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ABSTRACT 20 

Bayer process liquors present a difficult and complex matrix to the analytical chemist, 21 

and the history of the application of modern analytical techniques to this problem is a 22 

case study in innovation.  All Bayer process liquors contain organic compounds, in 23 

amounts varying from traces to several grams per litre.  The total organic carbon 24 

content of Bayer liquors may be less than 5 g/L up to as much as 40 g/L.  The 25 

presence of these organic impurities is of concern to Bayer technologists because they 26 

can have significant impacts on the economics of the process and the quality of the 27 

product.  This review examines the history and current state-of-the-art of the analysis 28 

of organics in Bayer process liquors, and provides guidance on the applicable 29 

techniques matched to a comprehensive list of the compounds most likely to be 30 

present.  31 

 32 
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FIGURE CAPTIONS 37 

 38 
Figure 1:  Schematic representation of a typical lateritic bauxite profile (diagram 39 

reproduced with the permission of BHP Billiton Worsley Alumina) [1]. 40 

 41 

Figure 2:  Sample preparation scheme for the separation of high molecular 42 

weight organics from Bayer liquors, derived from the descriptions given by 43 

Wilson et al. [25]. 44 

 45 

Figure 3:  Example of a determination scheme using GC-MS and GPC(SEC), 46 

adapted from Guthrie et al. [22]. 47 

 48 
Figure 4:  LC trace for medium MW (90-300 Da) compounds in a Bayer liquor 49 

from Guthrie et al..  The numbered peaks were identified by MS [22]. 50 

 51 

Figure 5:  IC trace for low MW compounds in a Bayer liquor from Picard et al. 52 

showing assignments by MS [27]. 53 

 54 

Figure 6:  Multidimensional determination sequence adapted from Whelan et al. 55 

[61] showing GPC-UV fractionation followed by LC-MS operated in full scan 56 

mode and LC-MS/MS operated in product ion mode. 57 

58 
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 59 

1. Introduction 60 

The Bayer process, by which bauxite is treated with strong sodium hydroxide to refine 61 

alumina, is applied to about 97% of the over 200 million annual tonnes of bauxite 62 

mined globally.  The organic compounds present in bauxite are primarily complex, 63 

water-insoluble materials derived from plant and animal matter, and include humic 64 

and fulvic matter, lignins and cellulose.  Relatively minor amounts of organic 65 

compounds enter the liquor from other sources which include various chemical 66 

additives such as flocculants (in some cases starch but predominantly synthetic 67 

flocculants), dewatering aids, crystal modifiers and water treatment chemicals [1].   68 

 69 

The organic carbon content of bauxite is generally in the range 0.02 to 0.50 % (w/w, 70 

carbon basis) [1].  Bauxite digestion is usually carried out at temperatures in the range 71 

135 to 245oC at sodium hydroxide concentrations in the region of 3.5 to 5 molar [2].  72 

Under these conditions a significant proportion of the organic matter present in the 73 

bauxite is extracted into the liquor [1] or released through the formation of volatile 74 

organic compounds [3].  The compounds extracted into the liquor undergo alkaline 75 

degradation reactions which lead to a predominance of low to medium molecular 76 

weight compounds at steady-state, with typically 90% of compounds in the molecular 77 

weight range 90 to 500 Da [1].   78 

 79 

The presence of organic impurities in the liquor has significant implications for all 80 

aspects of the Bayer process, including process yield, product quality [4, 5], scale 81 

formation [6] and environmental emissions [7], all of which affect the overall viability 82 
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of the process as well as being a key factor in the design of each specific plant.  The 83 

determination of organic impurities has been the subject of significant developmental 84 

effort and continues to be an active area of research.   85 

2. Historical Perspective 86 

The presence of organic compounds in bauxite was recognised very early in the 87 

history of the extraction of alumina from bauxite.  Only 13 years after Bayer patented 88 

his process [8], improvements patented by C M Hall included heating bauxite to burn 89 

off organic matter prior to digestion [9].  A study of the processing of Urals bauxite 90 

indicated the presence of soluble and insoluble organic matter [10], and that the 91 

soluble organic matter was 58% carbon.  Utley reported that Arkansas bauxite 92 

contained 0.3 to 0.4% organic matter which was about 50% carbon [11].  Most of the 93 

bauxite now being mined originates from lateritic deposits which are or have been 94 

overlain by forests.  Bauxite genesis relies on selective leaching of minerals by water 95 

percolation, resulting in a layered profile as depicted schematically in Figure 1.  In 96 

such a profile the organic carbon content varies from a maximum in the order of 1% 97 

in the overburden to a minimum of 0.1% or less in the clay floor of the deposit [1]. 98 

 99 

Please place Figure 1 near here 100 

 101 

The soluble organics which enter Bayer process liquors impart a red-brown colour to 102 

the liquor, the exact shade and intensity of which depends on both the bauxite source 103 

and the processing conditions [12].  The significance of the presence of organics in 104 

the liquor appears to have been first highlighted in the English-language literature in 105 

Pearson’s 1955 monograph on the aluminium industry [12], in which it was noted that 106 
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the organic matter in liquor originated mainly from the bauxite, and that it had a 107 

number of negative influences on the operation and economics of refining operation, 108 

and on the quality of the product.  A more detailed account of the origins and effects 109 

of organics in the Bayer process is given in the review by Solymár and Zsindely [13] 110 

of bauxites then being processed in Hungary.  The techniques available for the 111 

investigation of organic compounds in highly alkaline liquors at that time involved 112 

lengthy and complex wet chemical techniques [14], so the investigations in the 113 

industry were probably limited to determination of total organic carbon (TOC) by 114 

classical techniques such as permanganate titration [15, 16].   115 

 116 

It has long been known that oxalate is formed in the Bayer process, because sodium 117 

oxalate has limited solubility at high pH, and so can crystallize out if the organic input 118 

to the refinery is sufficient [12, 17].  However, a deeper understanding of the nature 119 

and reactions of organic compounds in Bayer liquors awaited the development of 120 

instrumental techniques for organic determination.  Specialised sample preparation 121 

techniques also had to be developed for application to the highly concentrated and 122 

complex matrix of Bayer liquors. 123 

 124 

Table 1 summarises as a timeline the main innovations in analytical techniques and 125 

their application to the analysis of Bayer liquors in the past 30 years.  Details of the 126 

application of these techniques to individual analytes are given in the Appendix. 127 

 128 

Please place Table 1 near here 129 

 130 
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3. Sample Preparation and Fractionation 131 

The methods of sample preparation for the analysis of Bayer liquors range from a 132 

simple dilution in water to complex preparation procedures, depending on the 133 

information required and the analytical methods to be used.  The following sections 134 

summarise the most important methods, in order of complexity. 135 

3.1. Dilution, Neutralization and Acidification 136 

Dilution in water has been found to be satisfactory for the determination of the most 137 

prevalent organic anions present in Bayer liquor by a number of analytical techniques.  138 

This has the advantages of simplicity and speed, which are particularly important for 139 

routine applications.  In addition, the risk of artefacts due to incomplete extraction or 140 

adsorption, losses encountered during fractionation or evaporation, and so on, are 141 

avoided.  However, the dilutions required are often quite high (at least 1:200, and 142 

often 1:1000 or more [18, 19]), which limits both the sensitivity and the variety of 143 

compounds that can be analysed by the analytical technique that follows, such as ion 144 

chromatography (IC) or capillary electrophoresis (CE).  Nevertheless, simplicity of 145 

sample preparation was one of the key reasons for the early adoption of IC as a 146 

routine method for the determination of oxalate and other important anions in Bayer 147 

liquors [20], and remains the method of choice for analysis in that application. 148 

 149 

Lever [21] used CO2 to reduce the alkalinity of the liquor and remove the aluminate 150 

content prior to determination under conditions favourable to the formation of a 151 

mixture of dawsonite (sodium aluminium carbonate) and aluminium hydroxide, which 152 

were then removed by filtration.  This procedure has the advantage of removing most 153 

of the aluminate from solution without adding mineral acid anions.  The solution was 154 
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then passed through a cation exchange resin to ensure that all of the organic 155 

compounds were in their acid forms to facilitate derivatization, neutralized with 156 

NaOH, and evaporated to dryness prior to being butylated for determination by gas 157 

chromatography (GC) with a flame ionization detector. 158 

 159 

Guthrie et al. [22] used a simpler procedure in which concentrated HCl was added 160 

directly to a liquor sample in an ice bath until the precipitated aluminium hydroxide 161 

was redissolved.  The resulting solution was butylated and analysed for low molecular 162 

weight compounds by GC.  To analyse intermediate molecular weight compounds, 163 

these authors evaporated the butanol extracts to dryness and reacted the residues with 164 

“Tri-Sil” (dimethyl-(trimethylsilylamino)Si) to produce the silyl derivatives for GC 165 

analysis.  Others [21, 23] have used methylation for this purpose. 166 

3.2. Precipitation and liquid or solid phase extraction 167 

The preparation for determination of the high molecular weight (“humic”) fractions of 168 

Bayer liquor generally involves first precipitating the “humic” material by 169 

acidification to a pH of 2 or less, as is the practice in the analysis of soils [24].  170 

Lever’s approach was to extract the precipitated organics with n-butanol and 171 

neutralize the extract with NaOH, followed by water-washing and ultrafiltration to 172 

produce a salt-free aqueous extract which could be separated into nominal molecular 173 

weight fractions by membrane filtration [21].  Alternatively, Guthrie et al. [22] kept 174 

the initial steps of the sample preparation the same as described in section 3.1 for GC 175 

analysis, and used tetrahydrofuran (THF) as the solvent for the butyl esters.   176 

 177 

Wilson et al. [25]  cautioned against the precipitation of aluminium hydroxide in the 178 

preparation of liquors for determination of high molecular weight compounds on the 179 
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basis that this may result in losses of some organic compounds by adsorption to the 180 

aluminium hydroxide surface.  They recommend a 1:10 dilution followed by rapid 181 

acidification to pH 1.5 with 1:1 HCl to precipitate the “humic” materials, which are 182 

then separated by filtration, redissolved in NaOH and extracted onto a polar 183 

adsorption resin (Amberlite XAD-7).  The organics are subsequently washed from the 184 

resin with deionized water to produce a neutral, salt-free solution containing the acid 185 

forms of the “humic” materials. The collected dried solid humic material is then 186 

extracted sequentially with diethyl ether, ethyl acetate, isopropyl alcohol and water 187 

[26] . 188 

 189 

Picard et al. [27]  tested two separate extraction methods which were followed 190 

directly by multidimensional chromatography and mass spectrometric analysis (see 191 

section 5.1).   192 

 193 

The first extraction method trialled was a liquid/liquid separation which used three 194 

different solvents of increasing polarity in succession (ether, ether/n-butanol, and n-195 

butanol) to separate the organics on the basis of their polarity.   196 

 197 

The second method was solid-phase extraction using a hydrophobic C18 stationary 198 

phase.  This was used to separate the organics into high, medium and low molecular 199 

weight (HMW, MMW and LMW) fractions.  The HMW fraction was defined as the 200 

material which precipitated at low pH, the MMW as that which was soluble at low pH 201 

and was retained on the C18 stationary phase, and LMW as the soluble fraction which 202 

was not retained.  On this basis, for samples taken from 10 different Bayer process 203 
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plants, it was found that the LMW fractions represented between 30 and 50% of the 204 

TOC of the spent liquors analysed [27] .   205 

 206 

Whelan and co-workers identified some anomalies from solvent extraction in which 207 

compounds with a range of polarities were found in a particular solvent [26]. They 208 

suggested that the solubility of humic materials may be controlled by association, in 209 

which small molecules can aggregate by arranging their polar groups internally to 210 

produce relatively hydrophobic micellular structures which are more soluble in less 211 

polar organic solvents than might be expected. This phenomenon may be a function of 212 

concentration as suggested, or it could be an artefact of the extraction procedure 213 

which entails dissolving organic matter from concentrated Bayer humic material that 214 

has been dehydrated and solidified. 215 

 216 

Other approaches to the determination of molecular weight fractions are discussed in 217 

the next section. 218 

 219 

3.3. Fractionation by Molecular Weight and Size 220 

Separation of organic compounds into fractions based on apparent molecular weight 221 

or molecular size by ultrafiltration (UF) or dialysis has been used to characterise the 222 

organic matter present in Bayer liquor. Lever [21] used UF through membranes with 223 

nominal molecular weight cutoff values (MWcutoff) of 0.5, 1, 5 and 10 kDa.  The 224 

fractions collected were then evaporated and weighed to obtain a coarse apparent 225 

molecular weight or size distribution.  Dialysis into 1.2, 6, 12, 25, 50, 100, and 300 226 

kDa MWcutoff fractions has been described by Wilson et al. [25, 28].   227 
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 228 

Gel permeation chromatography (GPC), also known as size exclusion 229 

chromatography (SEC), has been used to obtain a continuous apparent size 230 

distribution of the organic matter present in Bayer liquor [29]. Separation has been 231 

achieved on 500 × 7 mm x 140 Å and 100A Spherosil 100/200 porous silica bead 232 

columns in series [21] or on 300 x 7.8 mm x 500 Å and 100 Å µ-Styragel columns in 233 

series [22] with UV detection to obtain a molecular weight distribution of Bayer 234 

liquor extracted with butanol. Each of these chromatograms was a continuum with no 235 

discrete peaks.  236 

 237 

It should be noted that SEC with UV detection underestimates saturated aliphatic 238 

carboxylic anions, which are known to constitute a significant proportion of the total 239 

organic carbon (TOC) in Bayer liquors but are not good absorbers of UV.  A solution 240 

to this could be to incorporate continuous TOC (or, more strictly, dissolved organic 241 

carbon (DOC)) detection as well [30, 31], but application of this to Bayer liquors has 242 

not yet been reported.    243 

 244 

All separations based on molecular size should be treated with caution when applied 245 

to Bayer liquor extracts.  Membranes and size exclusion gels have long been used for 246 

the fractionation of proteins and peptides, for which purpose they are calibrated with 247 

particles of known size which are uniform, spherical, non-polar and relatively 248 

chemically inert.  The technique has been extended to the characterization of natural 249 

organic matter (NOM), but the interpretation of results becomes more complex 250 

because separation is no longer purely on the basis of molecular size, and there are no 251 

universally applicable calibration standards [32, 33].  Interpreting the information 252 
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obtained from molecular size separation methods in such systems is therefore not 253 

straightforward, and can lead to gross errors when specific chemical and physical 254 

interactions between the analytes and the stationary phase are significant [34, 35].  255 

Bayer liquor organics contain a high proportion of highly polar groups, in particular 256 

carboxylic acids.  Electrostatic effects and hydrogen bonding can therefore be 257 

expected to play an important, even dominant, role in the retention behaviour, so 258 

correlations of retention times with molecular size alone are unlikely to be valid, and 259 

aggregation of small molecules into micellular structures noted in Section 3.2 can 260 

cause them to behave as if they have a much higher molecular weight than is in fact 261 

the case [28] .  262 

 263 

Notwithstanding these complications, separations using membranes and columns of a 264 

variety of types are an important aspect of the sample preparation methodologies 265 

available for investigating the nature of Bayer liquor organics.  266 

3.4. Consolidated Sample Preparation Strategy for 267 

Determination of the High Molecular Weight Fraction 268 

Using the experience outlined in the previous sections, a preparation method suitable 269 

for the determination of the high molecular weight fractions of Bayer liquors is that 270 

developed by Wilson et al. [25] .  To enable this quite complex scheme to be 271 

appreciated visually, we have prepared a flow-sheet representation of it (Figure 2).  It 272 

consists of the following seven main elements: 273 

1. dilution 274 

2. acidification to precipitate humics 275 

3. redissolution in NaOH 276 

4. extraction on XAD-7 resin 277 



13 

5. washing and elution 278 

6. acidification on Amberlite 120 resin 279 

7. filtration and aliquot preparation/storage. 280 

 281 

Please put Figure 2 near here 282 

 283 

This scheme enables quantitative separation of the high molecular weight organics 284 

from the liquor, to produce a stock solution of the organics in acid form, free from 285 

aluminate and other salts.  The stock solution may be sub-sampled for size separation 286 

and/or other determinations, or freeze-dried for storage.   287 

 288 

Please put Figure 1 near here 289 

4. Chromatographic Separation 290 

4.1. Gas Chromatography (GC) 291 

According to the published literature, the first significant advance in the application of 292 

modern chromatographic techniques to the determination of organic compounds in 293 

Bayer liquors was the work of Lever in the 1970s [21], in which capillary GC was 294 

used to analyse species with low to medium molecular weights (40 to 350 Da).  The 295 

method relied on methylation and butylation of methanol extracts using diazomethane 296 

or diazobutane in ether to produce volatile compounds suitable for separation by gas 297 

chromatography.  Using these methods, Lever was able to confirm the identity and 298 

quantify the amounts of five key degradation products already believed to be present: 299 

formate, acetate, lactate, oxalate and succinate.  He was also able to identify a range 300 

of previously unidentified molecules, in particular a comprehensive range of mono-301 
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aromatic carboxylic acids from the degradation of humic molecules [21].  The low 302 

molecular weight molecules were identified and quantified by comparing their 303 

responses in the flame ionization detector (FID) to known standards.   304 

 305 

GC quickly became the basis of a variety of methods for the investigation of low to 306 

medium molecular weight organic compounds in Bayer liquors.  The differences in 307 

the methods used by various workers were at first mainly in the sample preparation 308 

techniques used, but later developments in column technology and detection methods 309 

have also had a significant influence.    310 

 311 

The main variants in the derivatization methods are as follows: 312 

• Methylation of a methanol extract using diazomethane in ether [21, 36], or by 313 

direct application to Bayer liquor using acidified tris(hydroxymethyl) 314 

aminomethane in chloroform and methanol [37]; 315 

• Methylation of an aqueous solid phase alkaline extract using 316 

tetrabutylammonium hydroxide added at pH 8.5 [38], or of a Bayer liquor 317 

butanol extract using acidified methanol [39]; 318 

• Butylation. Lever [21] derivatized dried neutralised Bayer liquor using 319 

acidified butanol.  Baker et al. [40] derivatized butanol extracts using acidified 320 

butanol in a microwave oven, Guthrie et al. [22] and Wellington and Valcin 321 

[41]  derivatized Bayer liquor directly using acidified butanol, while Xiao [39] 322 

derivatized acidified, solvent extracted Bayer liquor using acidified butanol 323 

followed by hexane extraction. 324 

 325 



15 

Caution must be exercised in the use of derivatization techniques and in the 326 

interpretation of the results obtained.  For example, Wilson et al. [38] found that the 327 

methyl ester did not form quantitatively for some compounds and that some methyl 328 

esters were non-volatile.  Xiao [39] found that losses of low molecular weight acids 329 

could occur due to evaporation during concentration procedures.  He also found that 330 

butylation could result in dibutyl ether artefacts, that it was difficult to identify 331 

unknowns from their butyl derivatives, and that butylation was not useful for high 332 

molecular weight acids.  Xiao  therefore recommended that methylation and 333 

butylation be used in combination to optimise recoveries and improve the confidence 334 

in the identification of analytes. 335 

 336 

Guthrie et al. [22] derivatized the butanol extracts with Tri-Sil for the determination 337 

of low and intermediate molecular weight aliphatic and aromatic acids.  Silylation 338 

(using hexamethyldisilazane and trimethylchlorosilane) was also used by Ellis et al. 339 

[42] to analyse plant extracts and digested plant extracts.  Using this procedure, it was 340 

possible to determine low and intermediate molecular weight mono-, di- and tri-341 

carboxylic aliphatic and aromatic acids, aliphatic and aromatic hydroxy carboxylic 342 

acids, polyhydric alcohols, alkanes, carbohydrates and furans.  According to Eyer 343 

[43], Alcoa World Alumina has developed a GC method based on methylation 344 

followed by chloroform extraction for the routine determination of oxalate, malonate 345 

and succinate.  It was found that the method could be extended to include benzene as 346 

an analyte directly, but it was necessary to use butanol to derivatize acetate and 347 

formate for determination.  Tardio [44] used a similar method to determine formate, 348 

acetate, butyrate, oxalate, malonate, succinate, glutarate, lactate, malate and fumarate 349 

as the methyl esters. 350 
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 351 

The advent of GC with mass spectrometry detection (GC-MS) in place of or in 352 

addition to non-specific detection by FID brought a major advance in analytical 353 

capability by enabling the identification of individual compounds, for example 354 

according to the scheme illustrated in Figure 3 [22].   355 

 356 

Please put Figure 3 near here 357 

 358 

The complexity of the mixture of organic compounds in Bayer liquor is illustrated by 359 

the GC trace in Figure 4 for compounds in the MW range 90 to 300 Da.  The 360 

numbered peaks were identified by MS [22].  The addition of modern multi-361 

dimensional mass spectrometry has since demonstrated the potential for the 362 

identification of many hundreds of compounds [27] .  To date however, a total of only 363 

85 individual compounds, all of which have molecular weights below 350 Da, have 364 

been specifically identified in the literature as being present in Bayer liquors [1].   365 

 366 

Most of the compounds that have been found in Bayer liquors are organic acid anions 367 

[1].  For example, Xiao [39] was able to analyse more than twenty mono- and di-368 

carboxylic acids using a combination of methylation and butylation;  Picard et al. [27]  369 

claim to have identified over a hundred acids, but they cite only those corresponding 370 

to the twenty most intense peaks in the mass spectra.  On the other hand, Wellington 371 

and Valcin [41]  found more than 15 non-acid compounds including alkenes, phenols, 372 

pyrolidinones, quinolines and pyrroles in a Bayer liquor using butylation.   373 

 374 
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According to Eyer [43], Alcoa World Alumina has applied GC-MS to the 375 

determination of a range of low molecular weight (C3-C20) hydroxycarboxylic acids 376 

extracted from Bayer liquors and analysed as the trimethylsilate esters. 377 

 378 

Pyrolysis-GC-MS, in which the products of the pyrolysis of a sample in an inert 379 

atmosphere at various temperatures are analysed by GC-MS, has been used to 380 

characterise the high molecular weight material in Bayer process liquors [25, 28] .  381 

This method enables the material to be characterised in terms of its main functional 382 

constituents, and provides evidence for their likely origins.  Because of the large 383 

number and complexity of the pyrolysis products, however, it has not been possible to 384 

identify specific starting compounds with any confidence by this method. 385 

4.2.  Ion Chromatography (IC) 386 

Ion chromatography relies on the separation of ions on an ion exchange column, after 387 

which the solution is passed through a “suppressor” column.  In the case of anion 388 

determination, the suppressor removes the sodium ions from the solution and replaces 389 

them with hydrogen ions that react with the corresponding hydroxide ions to form 390 

water.  This suppresses the bulk conductivity of the solution, so that the remaining 391 

anions can be detected by their conductivity.  This method, which was developed in 392 

the 1970s, can be applied to both cations and anions, but was the first method to 393 

become available for routine determination of multiple anions using a single, simple 394 

detection technique [45].  The key to the method is the suppressor, which must be 395 

regularly regenerated for continuous use, and maintenance of suppressor performance 396 

is crucial to ensuring ongoing sensitivity, accuracy and precision of determination.  397 

 398 
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The advent of IC provided for the first time a rapid method requiring minimal sample 399 

preparation for the simultaneous determination of many of the low molecular weight 400 

organic acids of most interest to Bayer process technologists.  Generally, the only 401 

sample preparation required is dilution in water prior to introduction to the analytical 402 

system.  This method therefore lends itself to automation, and is suitable for high 403 

volume, routine use.  404 

 405 

Nevertheless, the nature of Bayer liquor places restrictions on the application of IC for 406 

determination.  The high ionic strength and pH of the liquor mean that samples 407 

require significant dilution (typically at least 500:1) prior to determination, which 408 

limits the sensitivity of the method.  Interferences between the many organic and 409 

inorganic anions present is also a limiting factor [18].  In addition, the high aluminate 410 

content and the insolubility of aluminate between pH 5 and 10 means that eluents 411 

outside this pH range must be used, or else the solution must be stabilised by the 412 

addition of a complexing agent, such as tartrate or gluconate [18].  Alumina fouling of 413 

the suppressor is a key issue, even with alumina complexants in the eluant, and this 414 

generally requires regular flushing with strong acid (e.g. 1 M HCl) [46].  Some 415 

workers have overcome this problem by pre-treating the samples with an ion 416 

exchange resin to remove the aluminate ions prior to determination [47, 48], but this 417 

increases the complexity of the method and is a disadvantage for high volume routine 418 

use. 419 

  420 

Since the 1980s, oxalate and other low molecular weight aliphatic acids in Bayer 421 

liquor have been analysed directly by ion chromatography with anion exchange 422 

columns and alkaline mobile phases using conductivity detection [48, 49]. Oxalate is 423 
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currently measured in this way in key process streams in many Bayer plants on a daily 424 

or more frequent basis [19, 20].   425 

 426 

Detection by UV absorbance was found to be more satisfactory for aromatic acids 427 

because their lower pKa values made conductivity detection difficult [48].  Xiao et al. 428 

[47] have recently reported a method for the rapid determination of the organic anions 429 

formate, acetate, propionate, oxalate, succinate and glutarate, as well as the inorganic 430 

anions fluoride, chloride and sulphate, with a single injection providing good 431 

accuracy and precision.  The chromatographic run time was 33 minutes, but pre-432 

treatment of the samples by ion exchange is required to achieve this. 433 

 434 

Brindel and Lectard [48] used GC-MS to identify 9 benzene carboxylates separated 435 

by IC from a Bayer liquor, and identified 11 other compounds by comparison with 436 

standard compounds.  Picard et al. [27]  used IC followed by MS detection to separate 437 

and identify 11 low molecular weight aliphatic and aromatic acids present in Bayer 438 

liquor, as illustrated in Figure 5.  The solution from the IC separation was introduced 439 

to the MS via electrospray ionization, a “soft” ionization method which enables the 440 

formation of ions without fragmentation of the parent molecules.  They then used this 441 

technique to survey the liquors from 10 different plants, and found that the four most 442 

prevalent compounds, formate, acetate, oxalate and succinate, accounted for between 443 

15 and 40% of the TOC in the Bayer liquors studied. 444 

 445 

Please put Figure 5 near here 446 

 447 
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4.3.  Capilliary Zone Electrophoresis (CZE) 448 

Applying an electric field gradient to ions in a solution causes ion migration in the 449 

direction of the field.  The rate and direction of the migration are determined by the 450 

charge and hydrodynamic radius of the ions.  This effect is the basis of the separation 451 

of ions by CZE, commercial instruments for which became available around 1990. 452 

CZE is now an active field of research in its own right, and may be found in a very 453 

wide range of analytical applications [50].  Detection is usually by UV absorption, 454 

often by indirect detection using an added chromophore [51], sometimes called the 455 

“probe” [52].  The mobile phase may include various electroosmotic flow and 456 

selectivity modifiers [53]. The first analyses for anions in Bayer liquor used chromate 457 

as the probe with indirect detection at 254 or 245 nm [18, 19, 52, 54]. These analyses 458 

were successful for the determination of oxalate in Bayer liquor, but peak shape and 459 

resolution of other aliphatic acids was usually poor, even under apparently optimal 460 

conditions. 461 

 462 

Breadmore and co-workers [55] investigated various complex mixtures of different 463 

reagents and were able to separate 14 low molecular weight aliphatic acids, with 464 

separation selectivity and resolution able to be changed substantially by varying the 465 

electrolyte conditions. Only formate, acetate and oxalate were found in actual Bayer 466 

liquor by this method. 467 

 468 

To remove the issues associated with the use of toxic chromate reagents, Chovancek 469 

et al. [56] introduced the use of molybdate as the probe with detection at 214 nm. 470 

Under these conditions, 5 low molecular weight aliphatic acids were rapidly separated 471 

in Bayer liquor with good resolution and peak shapes. 472 
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 473 

CZE has a number of advantages over IC in the areas of selectivity, speed of 474 

determination, peak separation and sample volume requirements.  Although it did 475 

initially suffer from less stable retention times, poor peak shapes and a much higher 476 

detection limit [18, 19], it appears these problems have been largely overcome, so that 477 

CZE now has excellent reproducibility, peak shapes, linearity and limits of detection 478 

for many of the low molecular weight acids of interest in Bayer liquor [56].  CZE has 479 

recently been applied to the determination of 18 carboxylic acids for the monitoring 480 

of bioreactors, and it is reasonable to suppose that similar advances could be made in 481 

the analysis of Bayer process solutions using this approach [57]. 482 

 483 

4.4. High Performance Liquid Chromatography (HPLC) 484 

HPLC, sometimes known as high pressure liquid chromatography, can be operated in 485 

a number of different modes and with stationary phases of different chemistries, and a 486 

variety of mobile phases and additives.  As such, it is a very flexible technique for the 487 

determination of a wide variety of types and sizes of organic compounds in a range of 488 

matrices.  HPLC can also be used to investigate the fundamentals of adsorption as 489 

shown by the work of Bouchard et al. [58] who used it to determine dynamic 490 

adsorption isotherms of organic compounds with the potential to inhibit the 491 

precipitation step of the Bayer process.  492 

 493 

The first reported use of HPLC for analysing Bayer liquors was by Salomon who was 494 

able to identify a range of degradation products from the digestion of bauxite in 495 

alkaline liquors [29].  Roumeliotis and co-workers [59]  used it for the separation, 496 

identification and quantification of carboxylic acids. They investigated reverse phase, 497 
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ion pair, ion exchange and ligand exchange separation techniques using 67 different 498 

combinations of stationary and mobile phases with variable or fixed (254 nm) 499 

wavelength UV detection. Nineteen low molecular weight aliphatic and aromatic 500 

mono-, di-, tri, tetra- and penta-carboxylic acids were identified.  However, despite 501 

careful optimisation of the HPLC setup and conditions, many of the peaks were broad 502 

and poorly resolved.  Using semi-preparative reverse phase chromatography, they also 503 

isolated aromatic carboxylic acids in a number of fractions from a 90 minute 504 

chromatographic run for further characterisation and identification by MS.  505 

 506 

Susic et al. [60]  used HPLC on a reverse phase (RP) column with an ammoniacal 507 

mobile phase and fluorescence detection to measure the “humic acid” concentration in 508 

Bayer liquor, without separating it into its constituents. 509 

 510 

Wilson and co-workers [26]  applied HPLC to the analysis of the so-called “humic” 511 

material (see Power and Loh [1] for a discussion of the meaning of “humic” in this 512 

context) which had been separated from a Bayer liquor sample by acidification, 513 

precipitation, solid-phase extraction and evaporation.  The extracted solids were 514 

redissolved in a water/methanol mixture and analysed using a variety of HPLC 515 

methods of increasing complexity.  It was found that RP chromatography alone was 516 

inadequate, because the majority of the Bayer liquor humic material eluted in the first 517 

20 minutes, with insufficient peak separation.  Operating in ion-suppression mode, in 518 

which the ionization of strong acids (and bases) is suppressed by the presence of a 519 

buffer, resulted in better separation.  The method was further improved by using ion-520 

pair mode, in which improved control of retention and selectivity is achieved by 521 
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adding a water-soluble organic compound (the ion-pairing reagent) to the mobile 522 

phase.   523 

 524 

The most successful technique was reverse phase ion-pair chromatography with a 525 

mobile phase consisting of acetonitrile, water, formic acid and tetrabutylammonium 526 

hydrogen sulfate [26] .  Best results were achieved by applying the ion-pairing reagent 527 

in a controlled time-dependent ratio (gradient) with acetonitrile. This enabled small 528 

molecules to be resolved at the beginning of the chromatogram while allowing the 529 

larger molecules to elute within a practical time period.  The separation was achieved 530 

on a C18 column of dimensions 150 x 3.9 mm x 4 µm and with a pore size of 60 Å, 531 

using a diode array UV detector with wavelengths between 190 and 400 nm. 532 

Chromatography times were long (100-650 minutes), but it was possible to resolve a 533 

large number of individual small molecules within the first 200 minutes. At longer 534 

elution times, material of higher molecular weight and lower polarity was eluted.  It is 535 

claimed that this is the first time that Bayer “humic” materials had been separated into 536 

groups of different polarities.  In addition, the material did not elute as a continuum, 537 

but as clusters of peaks.  This was interpreted as evidence for the existence of 538 

micellular clusters for which only certain configurations are stable.  No individual 539 

compounds present in the Bayer liquor were identified in this developmental work, 540 

but the methodology appears to have great potential for separating the “humic” 541 

material into smaller and simpler fractions which could then be further separated by 542 

LC for determination by mass spectrometry (MS) for example.  This concept was 543 

subsequently developed and applied to Bayer liquors to produce a multi-dimensional 544 

separation and determination method which could revolutionise the determination of 545 

such complex mixtures [61] (see section 7). 546 
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 547 

Xiao and co-workers have described the determination of oxalate, tartarate, acetate, 548 

succinate, glutarate, malonate, adipate and butene dicarboxylate in Bayer liquor using 549 

a C18 reverse phase column with a methanol/potassium dihydrogen phosphate mobile 550 

phase and UV detection at 215 nm [62, 63]. Separation was relatively rapid (less than 551 

10 minutes) but the retention times for the same compounds under apparently 552 

identical conditions were found to be variable. Peaks were broad and detection limits 553 

were also rather high (1-10 mg/L) for compounds other than oxalic acid. 554 

 555 

Machold et al. [64]  report the determination of 21 low molecular weight aliphatic and 556 

aromatic carboxylic acids in 6 M NaOH using a reverse phase organic acid column 557 

after dilution and acidification to pH 2, with a run time of only 9 minutes. Two 558 

different mobile phases (potassium dihydrogen phosphate  and potassium dihydrogen 559 

phosphate/acetonitrile) were used, with UV detection at either 215 or 254 nm.   560 

 561 

5. Detection Methods and Spectroscopy 562 

Conventional chromatographic separation techniques employ non-specific detection 563 

methods such as conductivity and UV absorption, relying on the characteristics of the 564 

separation (e.g. elution time) as an indicator of speciation.  This has the great 565 

advantage of enabling a series of different compounds to be detected and quantified in 566 

a single chromatographic run, but it generally relies on knowledge of the identity of 567 

the compounds from calibrations with known compounds or separate analysis of each 568 

peak.   569 

 570 
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The advent of techniques which provide identification as well as detection, in 571 

particular mass spectrometry (MS), greatly increases the usefulness of the basic 572 

separation by providing the ability to simultaneously identify and quantify the 573 

components of complex unknown mixtures such as Bayer liquors. 574 

5.1. Mass Spectrometry (MS) 575 

The first published application of MS to the analysis of Bayer liquors is the work of 576 

Guthrie et al. [22], who applied it to detect and identify compounds following 577 

separation by GC.  This enabled the identification of 35 compounds, several of which 578 

had not been previously reported in Bayer liquor.  MS has since been used by a 579 

number of workers in investigations related to Bayer liquors, generally to provide 580 

definitive identifications of the components present after separation by a variety of 581 

chromatographic techniques.  Niemela and Grocott [65] used GC-MS for a detailed 582 

examination of the organics in Bayer liquor, which revealed the presence of more than 583 

350 individual compounds.  The authors claim to have identified over 200 of these, 584 

but revealed the identities of only 14 compounds listed as examples of the successful 585 

use of GC-MS.   However, without naming individual compounds, they reported the 586 

presence of: 45 hydroxymonocarboxylic acids, 6 oxo-dicarboxylic acids, 10 587 

tricarboxylic acids, 7 hydroxy tricarboxylic acids, 4 tetracarboxylic acids, 13 fatty 588 

acids, 23 aromatic monocarboxylic acids, 18 aromatic di- or poly-carbosylic acids, 20 589 

neutral (mainly phenolic) compounds, and various miscellaneous acids.  GC-MS has 590 

also been used to identify the compounds that were adsorbed onto aluminium 591 

hydroxide from a Bayer liquor [38], to identify the components of water-soluble 592 

extracts of plant remains in bauxites [42] and to identify the products of alkaline 593 

leaching of plant materials related to bauxite digestion [6].   594 

 595 
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GC-MS has been used extensively by Niemela and co-workers in studies related to 596 

the digestion of a range of natural materials, including woods and bark, cellulose, 597 

starch and humic materials [66-74].    598 

 599 

Despite these developments, there are surprisingly few reports in the literature of the 600 

use of GC-MS for the direct identification of compounds present in Bayer liquors, 601 

although it has been used extensively to identify pyrolysis products of liquor fractions 602 

from a range of preparation and separation techniques [6, 25, 42, 75].  One reason for 603 

this is that GC-MS is limited in its ability to provide information on the highly polar 604 

compounds of high molecular weight that are of interest in Bayer liquors [27].  To 605 

address this issue, Picard et al. [27]  developed methods based on separations by 606 

HPLC and IC, coupled with detection and identification by MS.  Identification was 607 

facilitated by using tandem mass spectrometry (i.e. MS-MS), in which a second stage 608 

of MS is used to provide detailed structural information on ions separated in the first 609 

stage of MS [76].  The same authors also used MS-MS directly to analyse the 610 

components of liquid-liquid extracts from Bayer liquors. These analyses enabled 611 

definitive identifications to be made of the compounds present in the highly complex 612 

mixtures extracted from Bayer liquors, and led to the identification of over 100 613 

individual compounds (although only the 20 most significant are named in the 614 

publication) [27].   615 

 616 

MS was also used as the detector in a multi-dimensional separation technique 617 

developed by Whelan et al. [61] for Bayer liquor analysis, which is discussed further 618 

in Section 7.  Extension of the use of MS-MS in combination with new forms of 619 

sample presentation, such as electrospray ionization (ESI), have been used to good 620 
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effect in the investigation of humic and fulvic matter [77, 78], and have already been 621 

used to some extent in the analysis of Bayer liquors [27, 61].    622 

 623 

The use of these techniques will undoubtedly find increased application to the 624 

analysis of Bayer liquors in the future.  For example, the development of high 625 

resolution MS instruments in combination with LC and a range of ionization 626 

techniques has enabled major progress in the analysis of complex environmental 627 

systems [79].  The use of instruments with very high mass resolution (>30,000) and 628 

mass accuracy (<5 ppm), coupled with single-stage and multi-stage ion fragmentation 629 

and sophisticated software, enables more reliable determination of target compounds 630 

and the possibility of screening for suspected analytes and unknowns without 631 

reference standards.  The high resolving power and high spectral accuracy available in 632 

state-of-the-art instruments could be expected to enable significant advances in 633 

knowledge if applied to Bayer liquors. 634 

5.2. UV-Visible Spectroscopy 635 

UV-Visible spectroscopy is a standard method of detection used in conjunction with 636 

LC and IC separation  [18, 46-48, 64, 80], and is the usual (albeit indirect) detection 637 

method for CZE determination [51].   638 

 639 

UV absorbance measurements have been used directly to estimate the amounts of 640 

highly coloured compounds, loosely termed “humates” present in Bayer liquors [81-641 

83].  However, it has been shown that the “humate” fraction of Bayer liquors is 642 

substantially different from the parent humate present in the bauxite [1].  Beach and 643 

co-workers [84] used the colour ratio, Q4/6 = (absorbance at 400 nm) / (absorbance at 644 

600 nm), to characterise the type of organic matter being removed from Bayer liquor 645 
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with hydrogen peroxide in the presence of Fe-TAML (tetra-amidato macrocyclic 646 

ligand) catalyst. Low colour ratios are primarily associated with humic acids, while 647 

high colour ratios and a stronger dependence of absorbance on wavelength are more 648 

characteristic of fulvic acids.   649 

 650 

A fundamental study of the UV spectra of pure sodium aluminate liquors [85] 651 

confirmed the previously held belief that the UV absorbance of Bayer liquors is 652 

entirely due to the presence of organic compounds.   653 

 654 

5.3. IR Spectroscopy 655 

Fourier transform infrared (FTIR) spectroscopy has been used by Wilson and co-656 

workers to characterise solid samples including bauxite, red mud, scale, precipitate, 657 

organic matter, lignin and evaporated Bayer liquor extracts  [2, 28, 86]. While not 658 

able to identify specific compounds, FTIR spectroscopy was capable of distinguishing 659 

the aromatic and aliphatic constituents, as well as C-O and C=O functional groups. 660 

FTIR can also be used to quantify the total organic carbon (TOC) content, and a 661 

number of other chemical and physical parameters, of Bayer liquor by correlating the 662 

IR spectrum of the liquor with the spectra of known standards [87].  663 

 664 

Hind et al. [88, 89] used FTIR spectroscopy to investigate the nature of the surfaces of 665 

solids in contact with highly alkaline solutions. 666 

5.4. NMR Spectroscopy 667 

The use of NMR spectroscopy for the determination of organic compounds in Bayer 668 

liquors was pioneered by Wilson and co-workers, who subsequently used it 669 
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extensively in investigations of liquors and solids associated with the Bayer process.  670 

Wilson’s first paper on this subject used 1H NMR to investigate the composition of 671 

humic substances from a number of sources, one of which was Bayer liquor [90].  The 672 

NMR data clearly showed formate, acetate and succinate, which had previously been 673 

identified [21], but also revealed the presence of smaller concentrations of propionate, 674 

lactate, tartrate, o-phthalate and a number of other benzene carboxylic acids and 675 

phenolic acids, which were attributed to the degradation of humic substances in the 676 

bauxite, and possibly of starch which was added to the liquor as a flocculant [38].  677 

The advent of effective water suppression techniques substantially improved the 678 

sensitivity of the method in aqueous media such as Bayer liquor [91]. 679 

 680 

Ellis et al. [92] were able to quantitatively analyse glucose, formate, acetate, lactate, 681 

glycolate and ethanol directly in simulated Bayer liquor using a 300 MHz instrument. 682 

Beach et al. [84] used a 500 MHz instrument with a built-in pulse program for solvent 683 

suppression by presaturation and SpinWorks software to quantitatively analyse 684 

formate, mannitol, sorbitol, xylitol, gluconic acid, adonitol and/or dulcitol when 685 

added to sodium hydroxide solutions and mannitol when added to diluted Bayer 686 

liquor.   687 

 688 

Machold et al. [64]  used  1H NMR operating at 300 MHz to assist in the 689 

identification of compounds analysed by HPLC in studies of the degradation of 690 

individual organic compounds in 6 M sodium hydroxide over extended times.  The 691 

compounds determined were formate, acetate, oxalate, succinate, lactate, malonate, 692 

glutarate, adipate, pimelate, malate, tartrate, gluconate, benzoate, phthalate, 693 

terephthalate, salicylate, 4-hydroxybenzoate and gallate.  694 
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 695 

In complex solutions such as Bayer liquor, it has not been possible to specifically 696 

identify more than few of the most prevalent compounds present using 1H NMR.  It is 697 

nevertheless possible to identify specific organic functional groups, and to estimate 698 

their relative proportions. Whelan et al. [26] used a 300 MHz NMR instrument with 699 

field gradient coils to record 1H spectra of Bayer liquor extracts in deuterated 700 

dimethyl sulfoxide (DMSO-d6).  This enabled the detection of formate and acetate, 701 

and demonstrated the presence of a number of structural classes, including aromatic 702 

rings containing ether and hydroxyl groups, alkenes, and ether and alkoxyl groups 703 

attached to humic molecules.  1H-1H homonuclear correlation (COSY) NMR 704 

spectroscopy, a two-dimensional technique, was also used.  This enabled the presence 705 

of a number of additional features to be inferred, including carboxylic acid and methyl 706 

ketone groups.  Specific compounds including 4-hydroxybenzoic acid, 3,4-707 

dihydroxybenzoic acid, 1,2-benzene dicarboxylic acid, and 1,4-benzene dicarboxylic 708 

acid were also identified.   709 

 710 

13C NMR has been used in relatively simple matrices to analyse specific organic 711 

compounds in solution. For example, Ellis et al. [92, 93] used a Bruker DRX300 712 

spectrometer, inverse gated and operating at 75.4 MHz, to quantitatively analyse 713 

glucose, formate, acetate, lactate, glycolate, carbonate and ethanol in 3.5 M sodium 714 

hydroxide solutions.  In this work, the decomposition of D-glucose labelled with 13C 715 

at the 1 and 6 positions, and lactate labelled at the 1 position, were studied in order to 716 

understand the mechanisms of carbon exchange in the alkaline degradation of 717 

glucose. 718 

 719 
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13C NMR has also been used in a number of investigations related to Bayer liquor and 720 

associated materials, particularly by Wilson et al. [25] , who have developed specific 721 

methods tailored for the complex mixtures involved. Solution 13C NMR has been used 722 

to characterise Bayer liquor and solid state 13C Cross Polarization Magic-Angle 723 

Spinning NMR (13C CP/MAS NMR) has been used to characterise Bayer-derived 724 

solids and evaporated Bayer liquor extracts.  This is illustrated by Wilson et al. [38] in 725 

the determination of methyl derivatized extracts from aluminium hydroxide cake from 726 

an alumina refinery. They were able to assign chemical shifts to alkyl, alcoholic, 727 

aromatic, oxalate, and carboxylate functionalities, but were not able to identify 728 

specific compounds. 729 

 730 

Smith et al. [94] used 13C  NMR to investigate polyols in relation to their interactions 731 

with aluminate ions in solution and their role in the inhibition of gibbsite 732 

crystallization.   733 

 734 

Baker et al. [95] and Wilson and co-workers [6, 25, 26, 28, 38, 86] used 13C CP/MAS 735 

NMR to examine solid material such as bauxite, red mud, scale, precipitated 736 

aluminium hydroxide, organic matter, lignin and evaporated Bayer liquor extracts. 737 

Although the instrument was capable of 200 MHz, best results were obtained at 50 738 

MHz.  It was not possible, even in Bayer liquor sequentially extracted with diethyl 739 

ether, ethyl acetate, isopropyl alcohol and water, to identify individual compounds, 740 

but the presence of different types of carbons were inferred.  These included carbonyl, 741 

aromatic and aliphatic carboxylic acids, salts and esters, aromatic and aliphatic carbon 742 

with and without substituted electron-donating groups, including methyl, methylene 743 
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and methyne carbon, alkoxy including methoxy carbon, di-alkoxy, oxalate, formate 744 

and acetate carbonyl and acetal carbon.  745 

6. Thermal Analysis 746 

6.1. Solution Oxidation and Combustion 747 

The simplest form of thermal analysis is combustion to determine the total organic 748 

carbon (TOC) content.  Solution oxidation methods have been used for this, but the 749 

early methods based on, for example, dichromate oxidation, were found to under-750 

estimate the more refractory compounds, and so have largely been replaced by 751 

combustion techniques  [6, 25, 26, 28, 38].  Nevertheless, improvements in solution 752 

oxidation using a combination of persulphate and UV light resulted in the 753 

development of instruments with much better recoveries [96, 97].  Determination of 754 

TOC by solution oxidation or combustion usually relies on detection of evolved CO2 755 

with an infra-red (IR) detector.  This method requires correction for, or simultaneous 756 

determination of, the inorganic (carbonate) content [98], and catalysts are generally 757 

used to facilitate quantitative combustion [43, 99].  Considerable progress has been 758 

made in the design of automated instruments for this method [100].  759 

6.2. Thermogravimetry and Calorimetry 760 

Thermal analysis has been used to investigate the combustion behaviour of samples of 761 

organics extracted from Bayer liquors and separated into molecular weight fractions 762 

[25, 28].  This information was used to draw conclusions regarding the general nature 763 

of the organic compounds in the various fractions.  The loss of mass (9-18%, 764 

depending on fraction) up to 200oC was attributed to loss of surface and bound water 765 

and volatile organics trapped in a macromolecular matrix.  Further mass loss from 200 766 
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to 350oC was attributed to carboxylic acids and aliphatic biopolymers, and the 767 

remainder of the humic matter was combusted by 500oC.  It was found that the lower 768 

molecular weight fractions contained the higher proportions of volatile matter [25, 769 

28]. 770 

 771 

Further investigations using differential scanning calorimetry (DSC) revealed a 772 

number of additional aspects of the nature of the organic fractions.  As expected, the 773 

DSC results were consistent with an increase in polymerization with combustion 774 

temperature, but also provided data interpreted to indicate the existence of water and 775 

small organic molecules bound within a macromolecular matrix [25, 28] . 776 

6.3.  Pyrolysis 777 

Anaerobic pyrolysis followed by GC separation and MS detection (Py-GC-MS) has 778 

been used extensively by Wilson and co-workers to analyse the organic components 779 

of Bayer liquors and related materials (including bauxite, red mud, scale and 780 

precipitated aluminium hydroxide) from a variety of sources and under a range of 781 

conditions [25, 28].  This technique is in principle capable of providing a great deal of 782 

information on the nature of complex materials by examination of their pyrolysis 783 

products.  The results obtained are, however, somewhat technique-dependent, so a 784 

good knowledge of the exact methodology employed is essential [25, 28, 101].  785 

Furthermore, the relationships between the compounds detected and the parent 786 

compounds that were present in the original material are generally not 787 

straightforward.  The presence of oxidizing agents or catalysts, such as the iron oxide 788 

present in bauxites and red muds, may also have an influence on the results [102].   789 

 790 
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Nevertheless, the technique has proved very useful in developing an understanding of 791 

the overall chemistry of the materials analysed by enabling estimation of 792 

aromatic/aliphatic ratios and allowing the proportions of alkyl, carboxylic acid, 793 

carbonyl, phenoxy and nitrogen-containing groups to be determined [6].   794 

7. Multi-dimensional Methods 795 

The analysis of complex mixtures can often be simplified by the use of multi-796 

dimensional separation and determination methods, in which an initial separation by, 797 

for example LC, is then followed by a secondary separation by the same or another 798 

technique such as MS.  The use of LC-MS-MS by Picard et al. [27]  described in 799 

Section 5.1, in which over 100 individual compounds were identified (although only 800 

the 20 most significant are named), is an example of this.  It has been pointed out that 801 

to take full advantage of the improved separation offered by multidimensional 802 

systems, the number of system dimensions should equal the number of definable 803 

sample attributes [103].   804 

 805 

Whelan et al. [61] developed a powerful multi-dimensional technique for the analysis 806 

of Bayer extracts in which the fractions from solid-phase extraction were separated 807 

into ninety 200 µL sub-fractions by GPC (see section 3.3) which were then analysed 808 

by LC.  Peaks from the LC output were then introduced into a triple quadrupole MS 809 

via electrospray ionisation for identification of components.  Product ion spectra were 810 

then further resolved by a second stage of MS operating with collision-induced 811 

fragmentation. This allowed the identification of a small proportion of the isolated 812 

compounds, but most compounds were not identified. The analysis sequence is 813 

illustrated in Figure 6.  814 
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 815 

Please place Figure 6 near here 816 

 817 

This example provides an insight into the possibilities offered by this concept.  A very 818 

large amount of very high quality information can be generated by experiments of this 819 

nature, requiring a great deal of expertise and data analysis for proper interpretation.  820 

Nevertheless, further development of multi-dimensional methods, in particular LC-821 

MS-MS with electrospray ionization, offers the potential for a step-change 822 

improvement in knowledge of the nature of organics in Bayer liquors.  For example, it 823 

should be possible to confirm or otherwise the presence of compounds predicted to 824 

form from the initial degradation of natural organic matter in the digestion process 825 

[61]. 826 

 827 
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8. Summary of Analytical Methods 828 

A summary of the compounds that have been detected in Bayer liquors, and the 829 

methods that have been used to detect them, is provided in the Appendix.  The table is 830 

in two parts: Table A1 lists the compounds that have been reported more than once in 831 

the literature, and which are on that basis designated to be “generally present” in 832 

Bayer liquors [1];  Table A2 is a list of compounds that have been reported only once 833 

in the literature, giving a list that is indicative of some of the additional compounds 834 

that may be present in any given Bayer liquor.   835 

9. Summary and Future Directions 836 

The application of increasingly sophisticated analytical techniques to the 837 

determination of organics in Bayer process liquors has led to significant advances in 838 

the knowledge of the nature, reactions and impacts of organics in the Bayer process 839 

over the past 40 years.  This knowledge has enabled significant advances in 840 

processing technology which have benefited the industry in terms of costs of 841 

production, product quality and environmental impacts.  GC and IC methods for the 842 

determination of the main low molecular weight anions, which account for the 843 

majority of the organic carbon in Bayer liquors, are well established as routine 844 

methods.  CZE has emerged as a potentially more rapid, cost-effective and flexible 845 

method, and promises to replace the established methods and to enable the inclusion 846 

of a larger number of analytes.   847 

The main challenge remains in the determination of the high molecular weight 848 

compounds, where despite considerable efforts to date there remains a significant 849 

knowledge gap.  Techniques which are now available or are in development, in 850 
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particular multi-dimensional methods based on LC-MS-MS with “soft” ionization, 851 

offer the prospect of rapid progress in the generation of knowledge about the high 852 

molecular weight compounds.  With the aid of these techniques it should be possible 853 

to “unlock the genome” of Bayer liquor organics which could lead to a quantum 854 

improvement in the capability of technologists to interpret and manipulate the organic 855 

chemistry of Bayer liquors. 856 
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 868 

 869 

Table 1:  30-year timeline for the development and application of modern 870 

analytical methods to Bayer liquors 871 

 872 

Year Method Species Determined First Citation 

1978 

Gas chromatography with 

flame ionization detection 

(GC)  

Oxalate & other small organic anions [21] 

1982 

Gel permeation 

chromatography with UV 

detection (GPC) 

High molecular weight organic compounds [29] 

1982 
Liquid chromatography with 

UV detection (LC) 

Products of degradation of high molecular weight 

compounds 
[29] 

1983 
Ion Chromatography with UV 

detection (IC) 

Oxalate & other small organic anions, as well as 

chloride, sulphate & fluoride 
[48] 

1984 
Gas chromatography - mass 

spectrometry (GC-MS) 
High molecular weight organic compounds [22] 

1986 UV absorbance "Humates" [82] 

1990 Thermal decomposition Total organic carbon (TOC)  [20] 

1992 

Capillary Zone 

Electrophoresis with 

conductivity detection (CZE)  

Oxalate & other small organic anions, as well as 

chloride, sulphate & fluoride 
[19] 

1996 
UV-catalysed persulphate 

oxidation 
Total organic carbon (TOC) [99]  

1997 

Infra-red spectroscopy (IR) 

including Fourier transform IR 

(FTIR) 

Structure & composition of the solid/liquid 

interface 
[88] 
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1998 13C NMR Functional groups of organic compounds [38] 

1998 

Differential thermal analysis 

(DTA) & differential scanning 

calorimetry (DSC) 

General organic substances [38]  

1999 

Pyrolysis gas chromatography 

mass spectrometry (py-

GC/MS) 

Type of high molecular weight organic compounds [25]  

2002 

Liquid chromatography-

tandem mass spectrometry 

(LC-MS/MS) 

Variety of organic compounds [27]  

2003 1H NMR 
Functional groups of organic compounds and 

quantitative determination of small organic anions 
[92] 

2005 

Multi-dimensional high 

performance liquid 

chromatography with UV 

detection (HPLC) 

Potentially variety of high molecular weight 

organic compounds 
[61] 

2006 
Fourier Transform Infra-Red 

spectroscopy (FTIR) 

Total organic carbon (TOC) and other solution 

parameters 
[87] 

 873 
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APPENDIX 874 

 875 

Table A1:  Analytical Methods Summary: Compounds Generally Present in Bayer Liquors 876 

Named as anions, listed in order of MW (of acid form).  877 

 878 

Compound MW 
CAS 

No. 

Analytical Method 

Citations GC IC CZE HP 

LC 

GC-

MS 

formate 46 64-18-6      [21, 27, 40, 47, 52, 98, 99, 104, 105] 

acetate 60 64-19-7      [21, 22, 27, 40, 47, 52, 98, 99, 105, 106] 

propanoate 74 79-09-4      [40, 47, 62, 98, 99, 104, 105] 

butanoate 88 107-92-6      [40, 62, 98, 99, 104] 

iso-butyrate 88 79-31-2      [23, 104] 
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oxalate 90 144-62-7      [19, 21-23, 27, 47, 54, 62, 63, 80, 98, 99, 104-106]  

lactate 90 598-82-3      [21, 22, 27, 40, 105] 

isovalerate 101 503-74-2      [23, 40, 104]  

valerate 102 109-52-4      [23, 40, 98, 99] 

malonate 104 141-82-2      [22, 27, 40, 52, 62] 

2-hydroxybutanoate 104 600-15-7      [22, 38] 

succinate 118 110-15-6      [19, 21-23, 27, 38, 40, 47, 52, 62, 63, 80, 98, 99, 104-106] 

benzoate 122 65-85-0      [22, 23, 26, 27, 40, 62, 104] 

glutarate 132 110-94-1      [21-23, 38, 40, 62, 63, 80, 98, 99, 104, 106] 

salicylate 138 69-72-7      [21, 22, 27, 38] 

m-salicylate 138 99-06-9      [23, 27, 38, 62] 

adipate 146 124-04-9      [22, 23, 26, 52, 62, 98, 99, 104] 

methyl-succinate 146 498-21-5      [22, 27, 40] 

tartrate 150 87-69-4      [19, 52, 63, 80] 

pimelate 160 111-16-0      [21, 22, 62, 99] 
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ethane-1,1,2-tricarboxylate 162 922-84-9      [22, 27] 

phthalate 166 89-99-3      [26, 27, 38, 40, 98, 99, 104] 

isophthalate 166 121-91-5      [22, 27, 62] 

terephthalate 166 100-21-0      [26, 27, 38] 

octanedioate 174 505-48-6      [21, 26, 62] 

tricarballate 176 99-14-9      [22, 27] 

propane-1,1,2-tricarboxylate 176 NA      [27, 65] 

4-hydroxyphthalate 183 610-35-5      [21, 27, 65] 

5-hydroxyisophthalate 183 NA      [27, 38, 65] 

azelate 188 123-99-9      [23, 26, 47] 

citrate 192 77-92-9      [44, 52, 65] 

hemimellitate 210 569-51-7      [22, 27, 98, 99, 104] 

trimellitate 210 528-44-9      [21, 22, 27, 98, 104] 

trimesate 210 554-95-0      [27, 98, 99] 

pyromellitate 254 89-05-4      [21, 27, 36, 38, 98] 
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palmitate 256 57-10-3      [22, 23, 26] 

stearate 284 57-11-4      [23, 26] 

benzene pentacarboxylate 298 NA      [21, 27, 36] 

mellitate 342 517-60-2      [21, 27] 

 879 

880 
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Table A2:  Additional Compounds Discovered in Individual Bayer Liquors 881 

Compounds with only one citation, sorted by molecular weight.  Named as acids, following convention of cited papers. 882 

 883 

Compound MW CAS No. Method Citation 

ethanolamine 60 141-43-5 GC-MS [22] 

butanolamine 75 13325-10-5 GC-MS [22] 

methyl-2-pyrrolidinone 99 872-50-4 GC-MS [41] 

2-methyl butanoic 102 116-53-0 GC-MS [23]  

3-methylphenol 108 108-39-4 GC-MS [41] 

(1H-pyrrol-2-yl)ethanone 109 1073-83-9 GC-MS [41] 

4-heptanone 114 123-19-3 GC-MS [23]  

hexanoic acid 116 142-62-1 GC-MS [23]  

2,4-dimethyl-3-pentanol 116 600-36-2 GC-MS [23]  

2,4-dimethylphenol 122 105-67-9 GC-MS [41] 

3-methyl-4-heptanone 128 15726-15-5 GC-MS [23]  

dibutyl ether 130 142-96-1 GC-MS [23]  
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propane-2,3-dicarboxylic acid 131 NA GC-MS [27] 

malic acid 134 6915-15-7 GC-MS [22] 

2,5-dimethylbenzaldehyde 134 5779-94-2 GC-MS [23]  

2-hydroxyphenylethanone 136 582-24-1 GC-MS [41] 

4-methyl benzoic acid 136 NA GC-MS [27] 

butane-2,3-dicarboxylic acid 146 NA GC-MS [27] 

4-hydroxy-2-methylacetophenone 150 875-59-2 GC-MS [41] 

3-methoxy benzoic acid 152 586-38-9 GC-MS [26] 

3-methyl salicylic 152 200-068-3 GC-MS [27] 

4-methoxy benzoic acid 152 202-818-5 GC-MS [26] 

3-hydroxy-4-methyl benzoic acid 152 NA GC-MS [27] 

butane-2-methyl-2,3-dicarboxylic acid 160 NA GC-MS [27] 

3-methyl hexanedioic 161 623-82-5 GC-MS [23]  

1-(2,4-dihydroxy) phenyl-1-propanone 166  NA GC-MS [38] 

propane-1,1,2-tricarboxylic acid 176 NA GC-MS  [65] 

propane-1,1,2-tricarboxylic acid 176 NA GC-MS [65] 

homophthalic acid 180 85-51-0 GC-MS [27] 
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benzene-4-methyl-1,3-dicarboxylic acid 180 NA GC-MS [27] 

2-hydroxyisophthalic acid 183 NA GC-MS [65] 

Isocitric acid 192 320-77-4 GC-MS [65] 

1-hydroxy-1,1,2-propane tricarboxylic acid 192 NA GC-MS [65] 

1-hydroxy-1,1,3-propane tricarboxylic acid 192 NA GC-MS [65] 

butane-1,1,4-tricarboxylic acid 194 NA GC-MS [65] 

butane-1,2,4-tricarboxylic acid 194 NA GC-MS [65] 

decanedioic 202 111-20-6 GC-MS [23]  

2-hydroxy-1,2,4-butane tricarboxylic acid 206 NA GC-MS [65] 

1,1-dibutoxybutane 202 5921-80-2 GC-MS [23]  

pentane-1,3,5-tricarboxylic acid 204 NA GC [21] 

ethane-1,1,2,2-tetracarboxylic acid 206 NA GC-MS [27] 

benzene-1,3,4-tricarboxylic acid 210 NA GC-MS [27] 

benzene-2-hydroxy-1,4,5-tricarboxylic acid 226 NA GC-MS [27] 

tetradecanoic acid 228 544-63-8 GC-MS [23]  

3,5-di-tert-butyl-4-hydroxybenzaldehyde 234 1620-98-0 GC-MS [26] 

benzene-1,2,3,5-tetracarboxylic acid 254 89-05-4 GC [21] 
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9,12-octadecadienoic 280 60-33-3 GC-MS [23]  

benzene hexacarboxylic acid 342 517-60-2 GC [21] 

squalene 410 111-02-4 GC-MS [26] 

 884 

 885 

 886 
 887 
 888 
 889 
 890 
 891 
 892 
 893 
 894 
 895 
 896 
 897 
 898 
 899 
 900 
 901 
 902 



49 

Figure 2:  Schematic representation of a typical lateritic bauxite profile (diagram reproduced with the permission of BHP Billiton 903 

Worsley Alumina) [1]. 904 

 905 

 906 
 907 

 908 
 909 
 910 
 911 
 912 
 913 
 914 
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Figure 2:  Sample preparation scheme for the separation of high molecular weight organics from Bayer liquors, derived from the 915 

descriptions given by Wilson et al. [25]. 916 

 917 
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Figure 3:  Example of a determination scheme using GC-MS and GPC(SEC), adapted from Guthrie et al. [22]. 918 

 919 
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 922 

 923 

 924 

 925 

 926 
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Figure 4:  LC trace for medium MW (90-300 Da) compounds in a Bayer liquor from Guthrie et al..  The numbered peaks were 927 

identified by MS [22]. 928 

 929 
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Figure 5:  IC trace for low MW compounds in a Bayer liquor from Picard et al. showing assignments by MS [27]. 930 

 931 

 932 
 933 

 934 

 935 

 936 
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Figure 6:  Multidimensional determination sequence adapted from Whelan et al. [61] showing GPC-UV fractionation followed by LC-937 

MS operated in full scan mode and LC-MS/MS operated in product ion mode. 938 
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