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OptimalControlComputation forNonlinear Systemswith

State-dependentStoppingCriteria ⋆

Qun Lin a, Ryan Loxton a, Kok Lay Teo a, Yong HongWu a

aDepartment of Mathematics and Statistics, Curtin University, Australia

Abstract

In this paper, we consider a challenging optimal control problem in which the terminal time is determined by a stopping
criterion. This stopping criterion is defined by a smooth surface in the state space; when the state trajectory hits this surface,
the governing dynamic system stops. By restricting the controls to piecewise constant functions, we derive a finite-dimensional
approximation of the optimal control problem. We then develop an efficient computational method, based on nonlinear
programming, for solving the approximate problem. We conclude the paper with four numerical examples.
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1 Introduction

The aim of optimal control is to manipulate a given con-
trol system in an optimal manner. One of the most fa-
mous problems in optimal control is the so-called time-
optimal control problem, which involves designing a con-
trol law to steer a system from an initial state to a tar-
get state in minimum time. There are many effective
computational methods for solving time-optimal control
problems; these include the time-optimal switching algo-
rithm by Kaya & Noakes (2003), and the control param-
eterization enhancing technique by Lee, Teo, Rehbock
& Jennings (1997). Computational methods for solving
more general optimal control problems are also avail-
able; see, for example, Gerdts & Kunkel (2008), Kaya
& Mart́ınez (2007), Hager (2000), Luus (2000), and von
Stryk (1993).

In most optimal control problems, the time at which the
control system stops—the so-called terminal time—is ei-
ther fixed and known (and possibly infinite) or a free
decision variable. In this paper, we consider a different
type of optimal control problem in which the terminal
time is neither fixed nor free; instead, it is defined as the
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first time at which the system trajectory reaches a cer-
tain stopping surface. When defined in this way, the ter-
minal time is actually an implicit function of the control,
as changing the control changes the system trajectory,
which in turn changes the time at which the trajectory
hits the stopping surface.

Optimal control problems of this type arise in aeronauti-
cal applications. Teo, Jepps, Moore & Hayes (1987) con-
sidered one such problem, where the aim is to maximize
the range of a gliding projectile. The dynamic system in
this problem consists of ordinary differential equations
describing the glider’s motion. These equations are only
valid when the glider’s altitude is positive—the glider
crashes as soon as it hits the ground, and the time at
which this occurs depends on the glider’s control strat-
egy. Thus, the glider’s terminal time is not constant, but
is instead determined by a stopping criterion.

Computational methods for solving such problems
are discussed in Teo et al. (1987) and Teo, Goh &
Lim (1989). These computational methods are based on
a discretization scheme whereby the control is approx-
imated by a piecewise constant function. The heights
of this piecewise constant function are taken as deci-
sion variables to be chosen optimally, whereas the times
at which it changes from one height to another—the
so-called switching times—are pre-specified.

Recently in Lin, Loxton, Teo & Wu (2011), a new com-
putational method that supersedes the old methods in
Teo et al. (1987,1989) was developed. This new method
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is also based on a piecewise constant approximation of
the control, but it allows both the control heights and
the control switching times to be decision variables. This
new approximation scheme is far more accurate than
the old schemes in Teo et al. (1987,1989), which only
allow the control heights to be chosen optimally. Un-
fortunately, a major disadvantage of the approximation
scheme in Lin et al. (2011) is that it leads to an approxi-
mate nonlinear programming problem that is very diffi-
cult to solve numerically. The purpose of this paper is to
present a newmethod for solving this approximate prob-
lem. To this end, we will introduce a novel procedure for
transforming the approximate problem into a new prob-
lem that is easier to solve. We will then develop rigorous
theory linking the two problems, before showing how to
construct a solution of the approximate problem from
a solution of the new problem. We will also develop an
algorithm for solving the new problem using standard
nonlinear programming techniques. By using this new
approach, one can avoid the drawbacks of the existing
methods in Teo et al. (1987,1989) and Lin et al. (2011).

2 Problem Statement

Consider the following nonlinear dynamic system:

ẋ(t) = f(x(t),u(t)), t ≥ 0, (1)

and
x(0) = x0, (2)

where x(t) ∈ R
n is the state at time t, u(t) ∈ R

r is
the control at time t, x0 ∈ R

n is a given initial state,
and f : Rn × R

r → R
n is a given function.

Define

W := {w ∈ R
r : ai ≤ wi ≤ bi, i = 1, . . . , r },

where ai and bi, i = 1, . . . , r, are given real numbers such
that ai < bi. Any measurable function u : [0,∞) → R

r

such that u(t) ∈ W for almost all t ≥ 0 is called an
admissible control. Let U denote the class of all such
admissible controls.

We assume that the following conditions are satisfied.

Assumption 2.1. The function f is continuously dif-
ferentiable.

Assumption 2.2. There exists a real number L1 > 0
such that

‖f(v,w)‖ ≤ L1(1 + ‖v‖+ ‖w‖), (v,w) ∈ R
n × R

r,

where ‖ · ‖ denotes the Euclidean norm.

Let x(·|u) denote the solution of (1)-(2) correspond-
ing to the admissible control u ∈ U . Assumptions 2.1
and 2.2 ensure that x(·|u) exists and is unique (see The-
orem 3.1.6 of Ahmed (1988)).

We introduce the following stopping surface for control
system (1)-(2):

Ω := {v ∈ R
n : Φ(v) = 0 },

where Φ : Rn → R is a given continuously differentiable
function. System (1)-(2) stops once its state trajectory
hits this surface. Thus, the terminal time for (1)-(2) is
defined as follows:

T (u) := inf{ t > 0 : x(t|u) ∈ Ω }.

Weassume that T (u) is finite for each admissible control.
This assumption is stated precisely below.

Assumption 2.3. There exists real numbers Tmin > 0
and Tmax > 0 such that

Tmin ≤ T (u) ≤ Tmax, u ∈ U .

System (1)-(2) starts in state x0 at time t = 0 and
evolves according to (1) until its state trajectory reaches
the stopping surface at time t = T (u). The system then
terminates; its final state is x(T (u)|u). Since Φ is con-
tinuous, one can easily show that

x(T (u)|u) ∈ Ω, u ∈ U . (3)

We will use this inclusion later in the paper.

Now, we define a cost function J as follows:

J(u) := Ψ(x(t|u))
∣

∣

t=T (u)
, u ∈ U , (4)

where Ψ : Rn → R is a given continuously differentiable
function. Our goal is to choose an admissible control with
minimum cost. We state this formally as the following
optimal control problem.

Problem 1. Find an admissible control u∗ ∈ U such
that

J(u∗) = inf
u∈U

J(u).

Note that the terminal time in Problem 1 is a function of
the control. Thus, the control influences both the state
trajectory and the time horizon over which the state
trajectory evolves. This is quite different from standard
optimal control problems in which the terminal time is
fixed and known. Conventional optimal controlmethods,
which assume that the terminal time is fixed, cannot be
applied to Problem 1. The purpose of this paper is to
develop a new method for solving Problem 1.
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3 Problem Approximation

To proceed, we will use the control parameteriza-
tion technique to approximate Problem 1 by a finite-
dimensional optimization problem. Control parameter-
ization has already been successfully applied to stan-
dard optimal control problems in which the terminal
time is either fixed or free—see, for example, Chyba,
Haberkorn, Singh, Smith & Choi (2009), Luus (2000),
and Teo, Goh & Wong (1991).

Let p ≥ 2 be a fixed integer and define

Z :=

p
∏

k=1

W.

Thus, Z is the set of all p-tuples (ζ1, . . . , ζp) such that
ζk ∈ W , k = 1, . . . , p.

Let T denote the set of all τ = [τ1, . . . , τp−1]
⊤ ∈ R

p−1

such that
τk ≥ 0, k = 1, . . . , p− 1,

and
τk−1 ≤ τk, k = 2, . . . , p− 1.

For each τ ∈ T , define corresponding intervals Ik(τ ),
k = 1, . . . , p as follows:

Ik(τ ) :=







[0, τ1), if k = 1,

[τk−1, τk), if k = 2, . . . , p− 1,

[τp−1,∞), if k = p.

Clearly,
Ii(τ ) ∩ Ij(τ ) = ∅, i 6= j,

and
p
⋃

k=1

Ik(τ ) = [0,∞).

Thus, { Ik(τ ), k = 1, . . . , p } is a partition of [0,∞).

Now, for each (τ , ζ) ∈ T × Z, define a corresponding
function up(·|τ , ζ) : [0,∞) → R

r as follows:

up(t|τ , ζ) :=
p

∑

k=1

ζkχIk(τ)(t), t ≥ 0, (5)

where χI : R → R is the indicator function defined by

χI(t) :=

{

1, if t ∈ I,
0, otherwise.

We immediately see that

up(t|τ , ζ) = ζk, t ∈ Ik(τ ), k = 1, . . . , p.

This shows that up(·|τ , ζ) is piecewise constant and
up(t|τ , ζ) ∈ W for all t ≥ 0. Hence, up(·|τ , ζ) is an ad-
missible control for Problem 1.

Let xp(·|τ , ζ) denote the unique solution of (1)-(2) cor-
responding to the admissible control up(·|τ , ζ). More
precisely,

xp(·|τ , ζ) := x(·|up(·|τ , ζ)).
Similarly, for each (τ , ζ) ∈ T × Z, let

T p(τ , ζ) := T (up(·|τ , ζ)), Jp(τ , ζ) := J(up(·|τ , ζ)).

It follows from inclusion (3) that

xp(t|τ , ζ)
∣

∣

t=Tp(τ ,ζ)

= x(t|up(·|τ , ζ))
∣

∣

t=T (up(·|τ ,ζ))
∈ Ω.

(6)

We have now expressed Problem 1’s state, terminal time,
and cost function in terms of the decision variables τ ∈ T
and ζ ∈ Z. This leads to the following approximate
optimization problem.

Problem 2. Find a pair (τ ∗, ζ∗) ∈ T × Z such that

Jp (τ ∗, ζ∗) = inf
(τ ,ζ)∈T ×Z

Jp(τ , ζ).

If (τ ∗, ζ∗) is an optimal solution for Problem 2, then
up(·|τ ∗, ζ∗) is a corresponding suboptimal control for
Problem 1. Does this suboptimal control converge to
an optimal control as the number of subintervals p in-
creases? In Lin et al. (2011), we showed that if u∗ is an
optimal control for Problem 1, and if (τ p,∗, ζp,∗) is an
optimal solution for Problem 2, then

lim
p→∞

J(up(·|τ p,∗, ζp,∗)) = J(u∗).

Furthermore, if up(·|τ p,∗, ζp,∗) converges to a function
ū : [0,∞) → R

r almost everywhere as p → ∞, then ū
is an optimal control for Problem 1. These two results
suggest that up(·|τ p,∗, ζp,∗) is a good approximation of
the optimal control when p is large. Hence, by solving
Problem 2 for large p, we can generate a high-quality
suboptimal control for Problem 1. However, Problem 2
is difficult to solve using standard optimization tech-
niques because it involves a nonlinear dynamic system
with variable switching times (see Loxton, Teo & Re-
hbock (2008)). In the next two sections, we will develop
an effective computational method for solving Prob-
lem 2.

4 A New Finite-Dimensional Problem

The decision variables in Problem 2 are the control
switching times τk, k = 1, . . . , p − 1 and the control
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heights ζk, k = 1, . . . , p. In Lin et al. (2011), we devel-
oped an algorithm for computing the partial derivatives
of Jp with respect to these decision variables. We then
showed that this algorithm can be used in conjunction
with a gradient-based optimization method—for exam-
ple, a conjugate gradient method—to solve Problem 2.

Although this approach yields satisfactory results, it has
two major shortcomings:

(i) Integrating the dynamic system (1)-(2) numerically
is very difficult when the control switching times
are variable, as they are in Problem 2.

(ii) Computing the partial derivatives of Jp involves
integrating two auxiliary dynamic systems, and
these auxiliary systems are not well-defined if two
or more switching times coincide (i.e. if τk−1 = τk
for some k). The algorithm in Lin et al. (2011) will
stall if this occurs.

The purpose of this paper is to develop a new method
that does not suffer from these drawbacks. We will not
tackle Problem 2 directly; instead, we will introduce a
new optimization problem and show that a solution of
this new problem can be used to generate a solution of
Problem 2. As we will see, solving the new problem is
much easier than solving Problem 2.

Our approach is inspired by the so-called time-scaling
transformation first introduced by Lee et al. (1997) to
solve time-optimal control problems. In a time-optimal
control problem, the optimal control is usually a bang-
bang control oscillating between its maximum and mini-
mum values. The times at which the control switches be-
tween these values must be chosen optimally. Thus, the
control switching times in a time-optimal control prob-
lem are decision variables, just like in Problem 2. The
time-scaling transformation can be used to map these
switching times to fixed points in a new time horizon,
which results in a new problem that is easier to solve.
The standard time-scaling transformation works by in-
troducing a new time variable s, and then relating s to t
through the following differential equation:

dt(s)

ds
= v(s), s ∈ [0, p],

together with the boundary conditions

t(0) = 0, t(p) = T,

where p− 1 is the number of switches, v : [0, p] → [0,∞)
is a piecewise constant function, and T is the terminal
time. The time-scaling transformation is a useful tool for
circumventing the difficulties caused by variable switch-
ing times. However, the standard time-scaling transfor-
mation is only applicable to optimal control problems
in which the terminal time T is a fixed constant or a

free decision variable. As such, it cannot be applied to
Problem 2, whose terminal time T p(τ , ζ) is an implicit
function of the decision variables τ and ζ.

4.1 Problem Statement

As in Section 3, let p ≥ 2 be a fixed integer. Define

Θ := { θ ∈ R
p−1 : θ1 > 0; θk ≥ 0, k = 2, . . . , p− 1 }

and

Ĩk :=

{

(k − 1, k), if k = 1, . . . , p− 1,

(p− 1,∞), if k = p.

Consider the following switched system evolving in the
state space Rn:

ẏ(s) = θkf(y(s), ζ
k), s ∈ Ĩk, k = 1, . . . , p, (7)

and

y(k) = y(k+) =

{

x0, if k = 0,

y(k−), if k = 1, . . . , p− 1,
(8)

where θp := 1, (θ, ζ) ∈ Θ × Z is a given pair, and the
positive and negative superscripts denote limits from
the right and left, respectively. By Theorem 3.1.6 of
Ahmed (1988), there exists a unique solution of (7)-(8)
corresponding to each (θ, ζ) ∈ Θ × Z. Let y(·|θ, ζ) de-
note this solution.

For each (θ, ζ) ∈ Θ×Z, define

Sp(θ, ζ) := inf{ s > 0 : y(s|θ, ζ) ∈ Ω }, (9)

where Ω is the stopping surface defined in Section 2. If
Sp(θ, ζ) is finite, then clearly

y(s|θ, ζ)
∣

∣

s=Sp(θ,ζ)
∈ Ω. (10)

Wewill show in the next subsection that Sp(θ, ζ) defined
by (9) is indeed finite.

Now, define a new cost function J̃p : Θ × Z → R as
follows:

J̃p(θ, ζ) = Ψ(y(s|θ, ζ))
∣

∣

s=Sp(θ,ζ)
.

We consider the following optimization problem.

Problem 3. Find a pair (θ∗, ζ∗) ∈ Θ×Z such that

J̃p(θ∗, ζ∗) = inf
(θ,ζ)∈Θ×Z

J̃p(θ, ζ).
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We will show in the next subsection that Problem 3 is
equivalent to Problem 2. This means that a solution of
Problem2 can be generated from a solution of Problem3,
and vice versa. The main virtue of Problem 3 is that its
governing dynamic system (7)-(8) has fixed switching
times at s = 1, . . . , p − 1. This makes Problem 3 much
easier to solve than Problem 2.

4.2 Relationship Between Problems 2 and 3

We will now establish several results linking Problem 2
with Problem 3. Our discussion culminates with a
proof of the Equivalence Theorem—a fundamental re-
sult showing that a solution of Problem 2 can be easily
obtained from a solution of Problem 3, and vice versa.

First, for each θ ∈ Θ, define a time-scaling function
µ(·|θ) : [0,∞) → R as follows:

µ(s|θ) :=



























⌊s⌋
∑

j=1

θj + θ⌊s⌋+1(s− ⌊s⌋), if s ∈ [0, p− 1),

p−1
∑

j=1

θj + θp(s− p+ 1), if s ∈ [p− 1,∞),

where ⌊·⌋ denotes the floor function and θp := 1 (recall
that Θ ⊂ R

p−1).

It’s easy to see that µ(·|θ) is a piecewise linear function.
Some other important properties of µ(·|θ) are stated in
the following lemma.

Lemma 4.1. For each θ ∈ Θ, the corresponding time-
scaling function µ(·|θ) has the following properties:

(a) µ(0|θ) = 0 and µ(k|θ) = θ1+ · · ·+θk, k = 1, . . . , p.
(b) µ(·|θ) is non-negative and µ(s|θ) > 0 for all s > 0.
(c) µ(·|θ) is non-decreasing.
(d) µ(·|θ) is continuous.
(e) µ̇(s|θ) = θk, s ∈ Ĩk, k = 1, . . . , p.

Proof. Follows easily from the definition of µ(·|θ).

Now, define a vector-valued function τ̃ : Θ → R
p−1 as

follows:

τ̃ (θ) :=
[

µ(1|θ), . . . , µ(p− 1|θ)
]⊤

, θ ∈ Θ.

It follows from Lemma 4.1(b,c) that

µ(k|θ) ≥ 0, k = 1, . . . , p− 1,

and

µ(k − 1|θ) ≤ µ(k|θ), k = 2, . . . , p− 1.

Thus, τ̃ (θ) ∈ T . This implies that the state trajectory
xp(·|τ̃ (θ), ζ) is well-defined. Since µ(·|θ) is non-negative,
wemay substitute t = µ(s|θ) into xp(·|τ̃ (θ), ζ). Our first
major result shows that applying this substitution yields
y(·|θ, ζ), the solution of the switched system (7)-(8).

Theorem 4.1. For each (θ, ζ) ∈ Θ×Z,

y(s|θ, ζ) = xp(t|τ̃ (θ), ζ)
∣

∣

t=µ(s|θ)
, s ≥ 0.

Proof. Let (θ, ζ) ∈ Θ×Z be arbitrary but fixed. Define

x̃p(s) := xp(t|τ̃ (θ), ζ)
∣

∣

t=µ(s|θ)
.

Since both µ(·|θ) and xp are continuous, x̃p is also con-
tinuous. Thus,

x̃p(k) = x̃p(k+) = x̃p(k−), k = 1, . . . , p− 1. (11)

Furthermore, by Lemma 4.1(a) and equation (2),

x̃p(0) = x̃p(0+) = x0. (12)

Let k ∈ {1, . . . , p} be a fixed integer. Since θ ∈ Θ and
θp = 1, either θk = 0 or θk > 0. If θk = 0, then

µ(s|θ) = µ(k − 1|θ), s ∈ Ĩk,

and thus
x̃p(s) = x̃p(k − 1), s ∈ Ĩk.

This implies that

˙̃xp(s) = 0 = θkf(x̃
p(s), ζk), s ∈ Ĩk. (13)

On the other hand, if θk > 0 then µ(·|θ) is strictly in-

creasing on Ĩk and

µ(s|θ) ∈ Ik(τ̃ (θ)), s ∈ Ĩk.

Thus, differentiating x̃p using the chain rule and then
applying Lemma 4.1(e) gives

˙̃xp(s) = θkf(x̃
p(s), ζk), s ∈ Ĩk. (14)

Equations (11)-(14) show that x̃p is the unique solution
of (7)-(8). This yields x̃p = y(·|θ, ζ), as required.

We now show that Sp(θ, ζ) defined by equation (9) is
finite.

Theorem 4.2. For each (θ, ζ) ∈ Θ×Z,

0 < Sp(θ, ζ) ∈ R.
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Proof. We first prove that Sp(θ, ζ) ∈ R. Note that µ(·|θ)
is a surjection from [0,∞) to [0,∞). Thus, there exists
a point s′ ∈ [0,∞) such that

µ(s′|θ) = T p(τ̃ (θ), ζ).

If s′ = 0, then

T p(τ̃ (θ), ζ) = µ(s′|θ) = µ(0|θ) = 0,

which contradicts Assumption 2.3. Thus, s′ > 0.

By Theorem 4.1 and inclusion (6),

y(s′|θ, ζ) = xp(t|τ̃ (θ), ζ)
∣

∣

t=µ(s′|θ)

= xp(t|τ̃ (θ), ζ)
∣

∣

t=Tp(τ̃(θ),ζ)
∈ Ω.

This shows that the set { s > 0 : y(s|θ, ζ) ∈ Ω } on
the right-hand side of equation (9) contains at least one
element, so Sp(θ, ζ) is well-defined.

Now, it’s clear that Sp(θ, ζ) is non-negative. Sup-
pose that Sp(θ, ζ) = 0. Then there exists a sequence
{si}∞i=1 ⊂ (0,∞) such that si → 0+ as i → ∞ and

y(si|θ, ζ) ∈ Ω, i ≥ 1.

Lemma 4.1(b) implies that

µ(si|θ) > 0, i ≥ 1.

Furthermore, since si → 0+ as i → ∞, µ(si|θ) → 0+ as
i → ∞. Now, by Theorem 4.1,

xp(t|τ̃ (θ), ζ)
∣

∣

t=µ(si|θ)
= y(si|θ, ζ) ∈ Ω, i ≥ 1.

Thus,

T p(τ̃ (θ), ζ) = inf{ t > 0 : xp(t|τ̃ (θ), ζ) ∈ Ω } = 0.

But this contradicts Assumption 2.3. Hence, we must
have Sp(θ, ζ) > 0.

Recall from Theorem 4.1 that the time-scaling function
links the solution of the switched system (7)-(8) with the
solution of the original system (1)-(2). Our next result
shows that the time-scaling function maps s = Sp(θ, ζ)
in the new time horizon to t = T p(τ̃ (θ), ζ) in the old
time horizon.

Theorem 4.3. For each (θ, ζ) ∈ Θ×Z,

T p(τ̃ (θ), ζ) = µ(s|θ)
∣

∣

s=Sp(θ,ζ)
.

Proof. Let (θ, ζ) ∈ Θ ×Z. For simplicity, we will write
µ instead of µ(·|θ) and Sp instead of Sp(θ, ζ).

Recall from Theorem 4.2 that Sp > 0. Thus, by
Lemma 4.1(b),

µ(Sp) > 0. (15)

Furthermore, by Theorem 4.1 and inclusion (10),

xp(t|τ̃ (θ), ζ)
∣

∣

t=µ(Sp)
= y(Sp|θ, ζ) ∈ Ω. (16)

Together, (15) and (16) imply that

T p(τ̃ (θ), ζ) ≤ µ(Sp). (17)

Now, recall that µ is a surjection from [0,∞) to [0,∞).
Hence, as in the proof of Theorem 4.2, there exists a
point s′ ∈ (0,∞) such that µ(s′) = T p(τ̃ (θ), ζ). By
Theorem 4.1 and inclusion (6),

y(s′|θ, ζ) = xp(t|τ̃ (θ), ζ)
∣

∣

t=µ(s′)

= xp(t|τ̃ (θ), ζ)
∣

∣

t=Tp(τ̃(θ),ζ)
∈ Ω.

Thus,
Sp ≤ s′.

Therefore, since µ is non-decreasing,

µ(Sp) ≤ µ(s′) = T p(τ̃ (θ), ζ). (18)

Combining inequalities (17) and (18) completes the
proof.

Together, Theorems 4.1 and 4.3 imply the following im-
portant result.

Theorem 4.4. For each (θ, ζ) ∈ Θ×Z,

J̃p(θ, ζ) = Jp(τ̃ (θ), ζ).

Proof. Recall from Theorem 4.3 that

T p(τ̃ (θ), ζ) = µ(s|θ)
∣

∣

s=Sp(θ,ζ)
.

Hence, by Theorem 4.1,

y(s|θ, ζ)
∣

∣

s=Sp(θ,ζ)
= xp(t|τ̃ (θ), ζ)

∣

∣

t=µ(Sp(θ,ζ)|θ)

= xp(t|τ̃ (θ), ζ)
∣

∣

t=Tp(τ̃(θ),ζ)
.

Thus,

J̃p(θ, ζ) = Ψ(y(s|θ, ζ))
∣

∣

s=Sp(θ,ζ)

= Ψ(xp(t|τ̃ (θ), ζ))
∣

∣

t=Tp(τ̃(θ),ζ)

= Jp(τ̃ (θ), ζ),

as required.
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We are now ready to prove our main result showing that
Problems 2 and 3 are equivalent.

Theorem 4.5 (Equivalence Theorem). Let (θ∗, ζ∗) be
a given pair in Θ×Z. Then (θ∗, ζ∗) is optimal for Prob-
lem 3 if and only if (τ̃ (θ∗), ζ∗) is optimal for Problem 2.

Proof. First, suppose that (τ̃ (θ∗), ζ∗) is an optimal so-
lution for Problem 2. Let (θ, ζ) ∈ Θ × Z be arbitrary
but fixed. Then (τ̃ (θ), ζ) ∈ T × Z. By Theorem 4.4,

J̃p(θ∗, ζ∗) = Jp(τ̃ (θ∗), ζ∗) ≤ Jp(τ̃ (θ), ζ) = J̃p(θ, ζ).

Hence, (θ∗, ζ∗) is optimal for Problem 3.

Conversely, suppose that (θ∗, ζ∗) ∈ Θ×Z is an optimal
solution for Problem 3. Let (τ , ζ) ∈ T ×Z be fixed. We
consider two cases: (i) τ = 0; and (ii) τ 6= 0.

For case (i), define vectors θ̄ = [θ̄1, . . . , θ̄p−1]
⊤ ∈ R

p−1

and ζ̄ = (ζ̄1, . . . , ζ̄p) ∈ R
pr as follows:

θ̄k := 1, k = 1, . . . , p− 1,

and
ζ̄k := ζp, k = 1, . . . , p.

Then clearly (θ̄, ζ̄) ∈ Θ×Z. Furthermore, since τk = 0
for each k = 1, . . . , p− 1,

up(t|τ̃ (θ̄), ζ̄) = up(t|τ , ζ) = ζp, t ≥ 0.

Thus,
Jp(τ̃ (θ̄), ζ̄) = Jp(τ , ζ).

By Theorem 4.4,

Jp(τ̃ (θ∗), ζ∗) = J̃p(θ∗, ζ∗)

≤ J̃p(θ̄, ζ̄)

= Jp(τ̃ (θ̄), ζ̄)

= Jp(τ , ζ). (19)

Now, for case (ii), there exists a k ∈ {1, . . . , p− 1} such
that τk > 0. Let

ς := min{ k : τk > 0 }.

Furthermore, define vectors θ̄ = [θ̄1, . . . , θ̄p−1]
⊤ ∈ R

p−1

and ζ̄ = (ζ̄1, . . . , ζ̄p) ∈ R
pr as follows:

θ̄k :=







τς , if k = 1,

τk+ς−1 − τk+ς−2, if k = 2, . . . , p− ς,

1, if k = p− ς + 1, . . . , p− 1,

and

ζ̄k :=

{

ζk+ς−1, if k = 1, . . . , p− ς,

ζp, if k = p− ς + 1, . . . , p.

It’s easy to see that (θ̄, ζ̄) ∈ Θ×Z.

Now, suppose t ∈ Ik(τ̃ (θ̄)) for some k = 1, . . . , p − ς .
Then t ∈ Ik+ς−1(τ ). Thus,

up(t|τ̃ (θ̄), ζ̄) = up(t|τ , ζ) = ζk+ς−1,

t ∈ Ik(τ̃ (θ̄)), k = 1, . . . , p− ς.
(20)

On the other hand, if t ∈ Ik(τ̃ (θ̄)) for some integer
k = p− ς + 1, . . . , p, then t ≥ τp−1. Hence,

up(t|τ̃ (θ̄), ζ̄) = up(t|τ , ζ) = ζp, t ∈ Ik(τ̃ (θ̄)),
k = p− ς + 1, . . . , p.

(21)

Equations (20) and (21) imply that

Jp(τ̃ (θ̄), ζ̄) = Jp(τ , ζ).

Therefore, by Theorem 4.4,

Jp(τ̃ (θ∗), ζ∗) = J̃p(θ∗, ζ∗)

≤ J̃p(θ̄, ζ̄)

= Jp(τ̃ (θ̄), ζ̄)

= Jp(τ , ζ). (22)

Since (τ , ζ) ∈ T ×Z was chosen arbitrarily, (19) and (22)
show that (τ̃ (θ∗), ζ∗) is optimal for Problem 2.

It follows from the Equivalence Theorem that if (θ∗, ζ∗)
is optimal for Problem 3, then (τ̃ (θ∗), ζ∗) is optimal for
Problem 2. The corresponding suboptimal control for
Problem 1 is up(·|τ̃ (θ∗), ζ∗), which has switching times
at t = µ(k|θ∗), k = 1, . . . , p− 1. By Lemma 4.1(a),

µ(k|θ∗)− µ(k − 1|θ∗) = θ∗k, k = 1, . . . , p− 1.

Thus, θ∗k is the time duration between the suboptimal
control’s (k − 1)th and kth switching times.

5 Gradient Computation for Problem 3

Problem 3 is a nonlinear optimization problem in which
the decision variables θk, k = 1, . . . , p − 1 and ζk,
k = 1, . . . , p need to be chosen to minimize the cost func-
tion J̃p. In this section, we will develop an algorithm for
computing the partial derivatives of J̃p. This algorithm
can be combined with a nonlinear programming method
to solve Problem 3 efficiently. A solution of Problem 2
can then be generated via the Equivalence Theorem.
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First, define

δk,j :=

{

1, if k = j,

0, otherwise,

and

δ̂k,j :=

{

1, if k ≤ j,

0, otherwise.

Next, for each k = 1, . . . , p − 1, consider the following
auxiliary switched system:

ψ̇k(s) = δ̂k,jθj
∂f(y(s|θ, ζ), ζj)

∂x
ψk(s)

+ δk,jf(y(s|θ, ζ), ζj), s ∈ Ĩj ,
(23)

and

ψk(j) =

{

0, if j = 0,

ψk(j−), if j = 1, . . . , p− 1,
(24)

where (θ, ζ) ∈ Θ× Z. Let ψk(·|θ, ζ) denote the unique
absolutely continuous solution of (23)-(24).

For each k = 1, . . . , p and i = 1, . . . , r, define another
auxiliary system as follows:

φ̇k,i(s) = δ̂k,jθj
∂f(y(s|θ, ζ), ζj)

∂x
φk,i(s)

+ δk,jθj
∂f(y(s|θ, ζ), ζj)

∂ui

, s ∈ Ĩj ,
(25)

and

φk,i(j) =

{

0, if j = 0,

φk,i(j−), if j = 1, . . . , p− 1,
(26)

where (θ, ζ) ∈ Θ×Z. Let φk,i(·|θ, ζ) denote the unique
absolutely continuous solution of (25)-(26).

We will show later that the partial derivatives of J̃p can
be computed by solving systems (23)-(24) and (25)-(26).
To do this, we will need the following lemma, which fol-
lows immediately from the results in Loxton et al. (2008)
and Vincent & Grantham (1981).

Lemma 5.1. Let (θ, ζ) ∈ Θ×Z. Then for each s ≥ 0,

∂y(s|θ, ζ)
∂θk

= ψk(s|θ, ζ), k = 1, . . . , p− 1,

and

∂y(s|θ, ζ)
∂ζki

= φk,i(s|θ, ζ), k = 1, . . . , p, i = 1, . . . , r.

Define

F := { (θ, ζ) ∈ Θ×Z : Sp(θ, ζ) > p− 1 }.

We impose the following assumption on Problem 1.

Assumption 5.1. For each admissible control u ∈ U ,

∂Φ(x(t|u))
∂x

f(x(t|u),u(t))
∣

∣

∣

t=T (u)
6= 0,

where Φ : Rn → R is the function defining the stopping
surface in Section 2.

Let Φ̄(t) := Φ(x(t|u)). Then

˙̄Φ(t) =
d

dt

{

Φ(x(t|u))
}

=
∂Φ(x(t|u))

∂x
f(x(t|u),u(t)).

Assumption 5.1 requires that ˙̄Φ 6= 0 at the terminal time
t = T (u). In other words, we require that the state tra-
jectory does not approach the stopping surface tangen-
tially.

We now show that, under Assumption 5.1, the partial
derivatives of Sp exist at every point in F .

Theorem 5.1. For each (θ, ζ) ∈ F ,

∂Sp

∂θk
= −

{

∂Φ(y(Sp|θ, ζ))
∂x

ψk(Sp|θ, ζ)
}

÷
{

∂Φ(y(Sp|θ, ζ))
∂x

f(y(Sp|θ, ζ), ζp)
}

,

and

∂Sp

∂ζki
= −

{

∂Φ(y(Sp|θ, ζ))
∂x

φk,i(Sp|θ, ζ)
}

÷
{

∂Φ(y(Sp|θ, ζ))
∂x

f(y(Sp|θ, ζ), ζp)
}

,

where for simplicity we write Sp instead of Sp(θ, ζ).

Proof. Define a functionG : (p−1,∞)×R
p−1×R

pr → R

as follows:

G(γ,v,w) := Φ(y(γ|v,w)).

Clearly, (Sp, θ, ζ) ∈ (p− 1,∞)× R
p−1 × R

pr and

G(Sp, θ, ζ) = 0.

By the implicit function theorem (see Nocedal &
Wright (2006)), Sp has partial derivatives at (θ, ζ) if G
is continuously differentiable and ∂G/∂γ is non-zero at
(Sp, θ, ζ). We now show that these two conditions hold.
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Differentiating G with respect to γ yields

∂G(γ,v,w)

∂γ
=

∂Φ(y(γ|v,w))

∂x
ẏ(γ|v,w)

=
∂Φ(y(γ|v,w))

∂x
f(y(γ|v,w),wp), (27)

where the last equality follows from equation (7) with
k = p (recall that θp = 1).

By Lemma 5.1,

∂G(γ,v,w)

∂vk
=

∂Φ(y(γ|v,w))

∂x

∂y(γ|v,w)

∂vk

=
∂Φ(y(γ|v,w))

∂x
ψk(γ|v,w) (28)

and

∂G(γ,v,w)

∂wk
i

=
∂Φ(y(γ|v,w))

∂x

∂y(γ|v,w)

∂wk
i

=
∂Φ(y(γ|v,w))

∂x
φk,i(γ|v,w). (29)

Equations (27)-(29) show that G is continuously differ-
entiable.

Now, since µ(·|θ) is strictly increasing on (p − 1,∞), it
follows from Theorem 4.3 that

µ(p− 1|θ) < µ(Sp|θ) = T p(τ̃ (θ), ζ).

Thus,

T p(τ̃ (θ), ζ) ∈ Ip(τ̃ (θ)). (30)

By Theorems 4.1 and 4.3,

y(Sp|θ, ζ) = xp(t|τ̃ (θ), ζ)
∣

∣

t=µ(Sp|θ)

= xp(t|τ̃ (θ), ζ)
∣

∣

t=Tp(τ̃(θ),ζ)
. (31)

From (27), (30), (31), and Assumption 5.1, we obtain

∂G(Sp, θ, ζ)

∂γ
=

∂Φ(y(Sp|θ, ζ))
∂x

f(y(Sp|θ, ζ), ζp)

=
∂Φ(xp(t|τ̃ (θ), ζ))

∂x
f(xp(t|τ̃ (θ), ζ), ζp)

∣

∣

∣

t=Tp(τ̃ (θ),ζ)

6= 0,

as required. Thus, Sp has partial derivatives at (θ, ζ).
The formulae for ∂Sp/∂θk and ∂Sp/∂ζki can be easily
obtained by differentiating Φ(y(Sp|θ, ζ)) = 0 and then
applying Lemma 5.1.

Now, by Lemma 5.1 and Theorem 5.1,

∂J̃p(θ, ζ)

∂θk
=

∂Ψ(y(Sp|θ, ζ))
∂x

ψk(Sp|θ, ζ)

− ρ
∂Φ(y(Sp|θ, ζ))

∂x
ψk(Sp|θ, ζ),

(32)

where

ρ :=

{

∂Ψ(y(Sp|θ, ζ))
∂x

f(y(Sp|θ, ζ), ζp)
}

÷
{

∂Φ(y(Sp|θ, ζ))
∂x

f(y(Sp|θ, ζ), ζp)
}

.

Similarly,

∂J̃p(θ, ζ)

∂ζki
=

∂Ψ(y(Sp|θ, ζ))
∂x

φk,i(Sp|θ, ζ)

− ρ
∂Φ(y(Sp|θ, ζ))

∂x
φk,i(Sp|θ, ζ).

(33)

Equations (32) and (33) are only applicable when
(θ, ζ) ∈ F . However, this is not a major restriction
because, as we now show, any pair outside F can be
projected onto F without sacrificing cost.

Theorem 5.2. Let (θ, ζ) /∈ F be a given pair. Then
there exists a corresponding pair (θ̄, ζ̄) ∈ F such that

J̃p(θ̄, ζ̄) = J̃p(θ, ζ).

Proof. Since 0 < Sp(θ, ζ) ≤ p−1, there exists an integer
ς ∈ {1, . . . , p − 1} such that Sp(θ, ζ) ∈ (ς − 1, ς ]. We
consider two cases: (i) ς = 1; and (ii) ς ≥ 2. For case (i),
define θ̄ ∈ Θ and ζ̄ ∈ Z as follows:

θ̄k :=
µ(Sp(θ, ζ)|θ)

p
, k = 1, . . . , p− 1, (34)

and
ζ̄k := ζ1, k = 1, . . . , p. (35)

Recall that µ(·|θ) is increasing on [0, 1] because θ1 > 0.
Thus, since Sp(θ, ζ) ∈ (0, 1],

0 < µ(Sp(θ, ζ)|θ) ≤ µ(1|θ) = θ1.

Therefore, by Theorem 4.3,

0 < T p(τ̃ (θ), ζ) ≤ θ1. (36)

But clearly,

up(t|τ̃ (θ̄), ζ̄) = up(t|τ̃ (θ), ζ) = ζ1, t ∈ [0, θ1). (37)
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Combining (36) and (37) gives

up(t|τ̃ (θ̄), ζ̄) = up(t|τ̃ (θ), ζ), 0 ≤ t < T p(τ̃ (θ), ζ).

This implies

xp(t|τ̃ (θ̄), ζ̄) = xp(t|τ̃ (θ), ζ), 0 ≤ t ≤ T p(τ̃ (θ), ζ),

and
T p(τ̃ (θ̄), ζ̄) = T p(τ̃ (θ), ζ).

Consequently, by Theorem 4.4,

J̃p(θ̄, ζ̄) = Jp(τ̃ (θ̄), ζ̄) = Jp(τ̃ (θ), ζ) = J̃p(θ, ζ).

We now show that (θ̄, ζ̄) ∈ F . First, note that

µ(p− 1|θ̄) =
p−1
∑

j=1

θ̄j

< µ(Sp(θ, ζ)|θ)
= T p(τ̃ (θ), ζ)

= T p(τ̃ (θ̄), ζ̄)

= µ(Sp(θ̄, ζ̄)|θ̄).

Since µ(·|θ̄) is non-decreasing, this implies

p− 1 < Sp(θ̄, ζ̄).

Thus, (θ̄, ζ̄) defined by (34) and (35) is the required pair.

We now consider case (ii) when ς ≥ 2. Suppose that
θς = 0. Then it follows from equation (7) with k = ς that

ẏ(s|θ, ζ) = 0, s ∈ (ς − 1, ς). (38)

Thus, by inclusion (10),

y(ς − 1|θ, ζ) = y(s|θ, ζ)
∣

∣

s=Sp(θ,ζ)
∈ Ω.

Since ς − 1 > 0, this implies

Sp(θ, ζ) ≤ ς − 1 < Sp(θ, ζ),

which is a contradiction. Hence, θς must be strictly pos-
itive. This means that µ(·|θ) is strictly increasing on the
interval [ς − 1, ς ].

Now, define θ̄ ∈ Θ and ζ̄ ∈ Z as follows:

θ̄k :=







θ1
p− ς + 1

, if k = 1, . . . , p− ς + 1,

θk−p+ς , if k = p− ς + 2, . . . , p− 1,
(39)

and

ζ̄k :=

{

ζ1, if k = 1, . . . , p− ς + 1,

ζk−p+ς , if k = p− ς + 2, . . . , p.
(40)

Recall that Sp(θ, ζ) ∈ (ς − 1, ς ]. Thus, since µ(·|θ) is
strictly increasing on [ς − 1, ς ],

µ(ς − 1|θ) < µ(Sp(θ, ζ)|θ)
= T p(τ̃ (θ), ζ)

≤ µ(ς |θ)
= θ1 + · · ·+ θς . (41)

We also have

up(t|τ̃ (θ̄), ζ̄) = up(t|τ̃ (θ), ζ), t ∈ [0, θ1+· · ·+θς). (42)

Combining (41) and (42) yields

up(t|τ̃ (θ̄), ζ̄) = up(t|τ̃ (θ), ζ), 0 ≤ t < T p(τ̃ (θ), ζ).

Thus, as in the proof of case (i),

T p(τ̃ (θ̄), ζ̄) = T p(τ̃ (θ), ζ)

and
J̃p(θ̄, ζ̄) = J̃p(θ, ζ).

We now need to show that (θ̄, ζ̄) ∈ F . Recalling again
that ς − 1 < Sp(θ, ζ), we have

µ(p− 1|θ̄) =
p−ς+1
∑

k=1

θ1
p− ς + 1

+

p−1
∑

k=p−ς+2

θk−p+ς

=
ς−1
∑

k=1

θk

< µ(Sp(θ, ζ)|θ)
= T p(τ̃ (θ), ζ)

= T p(τ̃ (θ̄), ζ̄)

= µ(Sp(θ̄, ζ̄)|θ̄).

This shows that p − 1 < Sp(θ̄, ζ̄) (recall that µ(·|θ) is
non-decreasing).

If (θ, ζ) ∈ F , then we can use equations (32) and (33) to

compute the partial derivatives of J̃p at (θ, ζ). However,
if (θ, ζ) /∈ F , then equations (32) and (33) are not appli-
cable. In this case, we can use the method shown in the
proof of Theorem 5.2 to generate a new point (θ̄, ζ̄) ∈ F
having the same cost as (θ, ζ). The partial derivatives

of J̃p can then be computed at this new point.

We now propose the following algorithm for solving
Problem 3.

Algorithm 5.1. Input an integer p ≥ 2 and an initial
pair (θ, ζ) ∈ Θ×Z.

1. If Sp(θ, ζ) ≤ p−1, then find ς ∈ {1, . . . , p−1} such
that Sp(θ, ζ) ∈ (ς − 1, ς ]. Otherwise, go to Step 4.
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2. If ς = 1, then define (θ̄, ζ̄) ∈ F according to equa-
tions (34) and (35). Otherwise, define (θ̄, ζ̄) ∈ F
according to equations (39) and (40).

3. Set (θ̄, ζ̄) → (θ, ζ).

4. Compute ∂J̃p(θ, ζ)/∂θk and ∂J̃p(θ, ζ)/∂ζki using
equations (32) and (33).

5. If (θ, ζ) is optimal, then stop. Otherwise, use the
derivative information obtained in Step 4 to com-
pute a descent direction.

6. Perform a line search along this direction to obtain
a new pair (θ′, ζ′) ∈ Θ×Z.

7. Set (θ′, ζ′) → (θ, ζ) and return to Step 1.

Note that Steps 5 and 6 of Algorithm 5.1 can be im-
plemented using a standard nonlinear programming
method such as sequential quadratic programming
or the conjugate gradient method (see Luenberger &
Ye (2008) and Nocedal & Wright (2006)). After using
Algorithm 5.1 to solve Problem 3, we can easily generate
a solution of Problem 2 using the Equivalence Theorem.

6 Examples

We implemented Algorithm 5.1 as a Fortran program
for solving Problem 2. Our program uses the optimiza-
tion code NLPQLP (Schittkowski (2007)) to test opti-
mality, compute the search direction, and perform the
line search in Steps 5 and 6 of Algorithm 5.1. The differ-
ential equation solver LSODAR (Hindmarsh (1982)) is
used to solve the state and auxiliary systems. Note that
LSODAR automatically terminates once the stopping
criterion is satisfied.

6.1 Van der Pol Oscillator

AVan der Pol oscillator can be modelled by the following
dynamic system:

ẋ1 = x2, (43a)

ẋ2 = −x1 + x2(1 − x2
1) + u, (43b)

and
x1(0) = 1, x2(0) = 1, (44)

where the control u : [0,∞) → R is subject to the bound
constraints

−1 ≤ u(t) ≤ 1, t ≥ 0. (45)

We define the terminal time T for system (43)-(44) to be
the first time at which the following stopping criterion
is satisfied:

x2(T ) = 0. (46)

Our optimal control problem is defined as follows:
Choose the control u : [0,∞) → R to maximize x1(T )
subject to the dynamic system (43)-(44), the control
constraints (45), and the stopping criterion (46).

Using our program with p = 2, we obtained an optimal
terminal time of T = 1.1699 and an optimal objective
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Fig. 1. Optimal control for Example 6.1.
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Fig. 2. Optimal state trajectories for Example 6.1.

function value of x1(T ) = 1.6394. The optimal control is
shown in Figure 1; the corresponding state trajectories
are shown in Figure 2. Note that the optimal control is
almost constant.

We now compare our results with those produced by
the software package MISER 3.3 (Jennings, Fisher, Teo
& Goh (2004)). MISER works by partitioning the time
horizon into multiple subintervals, and then approximat-
ing the control by a constant value on each subinter-
val. MISER assumes that the terminal time T is fixed.
Thus, before applying MISER, we use the substitution
s = t/T to map the time horizon [0, T ] into the fixed
interval [0, 1]. Equations (43)-(44) then become

ẋ1 = Tx2, (47a)

ẋ2 = T (−x1 + x2(1− x2
1) + u), (47b)

and

x1(0) = 1, x2(0) = 1, (48)

where T is now a free decision variable. The control con-
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Fig. 3. Optimal control for Example 6.1 computed by
MISER.
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Fig. 4. State trajectories for Example 6.1 computed by
MISER.

straints and stopping criterion become

−1 ≤ u(s) ≤ 1, s ∈ [0, 1], (49)

and
x2(1) = 0. (50)

The new optimal control problem with fixed terminal
time is defined as follows: Choose T and u : [0, 1] → R

to maximize x1(1) subject to the dynamic system (47)-
(48), the control constraints (49), and the terminal state
constraint (50).

Using MISER 3.3 with 10 subintervals and an initial
guess of u = 0, we obtained an optimal terminal time
of T = 6.3013 and an optimal objective function value
of x1(T ) = 2.4320. The optimal control is shown in
Figure 3, while the corresponding state trajectories are
shown in Figure 4. Note that the control and state tra-
jectories are plotted with respect to the original time
variable t.

We see from Figure 4 that T = 6.3013 is not the

first time at which x2 = 0; we also have x2 = 0 near
t = 1 and t = 3. Thus, the state trajectory produced by
MISER violates the stopping criterion (46). This is be-
cause MISER views x2(T ) = 0 as a boundary condition,
rather than a stopping condition. In fact, the classical
optimal control methods underpinning MISER cannot
guarantee that T is the first time at which the stop-
ping criterion is satisfied. Consequently, such methods
produce invalid results when applied to this problem.
Algorithm 5.1 produces the correct optimal solution.

6.2 Time-optimal Control of a Stirred Tank Mixer

Lee et al. (1997) have considered the following dynamic
model for a stirred tank mixer:

ẋ1 =
(1− x1)u1 + (2− x1)u2

x2
, (51a)

ẋ2 = −0.02
√
x2 + u1 + u2, (51b)

and
x1(0) = 0.8, x2(0) = 0.7, (52)

where x1 is the output concentration, x2 is the volume
of liquid in the tank, and u1 and u2 are input flow rates.

The control variables u1 and u2 are subject to the fol-
lowing bound constraints:

0 ≤ u1(t) ≤ 0.03, 0 ≤ u2(t) ≤ 0.01, t ≥ 0. (53)

Furthermore, the desired terminal state is

x1(T ) = 1.25, x2(T ) = 1. (54)

The aim is to choose the input flow rates appropriately so
that the system is transferred from the initial state (52)
to the terminal state (54) in minimum time. Thus, we
have the following time-optimal control problem:Choose
the input flow rates u1 and u2 to minimize the final time
T subject to the dynamic system (51)-(52), the control
constraints (53) and the terminal state constraints (54).

We now show how to convert this time-optimal control
problem into the form of Problem 1. First, since the
terminal value of x1 is 1.25, we define the stopping time
T to be the first time at which

x1(T ) = 1.25. (55)

We also introduce a new state variable x3, where

ẋ3(t) = 1, x3(0) = 0. (56)

Clearly, x3(t) = t.

The objective function should penalize both the final
time and the deviation of the second state from its de-
sired terminal value (note that the first state will always
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Fig. 6. Optimal state trajectories for Example 6.2.

be equal to 1.25 at the terminal time). Thus, we intro-
duce the following objective function:

J = T + γ(x2(T )− 1)2 = x3(T ) + γ(x2(T )− 1)2,

where γ > 0 is a large penalty parameter.

On this basis, the time-optimal control problem given
above can be converted into the following problem:
Choose the input flow rates u1 and u2 to minimize J
subject to the dynamic system (51)-(52) and (56), the
control constraints (53), and the stopping criterion (55).
This new problem is in the form of Problem 1 and can
be solved using Algorithm 5.1.

Using our Fortran program with p = 4 and γ = 106,
we solved this problem to obtain a minimum terminal
time of T = 46.7754. This is similar to the terminal time
reported in Lee et al. (1997). The optimal controls and
optimal state trajectories are shown in Figures 5 and 6,
respectively. Note that the optimal control only has one
switch, even through p− 1 = 3 switches are allowed.

6.3 Optimal Control of a Hang Glider – Part I

Bulirsch, Nerz, Pesch & von Stryk (1993) consider the
problem of maximizing the range of a hang glider in the
presence of a thermal updraft. The glider’s motion is
described by the following differential equations:

ẋ1 = x3, (57a)

ẋ2 = x4, (57b)

ẋ3 =
1

m
(−L sin η −D cos η), (57c)

ẋ4 =
1

m
(L cos η −D sin η)− g, (57d)

wherem := 100 is the mass of the glider (kg), g := 9.8 is
the gravitational acceleration (ms−2), and the functions
η, L, and D are defined by

sin(η) =
x4 − α(x1)

v(x1, x3, x4)
, cos(η) =

x3

v(x1, x3, x4)
,

L = 1
2γSuv(x1, x3, x4)

2,

D = 1
2γS(c0 + c1u

2)v(x1, x3, x4)
2,

v(x1, x3, x4) =
√

x2
3 + (x4 − α(x1))2.

Here, α(x1) is the velocity profile of the thermal updraft.
For a stable airmass, α(x1) = 0. The constants in the
model are defined as follows:

γ := 1.13, S := 14, c0 := 0.034, c1 := 0.069662.

In equations (57), x1 is the glider’s horizontal position
(m), x2 is the glider’s altitude (m), x3 is the glider’s
horizontal speed (ms−1), x4 is the glider’s vertical speed
(ms−1), and u is a control function representing the lift
coefficient.

The initial conditions for the state variables are:

x1(0) = 0, x2(0) = 1000,

x3(0) = 13.23, x4(0) = −1.288.
(58)

Furthermore, the lift coefficient is subject to the follow-
ing bound constraints:

0 ≤ u(t) ≤ 1.4, t ≥ 0. (59)

We consider the glider’s trajectory as it descends from an
altitude of 1000metres to 900metres. Thus, the terminal
time T is the first time at which the following stopping
criterion is satisfied:

x2(T ) = 900. (60)

Our range maximization problem is defined as follows:
Choose the lift coefficient u to maximize the range x1(T )

13



subject to the dynamic system (57)-(58), the control con-
straints (59), and the stopping criterion (60).

Vanderbei (2001) solved this problem analytically for the
simple case when α(x1) = 0 (i.e. stable airmass). The
optimal control is static in this case:

u(t) =

√

c0
c1

= 0.69862, t ≥ 0. (61)

Bulirsch et al. (1993) consider a more complicated prob-
lem in which the glider experiences a thermal updraft
located about 250 metres from its initial position. The
velocity profile of the updraft is

α(x1) = 2.5(1− β(x1)) exp(−β(x1)), (62)

where
β(x1) = (0.01x1 − 2.5)2.

In the presence of this updraft, an uncontrolled glider
(u = 0) will achieve a range of only x1(T ) = 54.05 with
a corresponding terminal time of T = 4.63.

To solve the range maximization problem, we first ran
our Fortran program with p = 2 and an initial guess of
u = 0. We then re-solved the problem with p = 3, using
the optimal solution for p = 2 as the initial guess. We
repeated this procedure for p = 4, p = 5, and p = 6.
The p = 5 and p = 6 solutions are almost identical, so
larger values of p are unlikely to yield improved results.
The optimal terminal time is T = 102.45 and the corre-
sponding maximum range is x1(T ) = 1240.41. The op-
timal control is shown in Figure 7. The optimal gliding
trajectory and corresponding speed plots are shown in
Figures 8 and 9, respectively. Note that further improve-
ments may be possible with a piecewise linear approxi-
mation for the lift coefficient.

We simulated system (57)-(58) for α(x1) given by (62)
and u(t) given by the analytical solution in (61). The
resulting flight trajectory is shown in Figure 10. This
trajectory achieves a final range of x1(T ) = 1199.86,
which is less than the range achieved by Algorithm 5.1.
The corresponding terminal time is T = 90.74.

The control shown in Figure 7 is an open-loop control.
We conclude this example by considering the problem
of designing an optimal feedback control. To this end, we
assume that the control is a linear function of the total
speed, where the total speed is given by

s(t) =
√

x2
3(t) + x2

4(t).

Thus,

u(t) = ks(t)

= k
√

x3(t)2 + x4(t)2, t ≥ 0, (63)
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Fig. 9. Speed plots for Example 6.3.

where k is a feedback gain constant. Such control laws
are commonly used for gliders.

When the lift coefficient u is defined by (63), L and D
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Fig. 10. Flight trajectory corresponding to the analytical
solution (61) in Example 6.3.

in equations (57) become:

L = 1
2γSkv(x1, x3, x4)

2
√

x2
3 + x2

4,

D = 1
2γS(c0 + c1k

2x2
3 + c1k

2x2
4)v(x1, x3, x4)

2,
(64)

where k is now a decision variable to be chosen optimally.
Our goal is to choose k judiciously so that the glider’s
range is maximized. To ensure that the bounds (59) are
satisfied, we impose the following constraints:

0 ≤ k ≤ 0.2. (65)

We now consider the following optimal feedback control
problem: Choose the feedback gain constant k to maxi-
mize the range x1(T ) subject to the dynamic system (57)-
(58) with L and D defined by (64), the constraints (65),
and the stopping criterion (60).

Algorithm 5.1 can be easily modified to solve the prob-
lem given above. In fact, this problem is simpler than the
optimal control problems considered previously (its de-
cision variable is a real number rather than a function).
Using a modified version of Algorithm 5.1, we obtained
an optimal feedback gain constant of k = 0.06435. The
corresponding optimal terminal time is T = 98.05 and
the maximum range is x(T ) = 1211.82. The optimal
feedback control is shown in Figure 11.

6.4 Optimal Control of a Hang Glider – Part II

Lin et al. (2011), Teo et al. (1989), and Teo et al. (1987)
consider the following model for a hang glider:

ẋ1 = x3 cos(x4), (66a)

ẋ2 = x3 sin(x4), (66b)

ẋ3 = −(k1 + k2u
2)x2

3 − g sin(x4), (66c)

ẋ4 = k3x3u− g

x3
cos(x4), (66d)
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Fig. 11. Optimal feedback control for Example 6.3.

and

x1(0) = x2(0) = 0, x3(0) = 370, x4(0) = 1.5, (67)

where x1 is the glider’s horizontal position (m), x2 is
the glider’s altitude (m), x3 is the glider’s speed (ms−1),
x4 is the angle between the glider’s velocity vector and
the horizon (rad), u is the glider’s angle of attack (rad),
g := 9.8 is the gravitational acceleration (ms−2), and
the constants k1, k2, and k3 are defined by

k1 := 3.289× 10−5,

k2 := 1.133× 10−3,

k3 := 3.289× 10−3.

The angle of attack (the control variable) is subject to
the following bound constraints:

−0.2 ≤ u(t) ≤ 0.2, t ≥ 0. (68)

Let T denote the glider’s crash time. Then T > 0 is
the first time at which the following stopping criterion
is satisfied:

x2(T ) = 0. (69)

This equation defines a stopping surface for (66)-(67).

Simulating system (66)-(67) for the uncontrolled case
when u = 0 results in a terminal time of T = 68.35 and
a final range of x1(T ) = 1477.53.

We now consider the following optimal control problem:
Choose the angle of attack u : [0,∞) → R to maximize
the range x1(T ) subject to the dynamics (66)-(67), the
control constraints (68), and the stopping criterion (69).
We refer to this problem as Problem A.

We used our Fortran program to solve Problem A for
p = 2, 3, 4, 5, 6. As in Example 6.3, the optimal solu-
tion for each value of p was used as the starting point
for the next value of p. The optimal terminal time for
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Fig. 12. Optimal control for Problem A in Example 6.4.
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Fig. 13. Optimal trajectory for Problem A in Example 6.4.

p = 6 is T = 350.79 and the corresponding maximum
range is x1(T ) = 45, 650.27. The optimal angle of attack
is shown in Figure 12 and the optimal state variables
are shown in Figures 13-15. Note that, as expected, the
flight trajectory produced by Algorithm 5.1 has signif-
icantly longer range than the uncontrolled trajectory.
Note also that Lin et al. (2011), Teo et al. (1989), and
Teo et al. (1987) report ranges of over 47,000 metres,
but the optimal controls in these references violate the
bound constraints (68). These constraints are an essen-
tial part of the problem formulation, as the angle of at-
tack is always bounded in practice. Therefore, they can-
not be omitted.

In Problem A, the glider’s initial speed of 370 metres
per second exceeds Mach 1. The same initial speed is
used in Lin et al. (2011), Teo et al. (1989), and Teo et
al. (1987). Since the speed changes from supersonic to
subsonic during the time horizon (see Figure 15), the
aerodynamic parameters k1, k2, and k3 in model (66)-
(67) are unlikely to be constant. Thus, we now change
the initial speed in Problem A from x3(0) = 370 to
x3(0) = 250, which is less than Mach 1. The new range
maximization problem is referred to as Problem B.
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Fig. 14. The optimal trajectory in Figure 13 skims the ground
near the terminal time.
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Fig. 15. Speed plot for Problem A in Example 6.4.

The dynamic system for Problem B is (66)-(67) with
x3(0) = 370 replaced by x3(0) = 250. Simulating this
system for the uncontrolled case when u = 0 results
in a terminal time of T = 48.49 and a final range of
x1(T ) = 778.76. We now use our Fortran program to
solve Problem B for increasing values of p (as before,
we use the solution for each value of p as the starting
point for the next value of p). The optimal solution of
Problem B for p = 6 has a terminal time of T = 156.73
and a maximum range of x1(T ) = 20, 006.89. The opti-
mal control is shown in Figure 16 and the correspond-
ing flight trajectory is shown in Figures 17 and 18. The
glider’s speed is shown in Figure 19. Note that the speed
is always subsonic (below Mach 1), and hence the as-
sumption of constant aerodynamic parameters is more
realistic here than for Problem A.

Figures 17 and 18 show that the optimal trajectory skims
the ground near the terminal time (the glider’s altitude
is less than one centimetre at t ≈ 130). This trajectory
is clearly not robust, as small disturbances could easily
cause the glider to crash prematurely. A more practical
control scheme would keep the glider’s altitude above
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Fig. 17. Optimal trajectory for Problem B in Example 6.4.
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Fig. 18. The optimal trajectory in Figure 17 skims the ground
near the terminal time.

(say) 20 metres for as long as possible. Accordingly, we
replace the stopping criterion (69) with

x2(T ) = 20. (70)
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Fig. 19. Speed plot for Problem B in Example 6.4.
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Fig. 20. Optimal control for Problem C in Example 6.4.

As we will see, this stopping criterion prevents the glider
from skimming the ground, as the control will try and
keep the glider at least 20 metres above the ground for
as long as possible. Note that T here is actually defined
as the second time at which equation (70) is satisfied
(otherwise, the flight trajectory will terminate shortly
after launch).

Let Problem C refer to the modified range maximiza-
tion problem with (70) as the new stopping criterion.
We solved Problem C for p = 6, using the optimal solu-
tion of Problem B as the initial guess. The optimal ter-
minal time is T = 156.83 and the corresponding maxi-
mum range is x1(T ) = 19, 987.63. The optimal control
is shown in Figure 20, and the corresponding flight tra-
jectory is shown in Figures 21 and 22. Note that, unlike
Problem B’s optimal trajectory, Problem C’s optimal
trajectory is at least 20 metres above the ground when
it dives and relaunches near the terminal time.
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Fig. 21. Optimal trajectory for Problem C in Example 6.4.
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Fig. 22. Close-up of the end of the trajectory in Figure 21.
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