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Abstract

A complex fuzzy set is a fuzzy set whose membership function takes values in the
unit circle in the complex plane. This paper investigates various operation properties
and proposes a distance measure for complex fuzzy sets. The distance of two complex
fuzzy sets measures the difference between the grades of two complex fuzzy sets as
well as that between the phases of the two complex fuzzy sets. This distance measure
is then used to define d-equalities of complex fuzzy sets which coincide with those of
fuzzy sets already defined in the literature if complex fuzzy sets reduce to real-valued
fuzzy sets. Two complex fuzzy sets are said to be o-equal if the distance between
them is less than 1-0. This paper shows how various operations between complex
fuzzy sets affect given &-equalities of complex fuzzy sets. An example application of
signal detection demonstrates the utility of the concept of 6-equalities of complex
fuzzy sets in practice.
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1. Introduction

Since the seminal paper in 1965 by Zadeh proposed Fuzzy Sets [12], a huge amount of
literature has appeared on different aspects of fuzzy sets and their applications. Ramot
et al. [10] recently proposed an important extension of these ideas, the Complex Fuzzy
Sets, where the membership function x instead of being a real valued function with
the range [0,1] is replaced by a complex-valued function of the form

r(x)-e® (i =+/-1)
where r,(x) and o (x) are both real valued giving the range as the unit circle.
However, this concept is different from fuzzy complex number introduced and
discussed by Buckley [1 - 4] and Zhang [13 - 15]. Essentially as explained in [10] this

still retains the characterization of the uncertainty through the amplitude of the grade
of membership having a value in the range of [0,1] whilst adding the membership

phase captured by fuzzy sets w, (X). As explained in Ramot et al [10], the key feature
of complex fuzzy sets is the presence of phase and its membership. This gives those

complex fuzzy sets wavelike properties which could result in constructive and
destructive interference depending on the phase value. Thus property distinguishes
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these complex fuzzy sets from conventional fuzzy sets, fuzzy complex sets, and type
2 fuzzy sets [10, 12] (a brief comparison of them in Appendix). Several examples are
given in [10] which demonstrate the utility of these complex fuzzy sets. They also
define several important concepts such as the complement, union, intersection and
fuzzy relations for such complex fuzzy sets.

On the other hand, with an attempt to show that ‘precise membership values should
normally be of no practical significance’, Pappis [9] introduced firstly the notion of
‘proximity measure’. Hong and Hwang [8] then presented an important
generalization. Further, Cai [5, 6] introduced and discussed o-equalities of Fuzzy Sets
and their properties. Two fuzzy sets are said to be oequal if they are equal to an
extent of o. The concept of 5-equalities of fuzzy sets was then employed in synthesis
of real-time fuzzy systems by Virant [11], for assessing the robustness of fuzzy
reasoning by Cai [6], and generalized in theory to the so-called (*,5)-equalities of
fuzzy sets by Georgescu [7]. In this paper, we build on the results obtained in Cai’s
papers by introducing some operations on complex fuzzy sets and their properties and
then investigate the important concept of &equalities which allows us to
systematically develop measures of distance between, equality and similarity for
complex fuzzy sets.

This paper is a continuing work of the papers of Ramot et.al [10] and Cai [5, 6]. We
follow the philosophy of Ramot et.al [10] and will not argue for the rationale of
introducing the concept of complex fuzzy sets in this paper. In Section 2, after
reviewing the concept of complex fuzzy set, some operations of complex fuzzy sets
are introduced, and their properties are discussed. Section 3 introduces o-equalities of
complex fuzzy sets and discusses J-equalities for various implication operators. An
example application is presented in Section 4 to demonstrate the utility of J-equalities
of complex fuzzy sets in practice. Conclusion is given in Section 5.

2. Operations of Complex Fuzzy Sets

Definition 2.1[10] A complex fuzzy set C, defined on a universe of discourse U, is
characterized by a membership function u.(x) that assigns any element xeU a

complex-valued grade of membership in C.

By definition, the values u.(x) may receive all lie within the unit circle in the
complex plane, and are thus of the form r.(x)-e"%<® (i=+-1), r (x) is a real-

valued function such that r.(x)[0,1] and e“<™ is a periodic function whose
periodic  law and principal period are, respectively, 2z and
O<arg.(X) <2z, ie, Arg.(x) =arg. (X)+2kz, k=0, £1, £2,---, where arg.(x) is
the principal argument. The principal argumentarg.(x) will used on the following
text.

Let F*(U) be the set of all complex fuzzy sets on U. The complex fuzzy set C may be
represented as the set of ordered pairs

C={(x, uc (X)) [ xeU}. (2.1)



Definition 2.2 (1) A quasi-triangular norm T is a function (0, 1]x(0, 1] — [0, 1] that
satisfies the following conditions:
(i) T(1,1)=1,
(i)  T(a, b)=T(b, a);
(i)  T(a, b) <T(c, d) whenevera<c, b <d,
(iv)  T(T(a, b)) =T(a, T(b, ).
(2) A triangular norm T is a function [0, 1]x[0, 1] — [0, 1] the satisfies conditions
(1) — (iv) and the following condition:
(v)  T(,0)=0.
We said T is an s-norm, if a triangular norm T satisfies
(vi) T(a,0)=a;
We said T is a t-norm, if a triangular norm T satisfies
(vii) T(a,1) =a.
(3) We said a binary function T :
T:F*U)xF*U)—>F*U)

i2;zsupTz(

T(A B) supT,(r,(x), r, ()

is a triangular norm if T is a triangular norm and T is a quasi-triangular norm; we
said T is ans-norm if T; an s-norm; we said T is a t-norm if T; a t-norm.

arg 5 (x) argB(X)j
2 2«

Definition 2.3 Let A and B be two complex fuzzy sets on U, and g, (x) =r,(x)-e"*"
and g, (X) =r,(x)-e**=™ their membership functions, respectively. The complex
fuzzy union of A and B, denoted by AUB, is specified by a function

Hps () =T, (X) -7 =max(r, (x), 1, ())-e!m™ o0, (2.2)

0.6e™* 1.0e"** 0.8e"%" 0.5e"
+ + +
-1 0 1 2
0-6ei1.27r 0.8eil.67z 1.Oei27r 0l86i1.671'
-1 0 1 2
0.6ei1.27z 1ei27z lei27z 0.8ei1.6ﬂ
+ + + :
-1 0 1 2

Example 2.1 Let A=

B

then AUB =

Proposition 2.1 The complex fuzzy union on F*(U) is an s-norm.

Proof. Properties (i), (ii), (v) and (vi) can be easily verified from Definition 2.3. Here
we only prove (iii) and (iv).

(iii) Let A, B and C Dbe three complex fuzzy sets on U, and
HA(Q) =1, (9% g1 () =15 (x) €% and g (X) =1, (x)-***  their
membership  functions,  respectively. ~ We  suppose |z, (X)| <]z (X)],
arg,(x)<arg,(x), vxeU. Thus

|,UAuc (x)|:max(rA(x), I (x))smax(rB (x), e (X)):Lusuc (X)|, vxeU.

arg, . (x) =max(arg,(x), arg. (x))<max(arg, (x), arg. (x))=arg, . (), vxeU.



(iv) Suppose A, B and C are three complex fuzzy sets on U,
1) =1, ()"0, 1 () =r,(x)-e"* and g (x)=r.(x)e"=  their
membership functions, respectively. We have
ﬂAu(BuC)(X) max(r (X)’ rBuC (X)) (@000 215 )
— max(rA(x), max(rB (X) (X))) imax (arg, (x), max(args (), arge (x)))
— max(max(rA(x), r, X)), r (X)) imax (mex(arg, (x). args (X)), arge (x))

= Hiasyoc (X)

Corollary 2.1 Let C, e F*(U), ael, and u. (X) =1, (x)-e**" its membership
function, where | is an arbitrary index sets. Then (,,C,6 eF*(U), and its
membership function is

|supargC (x)

4. (x)=supr, (x)-e™

acl

Proof. This is straightforward from Definition 2.2 and Proposition 2.1.

Definition 2.4 Let C be a complex fuzzy set on U, and . (X)=r.(x)-e**® its

membership function. The complex fuzzy complement of C, denoted C is specified
by a function

He (X) =1, (X)€"= = (11 (x))-' =0, (2.3)
il2z i2r il.67 iz
Example 2.2 Let A= 0.6e1 + 1'03 + 0'8(; + 0.52e , then,

— 04e"™ 0 0.2e'% 05e”
A= +—+ + .
-1 0 1 2

Proposition 2.2 Let C be a complex fuzzy set on U. Then C =cC.

Proof. By Definition 2.4, we have
ﬂé(X) _ %(X) elarg (x) ( r (X)) i(27-argg ()
= (l— (1— I (X))) gl (27~(27-arg. ()
= rC (X) . eiargc(x)
= 4. (X).
ThusC =

Definition 2.5 Let A and B be two complex fuzzy sets on U, and g, (x) =r,(x) - %%
and g, (X) =r,(x)-e"**™ their membership functions, respectively. The complex
fuzzy intersection of A and B , denoted A~ B, is specified by a function

o (X) =1, (X)€% =min(r,(X), r,(X))-e'm™" e a0, (2.4)

0.6e'?* 1.0e'>* 0.8e™®" 0.5e'"
+ + +
-1 0 1 2

Example 2.3 Let A=



0.6e™** 0.8e™*" 1.0e”* 0.8e™°"
+ + +
-1 0 1 2
Ol6eil.27z Ol8eil.6ﬂ' 0.8eil.67r O.Seilﬂ'
+ + + :
-1 0 1 2

B=

then AnB =

Proposition 2.3 Let A and B be two complex fuzzy sets on U. Then AnB=AUB.

Proof. By use of Definition 2.3-2.5, we have
p (X) =1 (X)€" = (L—T, 4 (x))- /o=t
= (1_ min (rA(x), r, (X))) @i (2-min(arg, (). args ()
= max(l— r.(x),1-r, (X)) @ max(27-arg, (x), 2-args (x))
imax(arg; (x), argg (X))

= max(r, (x), 1, (x))-e
= ,uxug(x)'

Proposition 2.4 The complex fuzzy intersection on F*(U) is a t-norm.

Proof. Properties (i) - (ii), (v) and (vii) can be easily verified from Definition 2.5.
Here we only prove (iii) and (iv).

(ii) Let A, B and C be three complex fuzzy sets on U,
M (=100, 1 ()=r,(x)-e"" and g ()=r(x)-e"=  their
membership  functions,  respectively. ~ We  suppose |z, (X)| <]z (X)],
arg,(x) <arg,(x), vxeU. Thus

[£acc (0] = min(r, (¥), e (x)) < min(rs (%), 16 (x))=|ta-c (K], ¥xeU.

arg, ¢ (x) = min(arg, (x), arge(x))<min(argy(x), arge(x))=argg.c(x), vxeU.

(iv) Suppose A, B and C are three complex fuzzy sets on U, and
14,0 =109, 1, () =r,()-e™ and g () =r(x)-€"  their
membership functions, respectively. We have
ILlAf\(BmC) (X) =min (rA(X)’ erc (X)) eimin(argA(X)y e )
= min (rA(x), min( r, (), r. (X))) @ min (arg, (x), min(args (x). arge (x)))
= min (min(r, (), r, (X)), I, (x))- g™ (mn(ares . ares (9, aree (9)

= Hiap)~c (X)

iarge,, (x)

Corollary 2.2 Let C,eF*U), ael and . (X)=r1, (X)-€ its membership
function, where | is an arbitrary index sets. Then ~ _ C, e F*(), and its membership
function is

iinfarge (x)
acel @

uagl Ca (X) - izDe-II: rc“ (X) ' e

Proof. This is obvious from Definition 2.2 and Proposition 2.4.



iarge, , (x)

their

membership functions, respectively, where 1; and I, are two arbitrary index sets. Then
User, O pet, Capr Oaar, Y par, Cop € F*(U) and their membership functions are

|sup |nf arge,, (x)

i, o 00 =supinf r, (-

acl,

Corollary 2.3 Let C,,cF*V) acl,pel, and p (X)=r. (x)-e

||nf supargc,, (x)

lum U C,y (X) mf Supr (X) g«

acly fely

Proof. Trivial.

iarge, (x)

Corollary 2.4 Let C, e F*(U), k=12,--- and sz (X) =T, (x)-€ their membership

functions, respectively. Then lim...C, =~ U7 C,, lim
C, € F*(U),and their membership functions are

||nfsupargck (x)

/‘mck(x) |nf supr (x)-e” + Hin, (x)_suplnf . (x)-e-

o0 o0
Cn - Un:l r\k:m

N—o0

|sup|nfargCk (x)

Proof. Trivial.

Proposition 2.5 Let A, B and C be three complex fuzzy sets on U, Then
(AuB)NC=(AnC)u(BNC),

(AnB)uC=(AuC)n(BuUC).

Proof. Here we only prove first conclusion. For A, B, Ce F *(U), we have
i AUB mC( )
'u(AuB)nC (X) (AuB)mC (X) : elarg( et
=min(r, ,(X), £, (x))- "™ (Eroe (0 2 (0)
AuB
= min(max(r, (x), 1, (X)), T, (x))- "™ (a0 10, 0 v )
A ' B
= max(min (r, (x), r, (x)), min (r, (x), r.(x)))
. eimax(min (arga(x), arge (x)), min (argg (x), arge (x)))
= max(r (X) (X)) imex (argy.c (X), args.c ()
ANC 1" BC

_ Iarg(AmC) (Bnc)(x)
- r(AmC)u(BmC) (X) € .

Proposition 2.6 Let A and B be two complex fuzzy sets on U, Then
(AuB)nNA=A (AnB)UA=A

Proof. Here we only prove first conclusion. For A, B € F*(U), we have
iarg ag)a (X)
/J(AuB)mA(X) (AuB)mA(X)'e oo
— mlﬂ (r (X) (X)) imin argAuB(x) argA(X))
AuB

=min (max(rA(X), rB (X)) (X)) imin (max (arg, (x), argg (x)), arg, (x))
=r (X) . eiargA(x)

N .



Definition 2.6 Let A and B be two complex fuzzy sets on U, and z, (X) =r,(x) -e**®
and z,(X) =r,(x)-€* %" their membership functions, respectively. The complex
fuzzy product of A and B, denoted Ao B, is specified by a function

Hag (X) =Ta5(X)- R (rA(X) Ty (X)) eiZ”( oo (2.5)

0.6e™%" N 1.0e'*" . 0.8¢"°” N 0.5¢'"
-1 0 1 2
0-6ei1.27r 0.8eil.67z 1.Oei27r 0l86i1.671'
+ + +
-1 0 1 2
0.36ei0.72ﬂ' O.8eil.67[ O.8€il.67r Ol4ei0.877
+ + + .
-1 0 1 2

Example 2.4 Let A=

B =

then AoB =

Proposition 2.7 The complex fuzzy product on F*(U) is a t-norm.

Proof. Properties (i) - (ii), (v) and (vii) can be easily verified from Definition 2.6.
Here we only prove (iii) and (iv). (iii) Let A, B and C be three complex fuzzy sets on

U, 2,(00=r0)-e", 4,(0)=r0)-e"" and u(x)=r,(x)-e"*" their
membership  functions, ~ respectively. ~ We  suppose |z, (X)| <|x, (X)),
arg,(x) <arg,(x), vxeU. Thus

|ll’lAaC (X)| = |rA(X)| ) |rc (X)| < |rB (X)| : |rc (X)| = |(rB (X)’ re (X)] = |/uBoc (X)|1 vxeU.
arg . (x) = Zﬂ(arg A(X) argC(X)j < Zﬂ(argB(x) _ afgc(x)j _arg. (x), vxeU.

2 2 2 2
(iv) Suppose A, B and C are three complex fuzzy sets on U, and
() =1,(x)- €7, g () =r(x)-e**and u () =r(x)-e =" their
membership functions, respectively. We have

arg, (). argacc<x)]

Mgy (X) = (rA(X) o (X)) el ”( 2z 27

argg (x) arge (x)
arg, (x) 2 2z 2z )
2z 27

= (r, (%) (1, (x) - 1. (x)))- {

arga(x). argB(x))
2z 2r arge (x)
27 2z

_27{2,[(
= ((r.() - 1, () - r.(x))-e
= lu(AoB)oC (X)

iargca (x)

Corollary 2.5 Let C, cF*U), ael and . (X)=r, (X)-€ its membership
function, where | is an arbitrary index sets. Then T[],,C,=C, o
C,0---0C, e F*(U), and its membership function is

'UHCa (X) = re, (X) e, (X)-+ Ie, (x)-e

Proof. Trivial.



Definition 2.7 Let A,, n =1, 2, ..., N be N complex fuzzy sets on U, and
() =1, (x)-e"*™ n=1,2, .., N their membership functions, respectively. The
complex fuzzy Cartesian product of A, n =1, 2, ..., N, denoted A x A, x---x A, is
specified by a function
Hiaspeonn, (X) = Tapna, (X) - €
—min(r, (%), 1, (%), 1, (%,))-€
where X = (X, X,, -, X, ) €U xU x---xU.
N

1argp . py ey (X)

)), (2.6)

imin (arg,, (%,),argy, (X,)-arge, (4

0.6e™* 1.0e'* 0.8e"™*" 0.5¢"
+ + +

Example 25 Let A=

-1 0 1 2
0-66i1.27r ol8eil.67r 1loei27z 0l8eil.67z'
B= + + + ,
-1 0 1 2
il2z il1.67 il1.67 iz
then Ax B = 0.6e N 0.8e N 0.8e N 0.5e .
-1 0 1 2

Definition 2.8 Let A and B be two complex fuzzy sets on U, and z, (x) =r,(x) -

and z,(x) =r,(x)-€**" their membership functions, respectively. The complex
fuzzy probabilistic sum of A and B, denoted A% B, is specified by a function

_ i @GA(X), arge (x) arga(x) args (x)
,LlA_;_B (X) — rA;B (X).emrgA;B(X) :(rA(X)+ rB (X)_rA(X) rB (X))e ( 2z 27 2z 2z )
(2.7)
il2z i27 il6r iz
Example 2.6 Let A= 06e + 10e + 08 + 0.5
-1 0 1 2
B 0.6e"% N 0.8e"6" . 1.0e'% . 0.8e6"
-1 0 1 2
i1.687 i2z i27x il.87
then A4 B — 0.84e N le N le N 0.9 .
-1 0 1 2

Proposition 2.8 The complex fuzzy probabilistic sum on F*(U) is an s-norm.

Proof. Properties (i), (ii), (v) and (vi) can be easily verified from Definition 2.3. Here
we only prove (iii) and (iv).

(i) Let A, B and C be three complex fuzzy sets on U, and
1) =1, ()", 1 () =r, ()€™ and g (x)=r.(x)-€"=  their
membership  functions,  respectively. ~ We  suppose |u,(X)| <[ (X)),
arg,(x)<arg,(x), vxeU. Thus

| Hpic (X) |:| Fazc (X) ’ eiargA;c(x) |: |I’A (X) +Ic (X) —Ta (X) “Te (X)|
<1y () + 76 () - (= 1 ()] = #2520 () vxeU.



arg,.. (x) = Zﬁ(argA(X) L arge (x) _arg,(x)-arge (x)j
2r 27 27

< 27{%@13 (x) , arge(x) _args (x)-arge (x)j _arg,..(x), VxeU.
2r 2 2r
(iv) Suppose A, B and C are three complex fuzzy sets on U,
1) =1, 1 ()=, (x)- "> and s (x)=r.(x)-e*=*  their
membership functions, respectively. We have

, zﬁ[argA(x)wrgB;c (x)-arga (X)argg; (x)]
Hazic) (xX) = (rA (X) + Fgic (X) =1, (X rg;sc (X)) € o
izﬂ[ arg , (x)+arg g (X)-a
= (ry () + (rs () + 16 (X) = 15 ()16 () = 1, () (s (X) + 16 (X) = T ()16 (%) )-€ #

iz”[argA(x)wrgB;c (x)-arga (X)argg: ¢ O

= (((rA (X)+ra(X)—ra(x)rg (X))+ re (X) — ((rA (X)+ra(X)—ra(x)rg (X))rc (X)) € 2
Izﬁ[argA(xwargB;c (x)-arg, () argg; (x)]
27

(rA;B (X) + 1o (x) - Mg (x)re (x))- e

= Hinspyic (X)

iarg c,, (x)

Corollary 2.6 Let C,eF*U), acl and g (X)=r (X)-e its membership
function, where 1 is an arbitrary index sets. Then c,+C,+---+ C, e F*(), and its
membership function is

ﬂcliczi---ica (X) = [(r(:1 (X) + rc2 (X) +--t rca (X)) —t (_:I-)a_l(rc1 (X) ' rC2 (X) o rca (X))] '

argg, () arge,(x) — age, (x))_” L(pet
2r 2z 2z " (22)"

i27[(
e

(arg, (x)-argc, (x)--argc, (¥)]
Proof. Trivial.

Definition 29 Let A and B be two complex fuzzy sets on U, and
1 (X) =1, (X)-€2 %0 and g (X) =r5(x) -2 =™ their membership  functions,
respectively. The complex fuzzy bold sum of A and B , denoted AU B, is specified by
a function

s (X) = My (X)€% 0 = min (1, 1, (X) + 1y (x))- €' ™12 20 00+216 00), (2.8)
il.2z i27 il.67 iz
Example 2.7 Let A= 0.6e + 1.0e + 0.8e + 0.5
-1 0 1 2
0.6e%* 0.8e™%" 1.0e'* 0.8e"°"
B= + + + ,
-1 0 1 2

lei 2z lel 2z lel 2z lel 2z
+

then AUB = + + )
-1 0 1 2

Proposition 2.9 The complex fuzzy bold sum on F*(U) is an s-norm.

Proof. This proof is similar to the proof of Proposition 2.1.



Corollary 2.7 Let C, eF*U), acl and g (X)=r. (x)-€"«® its membership
function, where 1 is an arbitrary index sets. Then c, uC, U---U C, e F*(U), and its
membership function is

He,oc,0-0c, (X) = min(2, e, (x) + e, (X)+---+ e, (x))-e
Proof. Trivial.

imin(2rz, arge, (X)+argc, (X)+-+argc, (x))

Definition 2.10 Let A and B be two complex fuzzy sets on U, and
1A (X) =1, (X) - %Y and g (X) =15(x) - =™ their  membership  functions,
respectively. The complex fuzzy bold intersection of A and B, denoted AAB, is
specified by a function

;uAr'wB (X) = rAr\B (X) : eiar%B(X) = maX(O, rA(X) + r-B (X) _1) ei ”‘ﬁX(Ov a"gA(X)+a"QB(X)*2”)_

(2.9)
il2z i27 il6r iz
Example 2.8 Let A= 06e + 10e + 08 + 0.%
-1 0 1 2
0.6e"* 0.8e™®" 1.0e'> 0.8e™°"
B= + + + ,
-1 0 1 2
i0.47 il.6x il.67 i0.67
then A B = 0.2e N 0.8e N 0.8e N 0.3e .
-1 0 1 2

Proposition 2.10 The complex fuzzy bold intersection on F*(U) is a t-norm.

Proof. This proof is similar to the proof of Proposition 2.4.
Corollary 2.8 Let C, eF*U), acl and g (X)=r. (x)-€"«® its membership

function, where I is an arbitrary index sets. Then C,AC, ~---~ C, e F*(U), and its
membership function is

Heoe,n0, (X) = MaxX(0, T (X) + I, (X) + o+ T, (X) — o +1) - @' " e 0070e, 0800e, CO72ehm)

Definition 2.11 Let A and B be two complex fuzzy sets on U, and and
1 (X) =1, (x)-€® % their  membership  functions,  respectively.  The
complex s, (x) = r,(x) - €*"*® fuzzy bounded difference of A and B, denoted Al -|B,
is specified by a function

o () =Ty o (0)- €7 =max(0, 1, (x) ~ 1, () - ™ Ore O (2.10)

0.6e™* 1.0 0.8e"*" 0.5e”"
+ + +
-1 0 1 2
O-6eil.27r O.8eil.67r 1'Oei27r 0l86i1.6ﬂ'
= + + +
-1 0 1 2
0 02 0 0

th —B=— .
enA| | —1+ 0 1 2

Definition 2.12 Let A and B be two complex fuzzy sets on U, and
U (X) =1, (X)-€2 %Y and g (X) =15(x) €™ their membership  functions,

Example 2.9 Let A=

B

10



respectively. The complex fuzzy symmetrical difference of A and B, denoted AVB, is
specified by a function

Hae (X) = Fagg (X) - €922 ) = |1, (%) — 1, (x)] - /@0 M0 0 (2.17)
il.27r i2z il.6zr ir
Example 2.10 Let A= 0.6e + 10e + 0.8e + 0.5
-1 0 1 2
0.6e"* 0.8e™®" 1.0e'> 0.8e"°"
B= + + + ,
-1 0 1 2
i0.47 i0.47 i0.67
then AVB =£+ 0.2e N 0.2e N 0.3e .
-1 0 1 2

Definition 2.13 Let A and B be two complex fuzzy sets on U, and
1 (X) =1, (X)-€2 %0 and g (X) =15(x) - =™ their  membership  functions,
respectively. The complex fuzzy convex linear sum of min and max of A and B,
denoted A||, B (0<A<1), isspecified by a function

fay, 6 () =y 6 () €742 % = [ min (v, (%), 1(x))+@—A)max(r,(x), 1 (x))]

,ei[i min(args (x), argg (x))+(1-2) max(arga (x), arge ()]

0.6eil.27z 1'0ei27r 0.8eil.67z 0.5ei”
+ +

(2.12)

Example 2.11 Let A= +
-1 0 1 2
0.6e™* 0.8e™®" 1.0e'> 0.8e™°"
B= + + + ,
-1 0 1 2
il.2x il8x il.8zr i0.87
then Al|, B= 0'661 + 0'9: + 0.9e1 + 0.65¢ when 1 =0.5.

3. 6-Equalities of Complex Fuzzy Sets

Definition 3.1 A distance of complex fuzzy sets is a function p: (F*(U), F*(U)) — [0,
1] with the properties: for any A, B, Ce F*(U)
(1) p(A,B)>0, p(A, B)=0 ifandonlyif A =B,

(2) p (A, B)=p (B, A),
(3) p (A B)< p(A C)+p(C,B).

In the following, we introduce a function d, which plays a key role in the remainder of
this paper. We define

d(A, B)= max(sxgup|rA(x) —1,(X)|, %sxljumarg J(X)—arg, (x)|j (3.1)

Obviously, this function d(., .) is closure for any operations defined in Section 2, for
example, complex fuzzy product, complex fuzzy probabilistic sum, complex fuzzy
bold sum and complex fuzzy intersection, etc.

Theorem 3.1 d(A, B) defined by the equality (3.1) is a distance function of complex
fuzzy sets on U.

Proof. Trivial.

Example 3.1 Let

11



0.6e"* 1.0e'* 0.8e"™°" 0.5¢"
= + + +

A
-1 0 1 2
. O.7eil.47r 1.0ei2” 0.6eil.27r 0.4ei0.87r
A= + + +
-1 0 1 2

We see sup|r,(x)—r, (x)|=0.2 and isup‘arg »(x)—arg, (x)| = 0.2. Therefore

xeU 27[ xeU

d(A A)=02.

It is easy to see that, if S and T are two real fuzzy sets on U, then
d(A, B)=sup|u,(X)— g (¥)|

xeU

Definition 3.2[5] Let U be a universe of discourse. Let A and B be two real fuzzy sets
on U, and g, (x) and wu;(x) their membership functions, respectively. Then A and B
are said to be d-equal, denoted by A = (o) B, if and only if
suplec, (X) — g (¥)|<1-6, 0<s<L (3.2)
xeU

In this way, we say A and B construct a J-equality.

Lemma 3.1 Let
0, %0, =max(0, o, +9, —1); 0<9,,0, <L (3.3)

Then

(1) 0%0, =0, Vo, €[0,1],

(2) 1x0, =0,; Vo, €[0,1],

(3) 0<96,%0, <1, Vo9, <[0,1],

(4) 6,<6,=06,%5,<6,%6,,V6, 6,5, €[0,1],

(5) 0,*0,=09,%*0,; Vo, 0,<[0,1],

(6) (6,%6,) %03 =6,%(5,%5;); V., 6,,8; €[0,1].

Proof. Trivial.

Lemma 3.2 Let f, g be bounded, real valued functions on a set U. Then

sup 1 () ~Sup g(x) < sup}f (x) ~ 9 () ‘ixrg) () —inf g(x)‘gsu§|f(x)—g(x)|. (3.4)

xeU X

Proof. See Ref. [Hong and Hwang 1994]

Definition 3.3 Let A and B be two complex fuzzy sets on U, and g, (x) =r,(x) -**®

and 4, (x) =r,(x) -e**™their membership functions, respectively. Then A and B are
said to be d-equal, denoted by A = (0)B, if and only if
d(A, B)<l-8; 0<&<l. (3.5)

Proposition 3.1 Let A and B be two complex fuzzy sets on U. Then

(1) A=(0)B,
(2) A=(1)B < A=B,

12



(3)A=(6)B < B=(0) A,
(4) A= (51)8 and 9, < 01=> A= (52 )B,
(5) If vael, A=(5,)B, where | is an index set, then A=(sups,)B,

acl

(6) vA, B, there exists a unique 6 such that A = (0)B and if A = (¢°)B then
5 <6.

Proof. Properties (1) — (4) can be easily proved. Here we only prove properties (5) and
(6). (5) Since Vael, A=(5,)B, we have

d(A B)= max(sup|r (X) = 1, ()|, sup|arg (x)—arg, (x)|j<1 S, Vael.

Therefore
sup|r, (X) = rg (X)| <1-sup,
- xeU acl
%sxlejp|argA(x) arg, (x)|<1- saliEm’
So

d(A B)= max[sup|r (X) — 1, ()], sup|arg (x)—arg, (x)|j<1 supd,.

ael

Thus A=(sups,)B.

ael

(6) Let 6 =1—d(A, B). Then A= (9)B. If A= (6")B, we have 1 — 5 = d(A, B)<1-5".
Consequently & <&. Now suppose there exist two constants 6, and &, which
simultaneously satisfy the required properties, then o, <96, and 6, <o,. This
implies 01 = d,. So the desired ¢ is unique.

Proposition 3.2 If A = (61)B and B = (6,)C, then A = (6)C, where 6 =6, *9,.

Proof. Since A = (61)B and B = (4,)C, we have

d(A B)= max(sup|r (X) — 1, (X)), sup|arg (x)—arg, (x)|j
and

d(B, C)= max(sup|r (x) — (X)), sup|arg (x)—arg, (x)|j<l S,
Therefore

leEJlE)|rA(x)—rB(x)|sl—§l and is;gmargA(X) argy (x)|<1-4,,
and
sup|rs (X) — 1. (x)|<1-5, and isng|argB(x)—argc(x)|31—52.

xelU
Consequently, we have

d(A C)= max[sup|r () = 1. (x)|, sup|arg (x)—arg, (x)|}

ax[sxgﬂn(x)—rB<x>|+ngUp|rB<x)—rc(x>|,

13



1 1
o suplarg , (x) — arg, (x)| + ——suplarg, (x) — arg (x)lj
JC xeU 27[ xeU

<max((1-6,)+(1-4,) 1-6,)+(1-3,)
=(1-6)+(1-5,)=1-(5,+5,-1),
and d(A, C) <1 from Definition 3.1. Therefore
d(A C)<1-6,%5,=1-6.
Thatis A = (6)C.

Theorem 3.2 If A = (6,)4” and B = (6,)B’, then AUB =(min(s,, 5,))A'UB'.
Proof. Since A = (61)4 " and B = (J2)B’, we have
d(A A)= max[sup|r (X)—ry (X)), sup|ArgA(x) Arg ,. (x)|j L

and

d(B, B) = max(sup|r (X) =1 (X)), sup|ArgB(x) ArgB(x)|)<1 5,.

Therefore
supr, (x) =1, (x)[<1-4, and ZLSUPIArg (x)— Arg . (X)| <1-3,,
xeU JT xeU

and

sup|rg (X) —rg. (X)|<1-6, and zisup|ArgB(x) Arg . (x)| <1-6,.

xelU JT xeU
Consequently, we have

SUP|Fy g () ~ Py (0] = Suplmax(r, (), 15 () = max(r (), 1 (X))
suplr, (X) = r.(X)| i r,(x)>r,(x)and r,(x) > r,.(X)
sxaup|rA(x) —r(X)| i r,(x)>r,(x)and r,.(x) > r,(X)
sxaup|rB(x) —r. ()| if r,(x)>r,(x)and r,(x) > r,.(X)
sxl::p|r8(x) —r.(X)| if r,(x)>r,(x)and r,.(x) > r,.(X)

1-6, if r,(x)>r,(x)and r,(x)>r,.(x)
sup|r, (x) = r.(x)| if r,(x) = r,(x) and r,.(x) > r,.(x)
< xeU
| suplr, () = ()] if r(x) > r,(x) and r,.(X) > r,.(x)
1-5, if 1,(x)>r,(x)and . (x) > 1. (X)
1. Consider the case r,(x) > r,(x) and r,.(x) > r,.(X) .
@ I r,(x)-r,(x)=0, then r,(x)—r.(x)>r,(x)-r,.(x)=0 from r,.(x)>r,(x).
Therefore
suplr, (X) = 1 (] = sup(1, () = 1, () < sUp(r, (x) = 1. ()
<suplr, (X) -1, (x)|<1-6,.
2 If r,(x)-r.(x)<0, then r.(X)—r,(x)=r.(X)—r,(x)=0 from r,(x) <r,(x).
Therefore
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suplr, (X) = 1 (] = sup(r, () = 1, () < sup(r () — 1, ()
<sup|r,.(X) — 1, (X)|<1-6,.

Thus, if r,(x) > r,(x) and r,.(x) > r,.(x), we have
suplr, (X) — 1. ()| < max(1- 5,,1- 5,) =1-min(5,, 5, ).
xeU

2. Similarly, We can prove
suplr, (X) — 1, (X)| < max(1- 5, 1- 8,) =1-min(s,, 5,),
xelU

if r,(x)>r,(x)and r,(x) > r,.(x). So, we have
sUp|r, ¢ (X) = e (X)| < Max(1-6,,1- 6,)=1-min(3,, 5, ).
xeU
The other hand, we have also

1
—sup|arg AUB (X) —arg e (X)|
27[ xeU

— L supmax(arg, (), arg, ()~ max(arg, (x), arg, ()
JU xeU

zisup|arg A(x)—arg A,(x)| if arg,(x)>arg,(x)and arg,.(x) > arg.(x)

T xeU

Zisup|arg J(X)—arg,.(x)| if arg,(x)>arg,(x) and arg,.(x) > arg .(x)
JC xeU

Zisup|arg . (x)—arg A.(x)| if arg,(x)>arg,(x)and arg,.(x) > arg,.(x)
T xeU

zisup|arg s (x)—arg B,(x)| if arg,(x)>arg,(x)and arg,.(x) > arg ,.(x)
T xeU

1-6, if arg,(x)>arg,(x)and arg,.(x) > arg,.(x)
Zisup|arg A(x)—arg B.(x)| if arg,(x) > arg,(x) and arg,.(x) > arg ,.(x)
S JC xeU .
zisup|arg 5 (x)—arg A.(x)| if arg,(x)>arg,(x)and arg,.(x) > arg,.(x)

JT xeU
1-0, if arg,(x) > arg,(x) and arg.(x) > arg,.(x)

1. Consider the case arg,(x) > arg,(x) and arg,.(x) > arg ,.(X) .
(1) If arg,(x)—arg,.(x) >0, then arg,(x) —arg,.(x) > arg ,(x) —arg,.(x) >0 from
arg,.(x) > arg,.(x). Therefore

1 1
= suplarg, () - arg, () = suplarg, () - arg, (¥)
JU xeU 27[ xeU

<= suplarg, ()~ arg, ()

JU xeU

<= suplarg,(x) — arg,,(x)
272' xeU

<1-9,.
(2) If arg,(x)—arg,.(x)<0, then arg,.(x)—arg,(x)>arg,(x)—arg,(x) >0 from
arg, (x) < Arg ,(X). Therefore

1 1
——supfarg ,(x) - arg,,.(x)| = ——sup(arg,, (x) - arg,, (x))
27[ xeU 27[ xeU
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< Zisup(arg B’ (X) —arg, (X))

JC xeU
< suplarg, (x) - arg, (¥)
272' xeU
<1-6,.
Thus, if arg,(x) = arg,(x) and arg.(x) > arg ,.(x) , we have
Zisup|arg LX) —arg . (x)| < max(1-5,,1-8,)=1-min(&,, 3,).
JT xeU
2. Similarly, We can prove
2isup|arg (x) —arg . (x)| < max(1-6,,1-6,)=1-min(3,, 5,),
JC xeU
if arg,(x)>arg,(x) and arg,.(x) > arg.(X). So, we have
Zisup|arg e (X) —arg, .. (x| < max(1-o,,1-6,)=1-min(3,, 3,).

JT xeU
Hence

d (AU B A'UB ) max(sup| AuB (X) AuB (X)| Sup|argAuB (X) argAuB (X)U
<max(l-5,1-35,)=1- mm(&l, 3,).
Thatis AUB =(min(4,, &,))AUB".

Corollary 3.1 If A =(5,)B,, ael, where | is an index set, then
U, A, =(nf,, 5,)u,., B

ael ael Ya ael at

Proof. This is because

d(uI A, B,)= max(sup

(=1 (0 o sunfarg, () -arg _, (9

max(supsupr (x)— supr (X)), 21 supsuparg, (x) - suparg (x)j
xeU | ael JT xeU | ael
Smax[supsup (x)—r, (x)‘ supsup‘arg (x) —arg, (X)D

acl  xeU

max(supsup‘ (x)—r, (x)‘ sup—sup‘arg (x)—arg, (X)U

= max| sup(1— 5, ), sup(1— 5)):sup(1—5a) 1-inf 5,

ael

acel acl acel

from Lemma 3.2.
Theorem 3.3 If A = (6)B, then A =(5)B.

Proof. This is because of

d(A, B)= max(sup|r (x)-r, (x)| sup|arg (x)—arg, (X)U
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aX(sngpl(l— r,(x)-0-r,(x), %sxgupl(Zﬂ —arg,(x))- (27 —arg, (x)]j
= max[sxljup|rA(x) — 1, (X)), isxljup|argA(x) —arg, (x)|)
—d(A B)<1-6.
Theorem 3.4 If A = (6))4” and B = (,)B’, then AN B =(min(5,, 5,))ANB".

Proof. By use of Theorem 3.2 and 3.3, we have A =(5,)A, B =(5,)B'and AUB =
(min(&,,8,))A"UB". Thus

AnB=AUB =(min(s,, 5,))A'UB' = (min(s,, 5, ))ANB',
from Proposition 2.2 and 2.3.

Corollary 3.2 If A =(,)B,, ael, where | is an index set, then
mael Aa (infael 5a)mael Ba'

Proof. By using Corollary 3.1 and Theorem 3.3, we have
A, =(,)B,, Yaelandu,, A, =(inf,_ 5,)u,, B, Thus
M A - U A (Infael a)U Ba :(Infael 50:)(\I Ba'
acl ae

ael ael

Corollary 3.31f A, =(0,4)B,,, ael,, Bel,wherel;and |, are index sets, then

of !

U mAﬁ (lnflnf5ﬁju mBﬂ

acel; pel, acel; pel, acely pel,

and
muA [lnflnchﬂ)muB

acly pel, acely pel, acly pel,
Proof. This is due to Corollary 3.1 and 3.2.

Corollary 3.4 Let
lim sup A, = ﬂUA lim sup B, ﬂU B.,

n=1 k=n n=1 k=n

lim inf A, = Uﬂ& lim inf B, UﬂB

n=1 k=n n=1 k=n

If A =(5,)B,, k=12,---, then
lim sup A, = (lnf 0, )||m supB,,

liminf A, = (lnf o )||m inf B,.

Proof. From Corollary 3.3, we have
OAA = (lnflnfé j@?&Bk, AUA = (lnf inf 5, j OB,
n:lk:n

n=lk=n n>1 k>n —1k=n n=1k=n n>1 k>n,

This implies that
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limSup A, = (lg o, )Iim supB,, Iliminf A, = (lnf o )||m inf B, .

N—o0 n—o0 n—oo n—o0

Theorem 3.5 If A= (0;)4° and B = (6,)B’, then Ao B = (5, *J, )AB".

Proof. Since A = (61)4 " and B = (J2)B’, we have
d(A, A)= max(sup|r (X) =1 (X)], sup|arg (x)—arg, (X)U
and
d(B, B')= max(sup|r (X) = 1. ()], sup|arg (x)—arg, (x)|}<1 S,
Therefore
leEJUp|rA(X) -r.(x)|<1-6, and %sxl:umarg J(X)—arg,(x)|<1-4,
and
SXEUD|VB(X)—"B-(X)|31—52 and isxgumargB(x)—argB.(x)|£1—52.
Consequently, we have

d(As B, AoBY) = max(supm(x) o O0) S suplary, (0 - argAB(x)|j

|

|ar9 (x)arg, (x) _arg,(x)arg,(x) , arg,(x)arg,(x) _arg, (x)arg,.(x)|
27 27 27 27 |

. max[sup|rA(x><rB () = 1, (X)) + (£, () = 1 (O, (X),

= max(sxlejup|rA(X) r,(x) — I’A-(X)i‘B-(X)L

(argA(x) arg, (x))_ 2ﬂ(arg,\(x) | argB(x)j
27 27 27 27

1
—sup|2z
272' XeUp

- max[sup\n(x)e(x) 1,00 () + 1,090, (0 — T, (91, ()]

27[ XeU

arg...(x
= sup 92 () arg, (1) - arg,, (%) + (arg (9 —arg , () 29X
JU xeU 7[
< max(sup| r, (X) = 1. ()| +suplr, (X) = r,. (X)),
xeU xeU
1
E(suuplarg s (X) —arg, (x)| + suplarg , (x) - arg A.(x)lj
<max((1-5,)+(1-6,), 1-5,)+(1-5))=1-(5,+ 5, -1).
Further we note that d(A- B, AB") <1. So
d(AoB, AoB') <13, *5,.

Corollary 35 If A, =(0,)B,, ael, where | is an index set, then

Ao Ry orio A, = (6,58, x %5, )B o Byow 0B,

Proof. Trivial from Theorem 3.5.
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Theorem 3.6 If A =(5,)A,n=1,2,---,N, then A x A, x---x A, =(inf__ 5 )A x
x A XX AL

Proof. Since A =(5,)A,,n=12,---,N, we have

d(A, A)= max[ r, (00) =1, ()], —sup njﬂ—én,
27[ xeU
foranyn=1, 2, ..., N. Therefore
sup‘ (x.)— <1-6, and isup <1-90,.
272' xeU

Consequently, from Lemma 3.2, we have

d(Alx"'XAN! Al'x...x 'AN)

=max| sup

xeU x--- XU

1
rAlx...xAN (X) - r,qi'XA.AXA,‘q (X)" Py Sq,pu‘arg A x Ay (X) —arg A xPy (X)D

=max| su su
xeUx: eu 1=nsN JT xeUx: E(U j
< max| supsupjr, (x,) - supsup
1<n<N x,eU, 7Z' 1<n<N x,eU,

< max(sup(l—&n), sup(1—5n)) —inf J..

1<n<N 1<n<N In<N
Theorem 3.7 If A= (6,)4 " and B = (6,)B’, then A+ B = (51 * 0, )A'J?B'.

Proof. Since A = (61)4 " and B = (d2)B’, we have
d(A, A)= max[sup|r (X) = (X)), sup|arg (x)—arg, (X)U
and
d(B, B')= max(sup|r (X) — . (X)]; sup|arg (x)—arg, (x)|}<1 S5,
Therefore
SXEUP|VA(X)—VA-(X)|$1—51 and —ﬁsxtejup|arg (x)—arg, (x)|<1-4,
and
leEJUp|rB(x) —r,(x)|<1-6, and %sxgumarg . (X) —arg,.(x)|<1-6,.
Consequently, we have

d(A+B, A4B) = max(sup

a0~ 1oy (0] S supfarg ., (0 - arg, ., (x)|j

- max(sxuy(rA () + b (X) = 1 (%) - T (X)) = (0 (%) + g (0 = £ (0. (0)],

1
—sup|2z
JC xeU

o (arg (x) arg, (x) _arg, (x) arg, (x))
2 27 2 2
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@000, 80,00 _ &g, () arg, (),
27 27 27 27

J

= max( supl(L- 1, (0)(F, () = 1, () + (L= . (K5, (9~ 1, (),

_argg(x),,arg,(x) arg,(x),  , _arg.(x),arg,(x) arg,(x)
@ 27 X 27 27 )+l 2 X 27 2 )

J

| arg, (9)]arg, () _ arg, (¥)
2r || 2r 2r

sup
xeU

< max{ supfL~ 1, (0], ()~ £, 9]+ supiL~ £, (¥, (9 =, ()

sup}l— arg, (x)|arg,(x) arg,.(X)| 4 sup

2r | 2n 27

xeU

< max(sup|rA(x) — 1, ()] +suplr, (X) = r,. (X)),

1
o s, (4 - g, (). +sulerg, () g, (0
<max((1-6,)+@-5,), 1-5,) +(1-6,))=1-(5, + 5,)-1.

Further we note that d(A+ B, A"+B') <1. So
d(A3B, ATB') <1-6, 5,

Corollary 3.6 If A, =(5,)B,, ael, where 1 is an index set, then
AFTA+-FA =(5%5,*--%5,)B,+B, +---+B,.

Proof. Trivial from Theorem 3.7.
Theorem 3.8 If A= (61)4”and B = (62)B’, then AU B = (5, *5,)AUB',

Proof. Since A = (01)4 and B = (J,)B’, we have
d(A, A)= max[sxl:Up|rA(x) —r.(X), %sxljupprg L(x)—arg A.(X)U <1-6,
and
d(B, B)= max[sxlejup|rB (X) — . (X)), %sxlejumarg . (x)—arg B.(X)U <1-6,
Therefore
le:up|rA (X)—r.(x)|<1-6, and %sxgumarg J(x)—arg,.(x)|<1-4,
and
sXLEJUp|rB (X)-r,.(x)|<1-5, and isxgumarg - (X) —arg,.(x)|<1-6,.

Consequently, we have
suplr, o (X) = I () = supjmin (L, 1, (x) + 1, (X)) — min 1, r,.(X) + 1. (X))
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IA

<sup
xeU

0 if r,(x)+r,(x)>1andr,(x)+r.(x)>1

sup(l— r.(X)— rB.(x)) if r,(x)+r,(x)>1andr,(x)+r,.(x)<1
sup(1— rf;) —r,(x)) if r.(X)+r,(x)<landr,(x)+r,(x)>1
supjr, (x) +ry(x) —r, (x) - rB.(x)‘ if r,(x)+r,(x)<landr,(x)+r.(x)<1

OXE if r,(x)+r,(x)=1and r,(x)+r.(x)>1
sup(rA(x) =1 (X) +1,(X) - rB.(x)) if r,(xX)+r,(x)>1and r,.(x)+r.(x) <1

xeU

sup(r, () =1, () + £, () = ,(x)) if £, (x) +1,(x) <land r, (x) + 1, (x) 1

sup|r, (X) + 1, (X) =, (X) - rB.(x)‘ if r,(x)+r,(x)<land r,(x)+r.(x) <1

xelU

() = 1. (X)] +supjr, (X) — 1, ()| < (- 6,)+ (1-6,)=1- (5, + 5, - 1).

The other hand, we have also

1
2—sup|arg AUB (X) - arg A'UB' (X)|
JT xeU

IN

isup|min (27, arg,,(x) +arg, (x))— min (27, arg () + arg ,.(x))
JU xeU

if arg,(x)+arg,(x) =2z
arg . (x) +arg,.(x) > 2z

if ar ar )
isup(zﬂ —arg . (x)—arg, (x)) if arg, (x) +arg,(x) > 27
27[ xeU A arg A(X) N arg B(X) . 27[

if ar ar 2
isup(27r—argA(x)—argB(x)) if arg,(x)+arg,(x) <27
27 xeu arg . (x) +arg,.(x) > 27
if arg,(x)+arg,(x) <2z

0

isup‘arg A(X) +arg, (x) —arg,, (x) - arg,, (x)|
27[ xeU

arg . (x) +arg,.(x) < 2z
if arg,(x)+arg,(x)=>2r
arg,(x)+arg.(x)>2r

if ar ar >9

isup(arg A(X) +al’gB(X) —arg (X) —arg B,(X)) I gA(X)+ gB(X) T
27T xeu A arg ,.(x)+arg,.(x) <2z
if arg,(x)+arg,(x) <2z
arg . (x) +arg,.(x) = 2z

if arg,(x)+arg,(x) <2z

arg ,.(x)+arg,.(x) <2z

0

zisup(arg (X)+arg, (x) —arg, (x) —arg, (x))
JC xeU

1
gsuup\arg J(X)+arg, (x) —arg , (x) —arg,.(x)|

< isup|rA(x) —r,. ()| + isup|rB (X)) <@-0,)+@1-6,)=1-(5, + 6, -1).
271' xeU 272' xeU

Therefore

d (AU B, AIQB') = max(siphms (X) - rA'uB'(X)|v %Suumarg AUB (X) —arg A‘QB'(X)|]

<1-(5,+ 6, -1).

Further we note that d(AU B, AUB') <1. So

d(AUB, AUB) <1-6, *5,.
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Theorem 3.9 If A= (6;)4" and B = (52)B’, then AAB = (5, *5,)A"B'.

Proof. Since A = (61)4 " and B = (J2)B’, we have
d(A, A)= max[sup|r (X) =1 (X)), sup|arg (x)—arg, (X)U S,

and
d(B, B")= max(sup|r (X) — . (X)]; sup|arg (x)—arg, (x)|J<1 S,
Therefore
leEJUp|rA(x) -r.(x)|<1-6, and %sxgupprg J(X)—arg, (x)|<1-4,
and

suplr, (x) - r,.(x)| <1-6, and Zisup|argB(x) —arg,.(x)|<1-4,
xeU JU xeU

Consequently, we have
sup| s () = Ty a (X)| = sup|max(0 r,(X) + 1, (X) 1) — max(0, r,(X) + r,.(x) 1)

0 if r,(x)+r,(x)<landr, (x)+r.(x)<1
sup( r.(x)+r,.(x)— 1) if r,(x)+r,(x)<land r,.(x)+r,.(x)>1
= sup(rA(x) +1,(x)-1) if r.(x)+r,(x)>1and r,(x)+r,.(x)<1

sup|r, () + 1, (X) = 1, () =, (x)|  if 1, (%) + 1, (x) <Land r,.(x) + 1, (X) <1

0 if r,(x)+r,(x)<landr,(x)+r.(x)<1
sup( r.(x)+r,.(x)—r,(x) - rB(x)) if r,(x)+r,(x)<landr,(x)+r.(x)>1
sup(r (X) + 1y (X) =1, (X) - rB,(x)) if r,(x)+r,(x)>1and r (x)+r,.(x)<1

xeU

sup|r, (%) + 1, (X) = 1, () =, (x)| i 1, (X)+ 1, (x) >1and 1, (X) + 1,(x) > 1

IA

< suplr, () = 1, (9] + suplr, () = 1, (] < (1= ) + (1= 5)) =1 (8, + 6, 1)
The other hand, we have also

1
2_Sup|argAmB(X) argAmB (X)|
JU xeU

:Zisup|max (0, arg ,(x) +arg,, (x) — 2)— max(0, arg , (x) + arg,.(x) — 27
JT xeU

if arg,(x)+arg,(x) <2z
arg,(x)+arg,.(x) <2z

if <2
isup(arg (X)+arg,.(x)—2r) if arg,(x) +arg,(x) <2z
27T xeu arg . (x) +arg,.(x) > 27

i ,
isUlO(argA(x)jLargB(x)_z,;) if arg,(x)+arg,(x) > 27
o arg . (x) +arg,.(x) < 2z

if arg,(x)+arg,(x) <2z
—sup\arg (X) +arg, (x)—arg,, (X) - arg,.(x)|
27T xeU arg,.(x) +arg,.(x) > 27

0
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if arg,(x)+arg,(x) <2z

arg,.(x)+arg,(x) <2z
if arg,(x)+arg,(x) <2z

arg,.(x) +arg,.(x) > 2z
if arg,(Xx)+arg,(x) > 27

arg,.(x)+arg,(x) <2z

i :
_SUp‘arg (X) +arg, (x)—arg,, (x) - arg,.(x)| if arg, (x) +arg,(x) > 27
27 xeu arg A,(x) +arg B'(X) S o

0

—-suplarg, () + arg, (x) - arg, () - arg, ()
T xeU

IN

~—suplarg, () + g, ()~ g, () - a1g, ()

1 1
< gsuup|rA(x) —r.(X)|+ Esuup|rB (X) -, <@-0,)+@1-6,)=1-(5, + 6, -1).
Therefore
d(AAB, AB) = max[suﬂrm (00~ O S SUDIATG 00 ATG . (x)|]

<1-(5,+5,-1).
Further we note that d(A" B, AnB') <1. So
d(AAB, AnB) <1-(5, *5,)

Theorem 3.10 If A= (9,)4" and B = (6,)B’, then A — B =(5, *5,)A| - |B".

Proof. Since A = (d1)4 " and B = (d,)B’, we have

d(A, A)= max(sup|r (X) = (X)]; sup|arg (x)—arg, (x)|]
and

d(B, B') = max[sup|r (X) — . (X)), sup|arg (x)—arg, (x)|}<1 S,
Therefore

leEJUp|rA(x) -1, (x)|<1-6, and %sxlejumarg J(X)—arg, (x)|<1-4,
and

sxlEJUp|rB(x)—rB.(x)|§1—52 and 2—sup|arg (x) —arg,.(x)|<1-4,.

JT xeU
Consequently, we have

SUB|T, 1 (X) = o (0] = sup|max(0, 7, (x) =, (X))~ Max(0, 1, () — . (X))
0 if r,(x)—r,(x)<0and r,(x)—r.(x)<0
sxgup( () -1, (%) if r (xX)—r,(x)<0and r,(x)—r,.(x) >0
=1 sup(r, () =1, (X)) if r,(x)—r,(x)>0and r,(x)-r.(x)<0
SLI}J‘rA(X) —r(X)—r.(X)+ rB.(x)‘ if r,(x)—r,(x)>0andr,(x)+r,.(x)>0
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0 if r,(x)—-r,(x)<0and r,(x)—-r,(x)<0
sup(r, () =, (X) =, () +1,(x)) i r,(x)—r,(x) <0and r,(x) - r,.(x) >0

xeU

sup(r, () =1, () =1, (X) + £,.(x) i r,(X) =1, (x)>0and r,(x) —1,.(x) <0

xeU

r(x) =, (x)—r.(x) + rB.(x)‘ if r,(x)—r,(x)>0and r,.(x)—r,.(x)>0

IN

<suplr, (x) — 1, () +sup|r, (X) — 1, (X)| < 0= 6,)+ 1 3,)=1— (6, + 5, - 1).
xeU xelU
The other hand, we have also

1
—sup‘arg ws(X) —arg AHB.(X)‘

:—sup\max(O arg,(x) —arg, (x)) — max(0, arg ,.(x) — arg, (x))

JT xeU
if arg,(x)—arg,(x)<0
arg , (x) —arg,,(x) <0

1 if arg,(x)—arg,(x)<0
—sup(arg (x)—arg, (x))
27T xeu arg . (x)—arg,.(x)>0

1 if arg,(x)—arg,(x)>0
> —sup(arg,, () - arg, (x))
T xeu arg,.(x)—arg,(x)<0

if arg,(x)—arg,(x) >0
—sup\arg (X) —arg, (x) —arg, (x) + arg,.(x)|
27T xu arg,.(x)—arg,(x)>0

0

if arg,(x)—arg,(x)<0
arg,.(x)—arg,.(x)<0

1 if arg,(x)—arg,(x)<0
zsxgup(arg (x)—arg,.(x)—arg ,(x)+arg, (x)) arg () —arg. (x) > 0

if arg,(x)—arg,(x)>0
Esxgup(arg () —arg, (x) - arg, (x) +arg,.(x)) arg,.(x) —arg,.(x) <0

if arg,(x)—arg,(x)>0
arg , (x) —arg,(x) > 0

0

IN

L uplarg, (9 + arg, (x) — arg, (x) ~arg,, (x)
277,' xeU

1 1
< 5suup|rA(x) —r.(X)|+ Esuup|rB () -, ([ <@-0,)+@1-6,)=1-(5, + 6, -1).
Therefore
d(AI |B A| |B ) max(sup Al- \B(X) A\ B’ (X)‘ Sup‘arg Al \B(X) arg Al-|B (X)D

<1-(5,+ 6, -1).
Further we note that d(A—|B, A'|-B") <1. So
d(A-[B, A|-B') <1-6, *5,.

Theorem 3.11 If A= (6,)4”and B = (d,)B’, then AVB = (5, *5,)A'VB'.

Proof. Since A = (61)4 " and B = (J2)B’, we have
d(A A)= max(sup|r (X) = (X)]; sup|arg (x)—arg, (x)|] ¥

and
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d(B, B)= max(sup|r (X) — . (X)), sup|arg (x)—arg, (X)U

Therefore
sup|r,(x) = r.(x)|<1-6, and Zisup|argA(x) —arg,(x)|<1-4,
xeU JT xeU

and

suplr, (x) - r,.(x)| <1-6, and zisup|arg (x) —arg,.(x)|<1-4,.
xeU JU xeU

Consequently, we have

d(AVB, A'VB') = max(sup| Fave (X) = Mg (X)| Sup|ar9Avs(X) arg v (X)U
- max(quLE)HrA(x) — 15 ()] =1y (0 = 1. (X)),
- 4plarg, (0 -1, ()] -, (9 -, (9

ax(sup|max( rA(X) -l (X)’ s (X) - rA(X)) - max( rA'(X) - rB'(X)’ rB'(X) - rA'(X))|’

xelU

- suplmax(arg, (x) - arg, (x), arg, () - arg, ()
JU xeU

—max(arg, (x) —arg,(x), arg,.(x) —arg, (X))|))

< max(suﬂ r(X) =1y ()| + suL|13| 5 (X) =g (X)),

1
- ((suparg. (0 —arg., (] + suplarg () - arg B.(x)|)j

<max((L-35,)+(@-5,), 1-68,)+(1-36,))=1-(5, + 5, 1)
Further we note that d(AVB, A'VB') <1. So
d(AVB, A'VB') <1-6, *6,.

Theorem 3.12 Let AAB=(ANB)U(BNA) If A= ()4’ and B = (52)B’, then
AAB = (min(5,, 5,))A'AB".

Proof. We can prove by using AAB = (Am B)U(AN B) and Theorem 3.2 — 3.4.
Theorem 3.13 If A= (6:)4° and B = (62)B’, then A||, B =(min(5,, 5,))A]|, B

Proof. Since A = (91)4 " and B = (J2)B’, we have

d(A, A)= max[sup|r (X) =1 (X)), sup|arg (x)—arg, (X)U
and

d(B, B)= max[sup|r (X) = . ()], sup|arg (x)—arg, (X)U

Therefore
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suplr, () =1, (0] <14, and isxgup|argA(x) ~arg, (x| <1-6,
and
leEJUp|I’B (X)—r,.(x)|<1-6, and %sxgumarg . (X)—arg,.(x)| <1-6,.
Consequently, we have
d(All, B, AT, B) = max(sxgup\wx) 1 (0} 5 supfrg (0 -arg A.lisw(x)\j
— max( suplmin(r, (<) 7,(9)+ @~ 2)max(r, (), ()
—amin(r, (%), 1,00)- @ A max(r, (), 1, ()]
- suplmin{arg, (), arg, (0)+ (- ) max(arg, (1), args ()
— Amin(arg, (x), arg(x))- (L-A)max(arg, (x), args (x)))
< max(sxgup(z\min(n(x), r, (X))~ min(r, (%), ()|
+ (L A)max(r, (%), 1, (x)) — max(r, (x), 1. ()]
%sxgupﬂ(min(argxx), arg, (x))- min(arg, (x), arg,.(x))|
+ (L A)max(arg , (x), arg,, (x)) - max(arg , (), arg,, ())))
< max( sup(2max(r, (9 -1, (0} 1, (9 =, ()
+ (1= 2y max((r, (%) = 1, ()], |r, (%) = 1, |
%sxgjp(i max(|arg, (x) - arg, (x)|, larg, (x) - arg, (x)))

+(1-12) max([argA(x) —arg, (X)|, [arg, (x) — argB,(x)|))
<max(max(1-&,,1-6,), max(1-&,,1-6,))=1—min(5,, 5, ).

Theorem 3.14 Let Ay, B1, C1, Ay, B, and C, be complex fuzzy sets on U, If
y, (X) <15 (X) <1 (%), Ty (X) <1 (X) <1, (%),
arg, (x) <argg (x) <argg (x), arg, (x)<argg (x)<arg. (x), vxeU
and
A =(5)A, C =(6)C, A =(6,)C,,
Then B, =(J,, *min(5,, 5.))B, .

Proof. Since A; = (da)A2 and C; = (J¢)C,, we have
1
d(A, A)= max(sip‘rﬁ(x) — Iy, (x)‘, Esuy‘arg&(x) —arg, (X)D <1-94,,

1
d(A, C)= max(sug‘r,ﬁ (X) 1, (%) gsulﬁ)‘arg o (X)—arg, (X)D <1-6,,

and
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1
d(C, C,)= max(su&)‘rc1 () -r, (x)‘, gsgup‘argq (X)—arg, (X)U <1-96..
Therefore

1
s;tj)‘rAi (X) =Ty, (x)‘ <1-¢6, and stlj)‘arg m(X)—arg, (x)‘ <1-94,,

suplr, () =1, (] <16 and iSulo\arg n(9) —arge () <1-5,,
xeU ! 27T xeU 1
and

sup‘rcl (X)—r (x)‘ <1-¢6, and isup‘argcl (x)—arg. (x)‘ <1-9,.
xeJ 2 27[ xeJ 2
From
rA1 (X) B rC2 (X) = ral (X) B rB2 (X) < rc1 (X) A (X),
arg, (x) —arge, (x) <argg (X) —argy (X) <arg. (x)—arg, (x), vxeU
we have
re, (%) =g, (0)] < max([r,, (%)~ 1, (O, [re, () =, (0))

‘arg g (X)—arg, (x)‘ < maanrg L(X)—arg. (x)‘, ‘arg o (x)—arg, (X)D vxeU
However

‘rAl (x)-re, (x)\ < \rAl (X) =, (x)\ + ‘rcl (X)-re, (x)\ <1-5,+1-6.,
‘rcl(x) -, (x)‘ < ‘rcl(x) - rAi(x)‘ + ‘r,\(x) -, (x)‘ <1-6,,+1-96,,

1
gsxgup\arg L () —arg. (x)|

7T xeU

<1-5,_+1-6,

1 1
< - —suplarg, (x) - arge, ()] + - —supjarge, () -argc, (x)

isup
272' xeU

arg, (x)—arg,, ()

1 1
< stl:lf)‘argq (x)—arg, (x)‘ + gsxglf)‘arg A (X)—arg, (X)‘

<1-6, +1-6,.
Thus
1, () = g, ()| < Max(2-8,, - 5,, 2-8,, - 5,)<2-35,, —min (8, 5, ),

Zisup‘argcl(x) —arg, (x)|smax(2-5, -45,,2-5,,-6,)<2-5,,-min(5,, 5,).
JC xeU

Further we note that d(B,, B,) <1. So
d(B,, B,) <1-max(0,d,, + min(J,, o,) —1).
4. Example Application

We consider a signal processing example below which involves the application of &
equalities of complex fuzzy sets. In this section we are not intended to show the
potential advantages of using complex fuzzy sets in comparison with existing
alternative approaches. The reader should be referred to Ramot et al., [10] for the
rationale of using complex fuzzy sets. Rather, we want to show how the theoretical
results presented in this paper can be applied in reality. The example demonstrates the
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use of o-equality theory of complex fuzzy sets in application that determines if any of
the L different signals Si(k), (1< < L)received by a digital receiver can be identified

as similar to a given reference signal R. Each of the signals S; and R are sampled N
times i.e. (L<k <N). The discrete Fourier Transforms of both S;(k) and R(k) can

obtained.

The problem statement of the example is taken from Ref [10]. Let S;(k) denote each
k-th sample (1<k < N) of the I-th signal 1<1<L).

Let Cin 1<n<N)be the complex Fourier coefficients of S;. Then S;(k) can be

expressed as
(27 (n-1)(k-D)

1 N
5|(k)=—ZC|n'e N
N

Let the Fourier coefficients of R be Cg , where (L<n < N). Then
(27 (n-1)(k-1)

RK) =—=3C, € °
N n=1 '

The aforementioned sum may be rewritten in the form

i27r(n—l)(k—1)+Na,‘n

S()=p2A, e (4.2)

where C,, = A, -e""", with A ,,a,, real-valued and A, >0foralln(1<n<N).

The purpose of the application is to determine which, if any, of the L signals received
can be identified as the reference signal, R. The reference signal R has been similarly
sampled N times, and its discrete Fourier transform is known. Let the Fourier
coefficients of R be Cr,, Wwhere 1<n < N, thus

i27r(n—l)(k—l)+NaRv"

RIO = DA e 4.3)

, with A, |, ap , real valued and A, >0 forall n.

iag

where Cp = A, -€

Calculating a measure of the similarity between two signals is possible by comparing
their Fourier transforms. Now we apply the following method supported by o-
Equality theory to compare the different signals.

Step 1) Normalize the amplitudes of all Fourier coefficients. Consider S, (1<1<L).
Denote as A, the (N-dimensional) vector of amplitudes of S,’s Fourier coefficients:
(A1, Aiz,..., Ain), and let Ag denote the vector of R’s Fourier coefficients: (Ary,
ARr2,..., ArN), let By denote the normalized vector 1/(norm(A)))A;, where norm(A))

[>N.(A,)?, and let Br denote the normalized vector 1/(norm(Ag))Ar. Thus, B

(Bi1, Bi2,..., Bin) is the vector of normalized amplitudes of S;’s Fourier coefficients.
Similarly, Br = (Br1, Bra2,..., Brn) is the vector of normalized amplitudes of R’s
Fourier coefficients.

Step 2) Define complex fuzzy sets S;n, (1<n<N,1<I<L)and R, (1<n<N) such
that their Cartesian product S, =S, x---x S, and R=R, x---xR, corresponding to
S| (1<I1<L)andR, respectively, as
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27 (n-1)(k-1)+Ng, ,

p, (K)=B,-e * , 1<kn<N,1<l<L (4.4)
and
i27r(n71)(k71)+NaR‘n
e, (K)=B,, -e N , 1<k,n<N. (4.5)
Therefore
g, (K kg, ky) = min B e 1<l<L (4.6)
and
s (K, Ky oo Ky ) =m|srgl Be., @ e 4.7)
Step 3) Calculate the distances of two complex fuzzy sets S, (1<1<L)and R,
. . 1 . .
d(sl ' R) = maX(klil:IPkN mlsr’]‘ B|,n _mlsrl]\l BR,n 1 gklvkszl:j-?k’\‘ 1@]2?\] al,n _12!11 al,nj
Smax( sup [B,, —B,,|. 1 sup ‘aln—aRnU. 1<I<L (4.8)
nef,2, N} ' 27T nefL2N) '

Step 4) In order to conclude if S; may be identified as R, compare: 1 — d(S;, R)
(1<I<L)toathreshold o. If 1 —d(S), R) exceeds the threshold, identify S, as R.

By this method, a device for measuring the similarity between two signals is
provided. The method can be of use for any signal analysis application in which the
relative phase between the Fourier components of the signals under consideration is
important.

Note that Step (1) above is the same as that in Ref [10]. However Steps (2) to (4) are
different and utilize the results derived in this paper.

5. Conclusion

Up to this point we have investigated the properties of various operations on complex
fuzzy sets and introduced a distance measure for complex fuzzy sets. This distance
measure was then used to define o-equalities of complex fuzzy sets which subsume ¢-
equalities of real-valued fuzzy sets defined in references [5, 6]. Two complex fuzzy
sets are said to be J-equal if the distance between them is less than 1-0. Suppose
A =(5,)B, and A, =(5,)B,, and f isan operation on two complex fuzzy sets. In the
preceding sections we have shown how ¢ varies with different form of f such that
f(A,A)=(5)f(B,,B,). An example application demonstrates that the concept of -

equalities of complex fuzzy sets can be exploited to pick up the underlying reference
signal from a set of noisy signals.

The importance of the work presented in this paper can be justified in theory as well
as in practice. On the one hand, this paper shows that the J-equalities of (complex)
fuzzy sets can be defined and investigated in a general framework by introducing a
distance measure for complex fuzzy sets. Such a distance measures the difference
between the grades of two complex fuzzy sets as well as that between the phases of
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the two complex fuzzy sets. In this way o-equalities may be further investigated from
the perspective of a metric space of (complex) fuzzy sets. On the other hand, as
shown in the example application of signal detection in Section 4, the concept of ¢-
equalities of complex fuzzy sets may be useful in various applications where errors of
membership functions of (complex) fuzzy sets are of concern.

A lot of research work can be conducted for the d-equalities of (complex) fuzzy sets
in the future. For example, given A =(5,)B,, A, =(5,)B, and f , how to determine a
maximal & such that f(A,A,)=(5)f(B,,B,). How to apply to the concept of o-

equalities of complex fuzzy sets to synthesis of real-time fuzzy systems is another
problem of interest.

Appendix

Comprison of the complex fuzzy sets, fuzzy sets (type 1 fuzzy sets), fuzzy complex
sets, and type 2 fuzzy set is listed below.

domain Co-domain
Complex fuzzy sets A given universe of discourse | Complex unit circle
Fuzzy sets A given universe of discourse | Real unit interval
Fuzzy numbers A given universe of discourse | Real unit interval
Fuzzy complex numbers | Complex numbers universe Real unit interval
Type 2 fuzzy sets A given universe of discourse | Fuzzy numbers

From above table, it can be seen that the four concepts have close relationships and
also remarkable difference although the operations on them may be similar.

Acknowledgments

The work presented in this paper was supported by Australian Research Council
(ARC) under discovery grants DP0557154 and DP0880739.

References

[1] JJ. Buckley (1987), Fuzzy complex numbers, in Proceedings of ISFK,
Guangzhou, China, 597-700.

[2] J.J. Buckley (1989), Fuzzy complex numbers, Fuzzy Sets and Systems, Vol.
33, No. 3, 333-345

[3] J.J. Buckley (1991), Fuzzy complex analysis I. Definition, Fuzzy Sets and
Systems, Vol. 41, No. 2, 269-284

[4] J.J. Buckley (1992), Fuzzy complex analysis IlI: Integration, Fuzzy Sets and
Systems, Vol. 49, No. 2, 171-179

[5] K.Y. Cai (1995), ¢ -Equalities of fuzzy sets, Fuzzy Sets and Systems, Vol. 76,
No. 1, 97-112

[6] K.Y. Cai (2001), Robustness of fuzzy reasoning and ¢ -equalities of fuzzy
sets, IEEE Transaction on Fuzzy Systems, Vol. 9, No. 5, 738-750

[7] S. Coupland and R. John (2008), New geometric inference techniques for
type-2 fuzzy sets, International Journal of Approximate Reasoning. Vol. 49,
No. 1, 198-211

30



[8] D. M. Dalalah (2009), Piecewise Parametric Polynomial Fuzzy Sets,
International Journal of Approximate Reasoning. In Press, available online
10 May 2009

[9] I. Georgescu, (2003), A Generalization of the CAIl 6 -equality of fuzzy sets,
Proc. International Conference on Fuzzy Information Processing: Theory and
Applications, Vol. I, Tsinghua University Press/Springer, pp123-127.

[10] D.H. Hong and S.Y. Hwang (1994), A note on the value similarity of
fuzzy systems variables, Fuzzy Sets and Systems, Vol. 66, No. 3, 383-386

[11] C.P. Pappis (1991), Value approximation of fuzzy systems variables,
Fuzzy Sets and Systems, Vol. 39, No. 1, 111-115

[12] D. Ramot, R. Milo, M. Friedman and A. Kandel (2002), Complex
fuzzy sets, IEEE Transaction on Fuzzy Systems, Vol. 10, No. 2, 171-186

[13] D. Ramot, M. Friedman, G. Langholz and A. Kandel (2003), Complex
fuzzy logic, IEEE Transaction on Fuzzy Systems, Vol. 11, No. 4, 450-461

[14] L. Toczy and K. Hirota (1993), Approximate reasoning by linear rule
interpolation and general approximation, International Journal of
Approximate Reasoning, Vol. 9, No. 3, 197-225

[15] J. Virant (2000), Design Considerations of Time in Fuzzy Systems,
Kluwer Academic Publishers.

[16] C.-T. Yeh (2008), On improving trapezoidal and triangular
approximations of fuzzy numbers, International Journal of Approximate
Reasoning, Vol. 48, No. 1, 297-313

[17] L.A. Zadeh (1965), Fuzzy Sets, Information and Control, Vol. 8, 338-
353

[18] G.Q. Zhang (1992), Fuzzy limit theory of fuzzy complex numbers,
Fuzzy Sets and Systems, Vol. 46 No. 2, 227-235

[19] G.Q. Zhang (1992), Fuzzy distance and limit of fuzzy numbers, Fuzzy
Systems and Mathematics, Vol. 6, No. 1, 21-28

[20] G.Q. Zhang (1991), Fuzzy continuous function and its properties,
Fuzzy Sets and Systems, Vol. 43, No. 2, 159-175

[21] G. Zhang, T. S. Dillon and K.Y. Cai (2008), Operation properties and J-
equalities of complex fuzzy sets, Submitted to Fuzzy Sets and Systems.

31



