
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195656221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supporting Agility in Software Development Projects –
Defining a Project Ontology

Roy MORIEN1, Pornpit WONGTHONGTHAM2
1roymorien@hotmail.com

Research Fellow
Digital Ecosystems and Business Intelligence Institute (DEBII)

Curtin Business School
Curtin University of Technology, Perth, Australia

and
Sometime Visiting IS Specialist

Naresuan University, Phitsanulok, Thailand
1pornpit.wongthongtham@cbs.curtin.edu.au

Research Fellow
Digital Ecosystems and Business Intelligence Institute (DEBII)

Curtin Business School
Curtin University of Technology, Perth, Australia

Abstract -- The popularity of agile software development
methods, and agile software project management has
been accompanied by significant successes in the deliv-
ery of software of business value and quality to client
organizations, but has also given rise to more pressing
difficulties especially in the support of remotely located
teams, and distributed or multi-team development ac-
tivities. The question of whether or not agile methods,
which imply small, focused teams, can be successful in
‘big’ projects also arises.

This paper discusses the essential elements of agile
methods, and agile project management methods, and
discusses possible applications of ontology-based project
support mechanisms, within the application of the digi-
tal ecosystem concept.

Keywords: agile software development, agile project man-
agement, project ontology, distributed development teams

1. INTRODUCTION

Agile software development methods, such as Scrum [1, 2],
Crystal [3, 4, 5], Feature Driven Development (FDD) [6, 7],
Dynamic Systems Development Method (DSDM) [8, 9],
Lean Software Development [10, 11, 12], amongst others,
have gained a significant popularity in recent years. This
popularity can be judged by the number of user groups,
books, articles and annual and ad hoc conferences that ex-
ist, and the popularity of the annual Agile Development
Conference, which now seems to be inevitably ‘sold out’
weeks prior to the conference commencement, despite sub-
sequent efforts to make the attendance larger in the next
year.

A significant characteristic of all agile development meth-
ods is the emphasis on face-to-face communication between
client, developer, and project team leader. Further, trans-
parency enabled by constant communication via daily
‘stand up meetings’, and ‘information radiators’ (perhaps
progress charts displayed openly and obviously, for exam-
ple) ensure that all development team members and other
interested parties remain fully informed at all times.
This heavy emphasis on transparency, communication and
collaboration also brings with it a significant constraint;
how to maintain that level of communication in remotely
located and distributed development teams.
The Agile Manifesto [13] states the following guiding prin-
ciples:

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to value:
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
That is, while there is value in the items on the right, we
value the items on the left more.

These guidelines, or guiding principles, highlight this co-
nundrum. Each one of these in some way reinforces the no-
tion of direct communication, the need for collaboration,
the need for communication and openness. Where ‘Indi-
viduals and interactions’ are emphasised, there must be the
ability for individuals to interact. If working software is the
hallmark of successful progress, then that must be able to
be distributed, and collated, readily to and from remote de-
velopers. Equally, if customer collaboration is an essential

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

229

practice, then supporting that when customer and developer
may not even be in the same country or timezone is a ne-
cessity. The implications of ‘responding to change’ are
clearly that developed features must be readily available to
clients, for their feedback, and the ability for remotely lo-
cated customers to make their changes known, and for the
developers to understand what those changes imply, is also
important.
So, how to do that?

2. CHARACTERISTICS OF AGILE AND LEAN
METHODS

Before proceeding, it is informative to discuss what is
really meant by ‘agile software development’. As previ-
ously indicated The Agile Manifesto (Agile Manifesto,
2007) states the essential guiding principles. These are
elaborated upon, and their implications are focused by a
number of authors.
Evans [14] suggests that the essential difference between
the traditional approaches to systems development and the
agile approaches is the difference between planned iteration
and the unplanned rework so common in waterfall-based
projects. With the traditional approach, adherence to the
prescribed software process is considered the major deter-
minant of success. With the agile approach, adaptation to-
ward achieving the end-goal – working software – is the
major factor in success.
This table, taken from Evans (op.cit) summarizes some
“contrasts between these remarkably different ap-
proaches.”

 Waterfall Agile

Guiding
metaphor

Manufacturing
/Engineering

Organic
/Emergent

Focus Documentation,
Schedule

People, Working
Code

Dynamic
structure

Cause and Effect,
Preventive Ap-
proach

Chaordic (Or-
dered Chaos),
Adaptive Ap-
proach

Welcome Change

If there is one guiding principle of agile development, it is
“Welcome Change’. This implies the acceptance of the fact
that requirements in detail cannot properly, comprehen-
sively or accurately be defined at the beginning of the pro-
ject (the “Big Bang” approach, or the Big Design Up Front
(BDUF) approach [15, 16]), and are almost certainly sub-
ject to change in extended period projects. Highsmith [17],
in Orr [18]) states that “By the time a three-year project
delivers its first working versions, many of the users have
forgotten what they agreed on in year one or have moved
on so that the people who have to work with the system
have little or no idea what it was developed for” He further
suggests that “if a project takes three years to implement,
you can be sure that the requirements will be at least two
years out of date by the time it comes into existence.
Specific definitions of agile development have been at-
tempted by Mahanti [19] as “a departure from plan-driven

traditional approaches, where the focus is on generating
early releases of working software using collaborative
techniques, code refactoring, and on-site customer in-
volvement”. And Melnik and Maurer [20] as “human cen-
tric bodies of practices and guidelines for building usable
software in unpredictable, highly-volatile environments”.
Software development projects are considered to be an un-
predictable and highly volatile environment.
For the purpose of this discussion, a definition of Agile and
Lean development is “A software development method is
said to be an agile software development method when a
method is people focused, communications-oriented, flexi-
ble (ready to adapt to expected or unexpected change at
any time), speedy (encourages rapid and iterative develop-
ment of the product in small releases), lean (focuses on
shortening timeframe and cost and on improved quality),
responsive (reacts appropriately to expected and unex-
pected changes), and learning (focuses on improvement
during and after product development)” [21]
So, for a software development activity to be agile, it
should encompass practices that can be variously described
as:
• People Focused: (1) Collaborative: collaboration between

developers and clients is continuous and continual.. (2)
Self-Organising and Self-Managing Teams: Significant
responsibility is handed to the team members, rather than
the Project Manager, to decide on the work to be done in
the next iteration.

• Empirical and Adaptive: Project management practices
that have been published to support ‘agile development’
practices are described as ‘empirical’, ‘adaptive’, ‘evolu-
tionary’ or ‘experiential’ rather than ‘prescriptive’, or
‘pre-planned’.

• Iterative: Development is achieved through a series of
short iterations each of which produces a useable en-
hancement to the system.

• Incremental: Development is achieved through a series of
delivered increments to the system, each of which pro-
duces a fully developed, fully tested and certified extra
feature or component of the system.

• Evolutionary: the system grows in size, the requirements
in detail are continuously discovered, and are continually
emergent during the development period.

• Just-in-Time Requirements Elicitation: Requirements are
stated in detail ‘just in time’ to develop them, in the itera-
tion in which those requirements will be implemented.

Knowledge-Based: Development activity is decided upon
by the knowledgeable, self-managing members of the team,
with continual knowledge sharing about the product, the
technology and the progress of the project.

3. DISTRIBUTED AND REMOTELY LOCATED
TEAMS

A software development project comprises a number of dif-
ferent players, with different but converging interests. The
client (the ultimate recipient of the project activities’ out-
comes, and the financier of the project) expects to receive a
system that will provide business value to them, and to the
organisation within which the system will ultimately reside.

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

230

One difficulty faced by the client is to be able to authorita-
tively, comprehensively, unambiguously and correctly de-
fine the requirements of the system, and possibly more im-
portantly, the measures of business value that those re-
quirements will offer. Ranking the various, and probably
multitudinous set of requirements in some order of impor-
tance, business value and development priority is the cli-
ent’s difficult task. This is compounded by the obvious ne-
cessity to communicate those requirements to the other ma-
jor player in the project activity, and that is the develop-
ment team. The development team is presumed to have
technical skill and competence, and to have an appropriate
portfolio of development tools available to it to achieve the
development task, but cannot usually be expected to have
the domain knowledge of the client. Again, the ability to
record and communicate those requirements is of extreme
importance to the development team.
A third, and also significant ‘player’ in the project activity
is the project administrator, project leader, project manager;
call it what you will. There is some hesitation in using the
term ‘project manager’ given the attitude against such a role
by the adherents of the agile development approach, who
eschew the whole concept of a project manager, with a
‘command and control’ role. The agilists prefer the concept
of a self-directed team, with what is tantamount to a project
protector, whose role is to run interference on the project
team, clearing the way for them to vigorously pursue their
short-term goals defined for an iteration (of possibly even
as short a time as a week). The ‘project protector’ (my
term) assists in clearing the way, removing obstacles, gar-
nering required resources, and being the outward turned
face of the project team, to which all requests from 3rd par-
ties are addressed.
There is therefore a significant amount of ‘knowledge’ re-
quired, and extant, to ensure the productive and useful ef-
forts of the various players in the project activity.
The problem of gathering project information, making it
available to all players in the project is difficult in any case,
but when team interaction, collaboration and communica-
tion is heavily emphasised, and must be supported for re-
motely located and distributed teams, then the difficulty is
multiplied significantly.
If this substantial body of knowledge, much of which must
remain available long after the development phase of the
project has been completed, is to be recorded and made
available, then one highly successful approach is to create a
project ontology.

4. AGILE METHODOLOGIES – COMMUNICATION
& COLLABORATION

A number of agile development methods and approaches
have been published. These include:
• EVO www.xs4all.nl/~nrm/EvoPrinc/, [22].
• Spiral Model [23,24].
• Extreme Programming (www.xprogramming.com/

xpmag/whatisxp.htm), [25]
• Scrum (www.controlchaos.com), [2]
• Crystal (alistair.cockburn.us/index.php/ Crys-

tal_methodologies_main_foyer) [3, 4, 5]

• Feature Driven Development (FDD)
(www.featuredrivendevelopment.com/) [6, 7]

• Dynamic Systems Development Method (DSDM)
(www.dsdm.org/) [8, 9]

• Lean Software Development (www.poppendieck.com/),
[10, 11, 12]

• Agile Unified Process (www.ambysoft.com/ unifiedproc-
ess/agileUP.html), [26]

• Agile Data Modelling Method [27]
• Rational Unified Process (RUP) [28]
A recent industry survey indicated that Scrum was the pre-
dominant agile method in use, being applied in 37% of or-
ganisations that were using an agile approach in their de-
velopment activity [29]. This survey had over 1680 respon-
dents from 71 different countries.
The Scrum agile method emphasises project transparency,
continual communication and collaboration between project
partners. The Scrum method is illustrated in this diagram
(from www.controlchaos.com)

Figure 1: Scrum Method Diagram
The Scrum method depends on a Product Backlog that is a
prioritized list of all the requirements as they are known
and understood at any given time. There is no expectation
of a complete and comprehensive list. There is an expecta-
tion of change, however. The Scrum project starts with ana-
lyse meetings between all players to elaborate the Product
Backlog as much as is possible at that early time in the pro-
ject. The project proceeds in a series of short iterations,
called Sprints in this method. Sprints can be as short as a
week, and as long as a month. Shorter sprints are suggested
to keep the project highly visible to all players, and then
maintain a rapid and constant output of useable compo-
nents. (The diagram suggests a 30 day sprint, but there is a
preference for a weekly sprint). At the start of each sprint a
full team meeting takes place, and team members volunteer
for tasks as stated on the Project Backlog – the highest pri-
ority tasks being taken first.
To maintain project impetus, and high transparency and
visibility, there is a formal Daily Scrum, or Daily Standup
Meeting, where all members of the development team share
their day’s experience. This is not a ‘report to the Project
Manager’ meeting, but a collaborative, knowledge sharing,
help-seeking (where necessary) meeting. It is intended to
not last more than 15-20 minutes, but is essential to keep all

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

231

developers ‘in the loop’ and fully aware of the project ac-
tivity.
At the end of each sprint, the completed outcomes of the
sprint are demonstrated to the client, and if possible re-
leased into the production environment.
Another important artefact in the Scrum method is the
Burndown Chart.

Figure 2: Scrum Burndown Chart

This chart essentially shows the amount of work that is es-
timated to remain to be done. It is almost an inverse ‘pro-
gress chart’, not showing the work, time and effort com-
pleted (that is now irrevocable history), but the amount
work, time and effort remaining. Given an agreed upon pro-
ject completion date, then this chart clearly shows the like-
lihood of completing all of the requirements by that time.
There can also be a sprint burndown chart, showing the
likelihood of completing all the selected tasks in that sprint.
Overall, agile development methods can be characterised
by the slogan ‘Welcome Change’. Other ’slogans’ that are
applicable to agile methods include ‘Fail early’, ‘Deliver
early and often’. These are all indolent of the idea that agile
methods allow frequent face-to-face communication be-
tween the project parties, and continual communication and
update of the project status, including new and changed re-
quirements. Problems are surfaced almost immediately they
are encountered, and cannot be dismissed or deferred, often
increasing in size, intensity and risk.
Given the high importance of continual communication be-
tween project parties, it is considered that undertaking pro-
jects in an agile manner, with remotely located and distrib-
uted teams, sometimes distributed across almost all time
zones, therefore requiring almost 24/7 access to current pro-
ject information, is an especial problem.
It is suggested here that the development of a project ontol-
ogy, that allows seamless updating, promulgation of current
information, and ready access (to and by authorised person-
nel), is an ideal approach to project administration.

5. SUPPORTING THE PROJECT - A PROJECT ON-
TOLOGY

In recent times there has been considerable growth of inter-
est in ontologies as knowledge structures. One especially
germane example of an ontology, for the present purposes,
is to be found at www.seontology.org , which is purported
to be the world’s first Software Engineering Ontology. This

Software Engineering Ontology defines the shareable soft-
ware engineering knowledge, which includes specific pro-
ject information [30, 31]. However, this ontology, like most
other ontologies, is fundamentally static, or has a passive
structure. Like many knowledge bases (such as the Internet
itself) searching that knowledge base is effective and useful
provided, first, that the searcher knows exactly what they
are searching for, and second, that the knowledge is coded
in such a way that search results are relevant and address
the real question. For example, the oft-quoted search on the
keyword of ‘Jaguar’ may return many hits on natural his-
tory information, endangered species and habitat destruc-
tion, when it is information about a famous marque of mo-
tor vehicle is intended.
Like any other repository of information, an ontology must
be maintained for currency, relevance and completeness. In
a project team, this will need to be done by all or any of the
players who will be authorised to do so. In a distributed and
remotely located team situation this is a problem exacer-
bated by distance geographically and in time.
For these various reasons, the project players will need ac-
tive support.
The question then is, How can we provide this active sup-
port to the project players; the end users of the project sup-
port system? How do we make it easier for them to find the
information that they need, and how to provide them with
meaningful information.
Further, given that almost without exception all participants
in an agile project activity will need to be able to update,
modify, change, add to, remove from the information in the
ontology, how do we rank requirement requests and re-
quests for changes to previously accepted requirements.
Ranking here implies the level of authority or influence that
any given player has. This is a manifold problem, not just
restricted to some access verification ‘firewall’. The right of
any given player to propose a change to requirements, the
expectation that such a request is authoritative, the accep-
tance of the priority of the change; these are all subjective
factors that need to be addressed within the ontology, be-
cause access to management decision making may not be
an option given the remoteness of the suggester.
These are matters that are given elevated status in an agile
development project. Given also the ‘need for speed’ that
is inherent in the agile development decision process, to-
gether with the fact that the developers are fundamentally
self-organised, and need constant access to up-to-date in-
formation on progress, problems, and prioritised require-
ments.

6. PROPOSED ONTOLOGY PROJECT

It is intended to undertake a project to develop such an on-
tology. The intention is to develop a social network based
recommender approach which will provide active support
and recommendations for remotely located project players
and distributed team members. The intention is that they
will be able to effectively and efficiently access and share
project knowledge in an agile software development and
project situation. This approach integrates the software en-
gineering ontology and recommender approach through the
utilisation of social network agents. This is considered to be

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

232

a new and innovative approach for remotely located and
distributed software development teams. Of particular use-
fulness is that the software engineering ontology enables an
active ecology of social network agents to convey, utilise
and act on project information at least semi-autonomously,
according to explicit project domain knowledge. An inno-
vative characteristic is that recommendation techniques are
used to recommend useful project information and tentative
solution(s) for project issues that are raised by team mem-
bers.
A key feature is that it is a social network-based system in-
tegrated with another key emerging technology - semantic
web. It is an innovative social network based system sup-
porting remote collaborative applications. The problem ar-
eas to be explored are as follows. First is the development
of a new social network based recommender system archi-
tecture that facilitates meaningful communication, discus-
sion, negotiation and information exchange through col-
laborative agents interacting with the ontology. A major
aim of our approach is to enable the integration process
from syntactic interoperability to semantic interoperability.
Another aim is to develop an open knowledge platform for
sharing project artefacts, expert opinions, progress informa-
tion, project document and standards, etc. An important re-
quirement that has guided the design of an open knowledge
platform is the support of software development teams
which are geographically distributed. An open knowledge
platform enables provision of expertise and coordination of
project information within a team; especially if it allows
new members or new teams to catch up with the current
project. The open knowledge platform provides the best
opportunities for sharing and retrieving knowledge and
software project information but also entails some signifi-
cant techniques in member profile evaluation. A first proto-
type of the social network based recommender system will
be developed using JADE. JADE (Java Agent Development
framework) is a software framework that simplifies the im-
plementation of agent applications in compliance with the
FIPA specifications for interoperable intelligent multi-agent
systems [32, 33]. Given the distributed nature of the JADE
based multi-agent systems, teams can be distributed con-
nected usually through the Internet and situated in different
parts of the globe. Each system platform can be distributed
on different computation nodes and it is connected to a web
server where social network agents reside, allowing direct
interactions with the members. Field-testing, evaluation and
benchmarking will be carried out to validate the practical
value and usability of the open knowledge platform.
Evaluation processes include the industry partners making
use of the prototype, use of surveys and focus groups in or-
der to find out the issues with the prototype, and forming
case studies in order to probe in-depth issues.

7. CONCLUSION

Agile, iterative development, which can be described as a
knowledge-based, self organising software development
approach, and software project management approach, re-
quires extensive face-to-face communication, personal col-
laboration and communication, and frequent sharing of
knowledge and information, between all players in a project
(client, developer, project ‘owner’ etc.). A further major

feature of agile development is the acceptance of continual
change requests, and the management and prioritisation of
those change requests, through a continually updated and
administered Project (or Product) Backlog.
These characteristics of such an approach are significantly
problematic when considering remotely located and distrib-
uted development teams. This is considered to be consid-
erably more so than in the tradition, rigorously pre-planned
development approaches, where all requirements and
planned activities are stated ‘up front’, and ostensibly will
not change (except through a further rigorous ‘change con-
trol’ system).
A project ontology, encompassing all of the ‘knowledge’ of
the project, and providing active support and recommenda-
tions to project players, is envisaged, and will be the subject
of a research and development project that will be under-
taken at The Digital Ecosystems and Business intelligence
Institute (DEBII) at Curtin University of Technology.
DEBII is a University Tier one Research Centre of Excel-
lence incorporating Research Centres of Frontier Technolo-
gies for Extended Enterprises (CEEBI) and AoRE (Area of
Research Excellence) (http://www.debii.curtin.edu.au/).

8. REFERENCES

[1] Advanced Development Methods Inc, Home Page,
http://www.controlchaos.com/, accessed October 2007
[2] Schwaber, Ken & Mike Beedle, Agile Software Development with
Scrum, Prentice Hall, 2001, ISBN 0130676349
[3] Cockburn, Alistair, Crystal Clear: A Human-Powered Methodology for
Small Teams (The Agile Software Development Series), Addison-Wesley,
2004, ISBN 0201699478
[4] Cockburn, Alistair, Agile Software Development: The Cooperative
Game, Addison-Wesley, 2006, 2nd edition, ISBN 0321482751
[5] Crystal Methods Main Foyer,
alistair.cockburn.us/ index.php/
Crystal_methodologies_main_foyer, Accessed October 2007
[6] Feature Driven Development Portal,
www.featuredrivendevelopment.com/, accessed October 2007
[7] Palmer, Stephen R. & John M. Felsing (2002), A Practical Guide to
Feature-Driven Development (The Coad Series), Prentice Hall, , 2002,
ISBN 0130676152
[8] DSDM Consortium, www.dsdm.org/, accessed October 2007
[9] Stapleton, Jennifer (2003), DSDM: Business Focused Development,
DSDM Consortium, Second Edition, 2003
[10] Poppendiek.LLC Home Page, www.poppendieck.com/, accessed Oc-
tober 2007
[11] Poppendieck, Mary & Tom Poppendieck, Lean Software Develop-
ment: An Agile Toolkit, Addison-Wesley, 2003, ISBN 0321150783
[12] Poppendieck, Mary & Tom Poppendieck, Implementing Lean Soft-
ware Development: From Concept to Cash, Addison-Wesley, 2006, ISBN
0321437381
[13] Agile Manifesto, http://agilemanifesto.org/, Accessed October, 2007
[14] Evans, Ian (2006), “Agile Delivery at British Telecom, Methods &
Tools”, Summer 2006:20, www.methodsandtools.com/
mt/download.php?summer06
[15] Ambler, Scott (2003a), Agile Database Techniques: Effective Strate-
gies for the Agile Software Developer, Wiley Application Development
Series
[16] Ambler, Scott (2003b), “Something's Gotta Give”, Dr Dobbs Archi-
tecture & Design, March 1st, 2003,
http://www.ddj.com/architect/184414962
[17] Jim Highsmith ‘bio’ @ http://www.adaptivesd.com/about.html, ac-
cessed October 2007

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

233

[18] Orr, Ken (2002), “Agile Requirements”, Agile Project Management
Advisory Service, Executive Report, Vol. 3, No. 12, Cutter Corporation
[19] Mahanti, A. (2006). “Challenges in enterprise adoption of agile meth-
ods - A survey”. Journal of Computing and Information Technology 14(3):
197-206.
[20] Melnik, G. and F. Maurer (2005). “Agile methods: A cross-program
investigation of student's perceptions of agile methods”. Proceedings of the
27th international conference on Software engineering ICSE'05, ACM
Press, IEEE Computer Society.
[21] Qumer A., B. Henderson-Sellers, (2007), “An Evaluation of the De-
gree of Agility in Six Agile Methods and its Applicability for Method En-
gineering”, Information and Software Technology, 2007
[22] Gilb, T. (1988), Principles Of Software Engineering Management,
Addison-Wesley
[23] Boehm, Barry (1986), “A Spiral Model of Software Development and
Enhancement”, ACM SIGSOFT Software Engineering Notes, August,
1986.
[24] Boehm, Barry, “A Spiral Model of Software Development and En-
hancement”, IEEE Computer, vol.21, #5, May 1988, pp 61-72.
[25] Beck, Kent (2004), Extreme Programming Explained: Embrace
Change, 2nd Edition, Addison-Wesley, 2nd edition, ISBN 0321278658)

[26] Alhir, Sinan Si, “The Agile Unified Process (AUP)”,
home.comcast.net/~salhir/ TheAgileUnifiedProcess.PDF, Accessed March
1st, 2007
[27] Agile Alliance (2007), www.agilealliance.org/show/1641
[28] www-306.ibm.com/ software/rational/), ootips.org/rup.html, accessed
October 2006.
[29] VersionOne and APLN, 2nd Annual Survey “The State of Agile De-
velopment”, conducted June-July, 2007
[30] Wongthongtham, P., A methodology for multi-site distributed soft-
ware development, PhD Thesis, Curtin University of Technology, 2006)
[31]Wongthongtham, P, Chang, E, Dillon, T & Sommerville, I 2006, 'On-
tology-based multi-site software development methodology and tools',
Journal of Systems Architecture, vol. 52, no. 11, pp. 640-53.
[32] Bellifemine, F, Poggi, A & Rimassa, G 2001a, 'Developing multi-
agent systems with a FIPA-compliant agent framework', Software Practice
and Experience, vol. 31, pp. 103-28.
[33] Bellifemine, F, Poggi, A & Rimassa, G 2001b, 'JADE: a FIPA2000
compliant agent development environment', The fifth International Con-
ference on Autonomous Agents, ACM Press, New York, USA, Montreal,
Quebec, Canada, pp. 216-7.

2008 Second IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2008)
© 2008 IEEE.

234

