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Individual gold nanowire devices for use as nanoelectrodes in 

electrochemical studies were fabricated using a low-cost robust 

fabrication approach.  Nanowires were characterized by a 

combination of direct electrical current-voltage measurements and 

cyclic voltammetry using the model analyte ferrocene 

monocarboxylic acid.  We observed low electrical resistances to 

contacted nanowires and steady-state sigmoidal electrochemical 

voltammograms that may be described by classical Butler-Volmer 

kinetics.  The potential of nanowires for use in future biosensing 

applications was explored by demonstrating mediated 

bioelectrocatalytic oxidation of glucose.   

 

 

The growing need for point of care (POC) technologies is driving the development of 

more sensitive and more advanced sensor devices, particularly nanosensors.  POC 

technologies are becoming more pervasive and range from the simple home pregnancy 

test kit to more complex blood analyzers employed in emergency clinical environments.  

With the global nanosensor market expected to exceed $2.4 billion by 2012 a number of 

blue chip companies are establishing market positions (1).  To win a market share new 

emerging POC technologies must provide: convenience, rapid analysis (less than 5 

minutes), ease of use, assay detection limits equivalent to or better than established 

clinical laboratory assays, at low cost (less than $10 per assay) and have low maintenance 

requirements.  To this end, significant opportunity therefore exists to develop new sensor 

devices that exploit low cost nano-manufacturing methods.  To address this opportunity, 

nanosensors based on 1-D nanostructures such as silicon nanowires and carbon nanotubes 

are being explored as theses nanostructures offer the potential to achieve highly-

integrated sensors with direct electrical readout (2-4).  In these sensor systems, the 

perturbation in the local electrostatic environment of a nanowire-based field effect 

transistor by a charged analyte causes an increase or decrease in conductance, which is 

employed as the sensor signal (2).  Although elegant, these sensor technologies require 

complex heterogeneous integration approaches following synthesis and, depending on 

device architecture, may require the application of back gate voltages as high as 40 V to 

be applied (5). 

 

By contrast, electrochemical sensors typically have much lower voltages (-1.5 – 1.5 

V) requirements.  Compared to traditional macroelectrodes, nanoscale electrodes have 

tremendous potential as electrochemical sensors exhibiting enhanced performance.  As 

critical dimensions of the electrodes enter the micro and nano regime, radial analyte 

diffusion profiles dominate with a corresponding increase in mass transport rate, higher 

current densities giving rise to an increased IF/IC ratio (due to smaller surface area), 

higher S/N ratios and steady-state sigmoidal voltammograms. (6).  However, widespread 
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take-up of nanoscale electrodes has been limited by the lack of practical and effective 

methodologies for fabrication of robust nanoelectrodes.   

 

Nanoelectrode ensembles have been fabricated using a variety of approaches 

including: template-directed synthesis of deposited metals into sub-micron pores of 

commercial membranes (7-8), self-assembly of metallic nanoparticles(9-10), nanowires 

(11-12) or carbon microspheres decorated with nanoparticles at macroelectrodes (13-14), 

and opening of vias, through a self-assembled monolayer (15-16) or block copolymer 
 

(17) insulation layer to an underlying planar electrode yielding individual electrode 

elements of ~6 nm radius. A key limitation with nanoelectrodes ensembles is individual 

nanoelectrode elements are not diffusionally independent, i.e., diffusion layers 

surrounding each electrode overlap, leading to a decrease of the current density at each 

individual electrode.  This results in depletion layers being generated near each individual 

nanoelectrode leading to a significant decrease of the effective electrode area.  To address 

this limitation, nanoelectrode arrays have been fabricated whereby individual 

nanoelectrodes are sufficiently spaced to render them diffusionally independent from 

closest neighbors.  Focused ion beam milling and lithography and etching have been 

employed to etch arrays of nanopores into insulating layers on macroelectrodes (18).  

Recently it has shown, however, that diffusion to nanoelectrode arrays is dominated by 

diffusion to those at the edge of the array for non-infinite arrays (19).  However, it was 

found that the voltammetric sweep rate influenced the profile of the diffusion layers such 

that, at low and very high sweep rates, diffusion profiles to each nanoelectrode 

overlapped resulting in a planar diffusion profiles. 

 

With respect to individual nanoelectrodes, a variety of different approaches to 

fabrication have been reported including: fabrication of nanoband electrodes by 

evaporating thin metal films onto glass substrates, encapsulation and exposure of film 

edges only (20), sequential etching of a microwire to a fine cone followed by insulation 

of all but the cone tip (21-24), fabrication of disc electrodes by deposition of carbon in a 

capillary tube (25), and pulling of glass capillaries containing sealed microwires (26-27). 

Although individual nanoelectrodes have been used to probe nanoscale electrochemical 

phenomena, major disadvantages associated with these electrodes include: the difficulty 

and length of time for fabrication, leaking of electrolyte though the seals, and the 

extremely small currents (10-100 pA) that may be achieved with them. Such small 

currents pose problems when the measured current is to be used as the signal in a sensor 

electroanalytical application. 

 

Experimental: Nanowire Fabrication and Integration 

Herein we explore individual gold nanowire (NW) devices for use as nanoelectrodes 

in electrochemical studies fabricated using a low cost robust fabrication approach capable 

of achieving comparatively high electrochemical currents (nA); see Figure 1a.  

Nanowires were fabricated using the nanoskiving technique recently pioneered by the 

Whitesides Group (28).  Briefly, a thin film of gold was evaporated onto an epoxy 

substrate which was further encapsulated in epoxy to form a block.  Following curing, 

sections were sliced from the block using ultramicrotomy to yield nanomembranes each 

containing one gold nanowire.  The nanomembranes were then deposited onto an 

oxidized silicon chip substrate (90 nm, thermal SiO2) bearing arrays of micron-scale 

binary alignment marks, which were used for subsequent overlay of top-contact 



electrodes using optical lithography.  Following deposition, nanowires were liberated 

from the epoxy membrane by O2 plasma ashing.  Nanowires with lengths of several 

hundred microns and widths and heights of ~ 207 ± 1 nm and 254 ± 11 nm, respectively, 

were routinely fabricated.  Using the binary mark identifiers for alignment and 

registration, contact electrodes were overlaid using optical lithography, metal evaporation 

(Ti 10 nm, Au 200 nm) and liftoff.  Finally, a layer of photoresist (1 m) was spin coated 

on to the chip to serve as an insulating layer preventing unwanted electrochemical 

reactions occurring at the interconnection tracks.  Optical lithography was then employed 

to open a trench over the nanowire; see Figure 1b.  Finally, chips bearing electrically-

contacted nanowires were assembled onto printed circuit boards, electrically contacted 

using wedge wire bonding (25 µm aluminum wire) and the bonds protected by epoxy to 

complete device packaging.  Control devices (electrodes overlaid onto substrates without 

a nanowire present) were fabricated in a similar manner. 

 
 

Figure 1.  (a) Device schematic of a contacted gold nanowire. Contact electrodes were 

passivated using a photoresist insulating passivation layer. A trench was opened in the 

photoresist directly over the nanowire electrode to allow contact between the nanowire 

and the external environment. (b) Optical micrograph of a fully fabricated nanowire 

device.  Scale bar, 50 m. 



 

Results: 

Nanowire Characterization:  

Following fabrication, nanowires were characterized using a combination of current-

voltage (I-V) measurements and cyclic voltammetry, (CV).  Two point electrical 

characterization of packaged devices demonstrated fully functional nanowires that 

exhibited very low resistance ~ 80 Ω (68 -93 Ω) for ~ 50 m long wires; see Figure 2a.  

The measured track resistance was 16 ± 2 Ω, ignoring contact resistances, a resistivity of 

~8 x 10
-8

 Ω m was calculated for wires using a cross sectional area of 5.26 x 10
-14 

m
2
.  

This value correlates well with the bulk value of gold, 2.21 × 10
-8 

Ω·m (29) and the 

slightly lower resistivity measurement may be attributed to grain boundary scattering 

within the polycrystalline nanowires (30). Figure 2c shows a high resolution scanning 

electron micrograph of a portion of a nanowire with grain boundaries on the order of 32 ± 

2 nm. 

CVs in 0.1M H2SO4 were employed as an electrode cleaning method because these 

nanowires cannot be polished like with macro-electrodes.  A typical H2SO4 cyclic 

voltammogram (CV) recorded using a typical gold nanowire electrode is shown in Figure 

2b.  The characteristic gold oxide formation peak (ca. 1.13 V) and oxide reduction peaks 

(ca. 0.78 V) are in good agreement with data in the literature (31).  The charge for gold 

oxide monolayer reduction may be converted to the real surface area of 2.92 x 10
-7

 cm
2
 

using the conversion factor 386 µC cm
-2

 (32).  In this manner, it was estimated that 

nanowires had an average roughness factor of ~ 6, i.e., the electrochemical active area 

was approximately 6 times higher than the geometric surface area; see Figure 2c.  It 

would therefore be expected that this increased electrochemically active area would lead 

to a higher measurable electrochemical current obtained from individual nanowires.   

 

Figure 2.  (a).  Typical I-V characteristic of a packaged nanowire exhibiting low 

resistance, ~ 80 Ω.  (b) CV of a typical gold nanowire in 0.1 M H2SO4, from -0.4 to +1.6 

V at 100 mV s
-1

.  (c) Scanning electron micrograph of a skived nanowire with high 

roughness. 

 

This expectation was borne out during experiments using 1mM ferrocene 

monocarboxylic acid (FcCOOH) in 10 mM PBS, pH 7.4 and 25 ºC, see Figure 3a.  To 

undertake experiments, a potentiostat (CHI 660) with a faraday cage (CH Instruments, 

Texas) were employed to apply a potential scan range of 0.1 - 0.6 V to a nanowire 

working electrode with respect to Ag/AgCl reference and with a Pt wire counter 



electrode.  At high potential an anodic current corresponding to the oxidation of 

FcCOOH was observed.  A sloped plateau region was not observed and the voltammetric 

waves appeared stretched.  This may be attributed to heterogeneous electrode kinetics 

which control the rate of electrode reactions.  Due to the small critical dimension of the 

NW, mass transport is highly effective, and the rate of mass transport may become 

comparable to or larger than the rate of electron transfer.  The magnitude of the diffusion-

controlled current was typically on the order of 1.5 nA.  Control CV experiments were 

undertaken using control devices (without nanowires) in the presence of FcCOOH in PBS 

electrolyte solution.  No electrochemical waves were observed during these control 

experiments indicating that the interconnection tracks were sufficiently insulated from the 

electrolytic solution.  The magnitude of the steady state current was typically on the order 

of 1.5 nA and was independent of scan rates up to 2 V/s; see Figure 3b. 

 

 
Figure 3. a) Cyclic Voltammograms obtained for a nanowire electrode in the presence 

(dark line) and absence (light line) of 1mM FcCOOH in PBS, from 0.1 - +0.6 V, at 5 mV 

s
-1

. (b) Cyclic Voltammograms exhibited steady-state voltammetric responses 

independent of scan rate from 5 to 2000 mVs
-1

.  

Electrochemical Analysis: 

The enhanced mass transport rate at a nanoelectrode allows the kinetics of electrode 

reactions to be accessed through voltammetry. The classic Butler-Volmer model of 

electrode kinetics (33) was fitted to the CV data, see Figure 4.  The classic Butler-Volmer 

current model for a one-step, one-electron oxidation reaction the oxidative current iBV 

may be defined as: 
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where id is the diffusion-limited current, F is the Faraday constant, R is the molar gas 

constant, T is temperature (K), E is the applied potential, E
0’

 is the formal potential of the 

redox-couple,  is the transfer coefficient, and K0 = FACk
0
/id, where A is the electrode 

surface area, C is the bulk concentration of the electroactive species, and k
0
 is the 

standard heterogeneous rate constant.  Figure 4 shows a fit of Eq. 1 to the experimental 

data presented in Figure 3a using k
0
, α, and id as fitting parameters. Non-linear least 

square fitting of experimental voltammograms by Equation (1) was performed by the 

Levenberg-Marquardt algorithm (34).  The fitting range was restricted to below a 

potentials below 0.4 V, so that only the features of the voltammogram containing 

information about the electrode kinetics (i.e. the raising part) was included and the fit was 

not influenced by experimental artifacts (i.e. the experimental limiting current).  The 

values for E
0’, 

C and A were fixed; E
0’

 = 0.306 mV, C = 1 mM and A was calculated 

using the geometric area of the nanowire = 2.99 x 10
-11

 cm
2
. 

 

k0 = 0.133 cm/s
 = 0.786 ± 0.003
id = 3.41 ± 0.03 nA

 
Figure 4.  Fit of the Butler-Volmer model fit to CV data obtained using a nanoskived 

nanowire electrode. 

 

Electrochemical Sensing: 

To explore utility of nanowires for use in as electrochemical-based sensing 

applications, glucose was selected as a key target analyte.  Glucose detection is of critical 

importance in a variety of application areas including: food industry for quality control 

purposes, in fermentation, and as a clinical indicator for diabetes.  Direct observation of 

well defined electrochemical behavior from immobilized glucose oxidase (GOx) is 

difficult since the flavin adenine dinucleotide (FAD) redox center group is embedded 

deep within the protein structure (35).  Therefore the electrons produced in the enzyme-

catalyzed reaction cannot always be easily and rapidly transferred to the electrode 

surface.  One approach to surmount is to employ artificial redox mediators, small 

molecules, capable of undergoing rapid and reversible redox reactions, as shuttles to 

mediate the electronic transfer between the redox center of the enzyme and the electrode 

surface (35-37).  We employed 0.1 mM FcCOOH to mediate the oxidation of glucose, in 



the presence of 1 mg/ml soluble GOx, to a nanowire electrode; see Figure 5a.  

Experiments were performed using different concentrations of glucose in the 

physiologically important concentration range of 1-15 mM.  CVs corresponding to the 

bio-electrocatalytic oxidation of glucose presented in Figure 5b show a well defined 

increase in catalytic current with increasing glucose concentration.  Although work is 

ongoing to optimize sensor design and assay parameters in terms of reproducibility, 

repeatability accuracy etc., these results demonstrate the clear potential of nanowire 

electrodes for use in future up-stream electrochemical-based diagnostic devices.  

 

 
Figure 5.  Schematic of the reversible electrochemical oxidation of FcCOOH coupled 

glucose oxidation biocatalyzed by GOx in PBS from 0.1 - +0.5 V, at 5 mVs
-1

.   

 

Conclusion: 

Individual gold nanowire devices for use as nanoelectrodes in electrochemical 

studies were fabricated using a low cost robust fabrication approach.  Nanowires were 

characterized by a combination of direct electrical current-voltage (I-V) measurements 

and cyclic voltammetry (CV) to determine their functionality.  We observed low 

electrical resistances to contacted nanowires and diffusion-controlled electrochemical 

voltammograms that may be described by classical Butler-Volmer kinetics.  We explored 

the potential of these nanowire electrodes for use as future electrochemical sensor devices 

by employing FcCOOH to mediate the oxidation of glucose in the presence of soluble 

GOx at a nanowire electrode.   
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