ys are linearly independent. Define G so that

Gyi = −AH Ξi −BH Wi for i = r +1, . . . ,s and let

ni :=
[

AH +GC̄ BH +GD̄
][

Ξi

Wi

]

= AH Ξi +BH Wi +Gyi.

It follows that ni = AH Ξi +BH Wi ∈S for all i = 1, . . . ,r and

ni = 0 for all i = r + 1, . . . ,s by the definition of G. Hence,

(12) readily follows.

Since (10) is linear, if the subspace S is input-containing,

the set of all matrices Γ and Λ satisfying (10) are parame-

terised by

[
Γ Λ

]
= Q

[
AH BH

][
QD 0

C̄ D̄

]†

+H K

where H is a matrix of suitable dimensions such that imH =

ker

[
Q⊤

D C̄⊤

0 D̄⊤

]
and K is an arbitrary matrix. As such, the

matrices Γ and Λ satisfying (10) are unique if and only if the

map

[
QD 0

C̄ D̄

]
is epic. In the followin theorem, we show

that input-containing subspaces for system (1) are associated

to the existence of S -quotient observers that are still in the

form governed by (8).

Theorem 2: If the subspace S is input-containing for Σ,

there exists a S -quotient observer for Σ.

Proof: In view of Lemma 2, given an input-containing

subspace S , two matrices G and Γ′ exist such that

Q
[

AH +GC̄ BH +GD̄
]
= Γ′

[
QD 0

]
, (13)
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where Q ∈ R
(n−s)×n is such that kerQ = S with Q of

full row-rank, and s is the dimension of S . Suppose

that in (8) KH = Γ and L = −QG. Define the new vari-

able ei, j = Qxi, j − ωi, j, along with the vectors x̂(i, j) =

[x⊤i, j x⊤i+1, j x⊤i, j+1 ]⊤, û(i, j) = [u⊤i, j u⊤i+1, j u⊤i, j+1 ]⊤ and

ω̂(i, j) = [ω⊤
i, j ω⊤

i+1, j ω⊤
i, j+1 ]⊤, i, j ≥ 0. It follows that

ei+1, j+1 = QAH x̂(i, j)+QBH û(i, j)−Γ′ ω̂(i, j)

−QGC xi, j −QGDui, j

= Q
[

AH +GC̄ BH +GD̄
][

x̂(i, j)

û(i, j)

]
−Γ′ ω̂(i, j)

= Γ′ Qx̂(i, j)−Γ′ ω̂(i, j)

= Γ′
0 ei, j +Γ′

1 ei+1, j +Γ′
2 ei, j+1,

where (13) has been used and where Γ′ = [Γ′
0 Γ′

1 Γ′
2 ] has

been partitioned comformably with AH . Now, if for all (i, j)∈

B the identity ζi, j = xi, j/S holds, then ei, j = 0 for all i, j ≥ 0.

As such, it follows that with this choice of Ki, i = 0,1,2, and

L, system (8) is indeed a S -quotient observer.

In the case where Γ′ can be found such that the

triple (Γ′
0,Γ

′
1,Γ

′
2) is stable, the error ei, j goes to zero

asymptotically as the index (i, j) evolves away from B.

The following theorem provides the algorithm for the

computation of the smallest input-containing subspace S ⋆.

Lemma 3: The sequence of subspaces (Si)i∈N described

by the recurrence

S 0 = 0n

S i =
[

AH BH

](
(S i−1

D ×R
3m)∩ker

[
C̄ D̄

])
, i > 0,

is monotonically non-increasing. An integer k≤n−1 exists

such that S k+1 =S k. For such k, the identity S ⋆ =S k

holds.

The proof of Lemma 3 is similar to that in [3, p.203], and

is therefore omitted.

III. UNKNOWN-INPUT OBSERVATION

Consider a linear shift-invariant (LSI) system Σ described

by the following difference equations

xi+1, j+1 = A0 xi, j +A1 xi+1, j +A2 xi, j+1 +B0 ui, j

+B1 ui+1, j +B2 ui, j+1,

yi, j = C1 xi, j +D1 ui, j,

zi, j = C2 xi, j +D2 ui, j,

(14)

where, for all i∈N and j ∈ N , xi, j ∈R
n is the local

state, ui, j ∈R
m is an input which is not accessible for

measurement. The variable yi, j ∈R
p1 represents an output

that can be measured and the variable zi, j ∈ R
p2 is an output

that we want to estimate on the basis of the information

represented by the measurement of the output y. Matrices

Ak, Bk, k = 0,1,2, and Cl , Dl , l = 1,2, are of appropriate

dimensions. Let C̄k := [ Ck 0pk×2n ] and D̄k := [ Dk 0pk×2m ]

for k = 1,2. In the sequel we concisely identify Σ with the

set (AH ,BH ,C̄1, D̄1,C̄2, D̄2).

Consider the block diagram depicted in Figure 1. Let the

observer ΣO be described by the equations

ωi+1, j+1 = K0 ωi, j +K1 ωi+1, j +K2 ωi, j+1 +Lyi, j,

ζi, j = M ωi, j +N yi, j,
(15)

and let Σ̂ denote the overall system from the input u to the

output e := z−ζ , as shown in Figure 1. Notice that with the

choice of the structure of the observer ΣO, the overall system

Σ̂ is still in Kurek form, and is governed by
[

xi+1, j+1

ωi+1, j+1

]
=

[
A0 0

LC1 K0

] [
xi, j

ωi, j

]
+

[
A1 0

0 K1

] [
xi+1, j

ωi+1, j

]

+

[
A2 0

0 K2

] [
xi, j+1

ωi, j+1

]
+

[
B0

LD1

]
ui, j

+

[
B1

0

]
ui+1, j +

[
B2

0

]
ui, j+1,

ei, j =
[

C2 −NC1 −M
] [

xi, j

ωi, j

]
+(D2 −N D1)ui, j.









 









Σ
ΣO

u

Σ̂

y

z

e

ζ

+

−

Fig. 1. Block diagram of the unknown input observation scheme.

Roughly speaking, the unknown-input observation prob-

lem considered in this paper consists of finding an observer

ΣO ruled by (15) and connected as in Figure 1, such that

ζi, j = zi, j for (i, j) ∈ B implies ζi, j = zi, j for all i, j ≥ 0. This

problem is equivalent to finding an observer ΣO such that

the input u has no influence on the output e. Such problem

has been addressed in [4] for FM-2 models using polynomial

techniques.

Theorem 3: The unknown-input observation problem ad-

mits solutions if

ker
[

C2 D2

]
⊇ (S ⋆ ×R

m)∩ker
[

C1 D1

]
, (16)

where S ⋆ is the smallest input-containing subspace of the

system (AH ,BH ,C̄1, D̄1).

The result given in Theorem 3 will be proved on the basis

of the following considerations.

1) Given any input-containing S subspace of R
n such

that

ker
[

C2 D2

]
⊇ (S ×R

m)∩ker
[

C1 D1

]
, (17)

two matrices Φ and Ψ exist such that [ C2 D2 ] =

Φ [ Q 0 ] + Ψ [ C1 D1 ], where Q is a full row-rank

matrix such that ker Q = S . Notice that the former

can be written as

[
C̄2 D̄2

]
= Φ̂

[
QD 0

]
+Ψ

[
C̄1 D̄1

]
, (18)
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where Φ̂ := [ Φ 0 0 ].

2) If condition (17) is satisfied, matrices Φ and Ψ sat-

isfying [ C2 D2 ] = Φ [ Q 0 ] + Ψ [ C1 D1 ] are

parameterised by

[
Φ Ψ

]
=

[
C2 D2

][
Q 0

C1 D1

]†

+H K,

where H is such that imH = ker

[
Q⊤ C⊤

1

0 D⊤
1

]
and K

is an arbitrary matrix. As such, the matrices Φ and

Ψ satisfying (18) are unique if and only if the map[
Q 0

C1 D1

]
is epic. When [ C1 D1 ] is full row-rank,

this condition is equivalent to C1 S + imD1 = R
p1 or

alternatively S +C−1
1 imD1 = R

n.

Now, since it can be straightforwardly established that

the kernel of

[
Q⊤ C⊤

1

0 D⊤
1

]
is zero if and only if such

is the kernel of

[
Q⊤ C̄⊤

1

0 D̄⊤
1

]
, it turns out that in the

case where C1 S + imD1 = R
p1 , equations (10) (with

C̄ = C̄1 and D̄ = D̄1) and (16) admit a unique solution,

so that the four matrices Γ,Λ,Φ and Ψ can be uniquely

determined.

Proof of Theorem 1: Let S be any input-containing

subspace of the system (AH ,BH ,C̄1, D̄1) for which (16) holds

with S in place of S ⋆, and let Φ̂ := [ Φ 0 0 ] and Ψ be

such that (18) holds. Denote by Γ := [ Γ0 Γ1 Γ2 ] and Λ

two matrices such that (10) holds with C̄ = C̄1 and D̄ = D̄1.

We show that the observer ΣO ruled by (15) with Kk = Γk

(k = 0,1,2), M = Φ, L =−Λ and N = Ψ solves the unknown-

input observation problem. First, note that

ei, j = zi, j −ζi, j

=
([

C2 D2

]
−Ψ

[
C1 D1

])[
xi, j

ui, j

]
−Φωi, j

= Φ
[

Q 0
][

xi, j

ui, j

]
−Φωi, j = Φ(Qxi, j −ωi, j).

Define εi, j := Qxi, j −ωi, j. Given the signal s : N×N 7→ R
l

for some l, let also l̂(i, j) =
[

l⊤i, j l⊤i+1, j l⊤i, j+1

]
, i, j ≥ 0. Then,

by using (10) and (16), it is found

εi+1, j+1 =
(

Q
[

AH BH

]
−Λ

[
C̄1 D̄1

]
)

[
x̂(i, j)

û(i, j)

]
−Γω̂(i, j)

= Γ
[

Q 0
][

x̂(i, j)

û(i, j)

]
−Γω̂(i, j)

= Γ0 εi, j +Γ1 εi+1, j +Γ2 εi, j+1.

As a result of this, the signal εi, j is independent of ui, j, and

since ei, j = Φεi, j, such is also the error dynamic ei, j, so that

the transfer function from the input u to the output e is zero.

The definition given above for unknown-input observation

is weaker than the one usually adopted in the 1-D frame-

work. In fact, while a quotient observer guarantees that the

information on z is maintained if we assume that its value on

B is known exactly, it is not possible in general to recover

information on z in the case where the values of z and ζ

on B are not equal. In other words, finding a 2-D observer

ΣO such that the transfer function matrix from the input u to

the output e is zero does not guarantee that the estimation

ζ obtained is asymptotic. However, it is easily established

that if a stable triple (Γ0,Γ1,Γ2) can be found such that (10)

holds, the observer given in Theorem 3 is asymptotic, i.e., it

recovers the latent variable xi, j with greater accuracy as the

spatial index (i, j) evolves away from B. Conditions would

be desirable for the existence of such triple in terms of the

problem data. Unfortunately, while in the 1-D framework

stability is easily embedded in the geometric concept of

controlled and conditioned invariance, in the 2-D context

providing a definition and a characterisation to internally

and externally stabilisable controlled or conditioned invariant

subspaces (and hence to internally and externally stabilisable

output-nulling or input-containing subspaces) is not an easy

task, and to date remains an open problem.

Remark 1: The solution proposed here for the unknown-

input observation problem can be utilised for the solution

of the 2-D counterpart of the so-called fixed-lag smoothing,

where the delay between the measurement and the generation

of the estimate is here represented by a (finite) double shift.

Consider system (14), where now the error is defined as

ei, j = zi−N, j−M −ζi, j. The (N,M)-shift accounts for the delay

tolerated for the estimation of z, see Figure 2.









 













Σ

Σ′

Σo

zi−N, j−Mzi, j

yi, j

ui, j ei, j

ζi, j

+

−

(N,M)-shift

Fig. 2. Block diagram of the fixed-shift smoothing scheme.

It is easily seen that this problem can be turned into an

unknown-input observation problem. Consider the following

realisation of the (N,M)-shift with a Kurek model: if M > N

let

Ad
o =





0 0 . . . 0 0 0 . . . 0 0

1 0 . . . 0 0 0 . . . 0 0

0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0





, Bd
0 =





1

0

0
...

0

0
...

0





,
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Ad
1 =





0 0 . . . 0 0 0 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
... 0 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0

0 0 . . . 0 1 0 . . . 0 0

0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0





, Ad
2 = 0,

Bd
1 = Bd

2 = 0, Cd =
[

0 0 . . . 0 1
]
,

where the size the block submatrices in the top left-hand of

Ad
0 and Ad

1 is N ×N, while the dimension of this realisation

is M. When N > M, the structure of the matrices Ad
1 and Ad

2

swaps. The dynamic of the delay is governed by

di+1, j+1 = Ad
0 di, j +Ad

1 di+1, j +Ad
2 di, j+1 +Bd

0 zi, j,

zi−N, j−M = Cd di, j.

As such, a latent variable realisation of the series connection

Σ of the system Σ′ and of the double shift (N,M) is given

by the following matrices:

AΣ
0 =

[
A0 0

Bd
0 C2 Ad

0

]
, AΣ

1 =

[
A1 0

0 Ad
1

]
, AΣ

2 =

[
A2 0

0 Ad
2

]
,

BΣ
0 =

[
B0

Bd
0 D2

]
, BΣ

1 =

[
B1

0

]
, BΣ

2 =

[
B2

0

]
,

CΣ
1 =

[
C1 0

]
, DΣ

1 = D1

CΣ
2 =

[
0 Cd

]
, DΣ

2 = 0.

The fixed-shift smoothing has therefore solutions if the

following condition holds:

ker
[

CΣ
2 DΣ

2

]
⊇ (S ⋆ ×R

m)∩ker
[

CΣ
1 DΣ

1

]
, (19)

where S ⋆ is the smallest input-containing subspace of the

system (AΣ
H ,BΣ

H ,C̄Σ
1 , D̄Σ

1 ). Since DΣ
2 is zero, condition (19)

can be alternatively written as

ker CΣ
2 ⊇ S ⋆ ∩ (CΣ

1 )−1imDΣ
1 .

If such condition is satisfied, the design procedure for the

smoother Σo can be carried out as in the proof of Theorem

3 with the obvious substitutions.

A. Conclusions

A new definition has been proposed for conditioned invari-

ant and input-containing subspaces for Fornasini-Marchesini

models in Kurek form. Moreover, the problem of estimation

in presence of unknown inputs has been investigated. The

possibility of providing a characterisation of conditioned

invariant and input-containing subspaces in terms of stability

of the associated observers is under investigation, and will

be dealt with in a forthcoming journal paper.
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