

© 2011 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195655974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Alternative Approach to Tree-Structured Web Log Representation and Mining

Fedja Hadzic, Michael Hecker
DEBII, Curtin University

Perth, Australia
{fedja.hadzic,michael.hecker}@curtin.edu.au

Abstract—More recent approaches to web log data
representation aim to capture the user navigational patterns with
respect to the overall structure of the web site. One such
representation is tree-structured log files which is the focus of
this work. Most existing methods for analyzing such data are
based on the use of frequent subtree mining techniques to extract
frequent user activity and navigational paths. In this paper we
evaluate the use of other standard data mining techniques
enabled by a recently proposed structure preserving flat data
representation for tree-structured data. The initially proposed
framework was adjusted to better suit the web log mining task.
Experimental evaluation is performed on two real world web log
datasets and comparisons are made with an existing state-of-the-
art classifier for tree-structured data. The results show the great
potential of the method in enabling the application of a wider
range of data mining/analysis techniques to tree-structured web
log data.

Keywords: web usage mining, tree-structured web logs

I. INTRODUCTION

Web mining is the use of data mining techniques to
automatically extract useful information and knowledge
patterns from the web documents and services [1]. The
problem differs depending on the type of information mined
and the knowledge sought after in the application. Hence,
within the general problem one can distinguish between web
content mining – extracting information and analysing the
structure of the documents on the web, web usage mining
(also referred to as web log mining) - mining for user access
and browsing patterns, and web structure mining – mining
the structure of the hyperlinks within the web [2, 3]. The
work presented in this paper is focused on the web usage
mining problem, and more specifically to mining of web log
data represented in tree-structured form.

The type of information commonly sought after during
the analysis of web logs is: users’ browsing patterns, analysis
of users visiting the same web pages, most frequent usage
paths, paths occurring frequently inside user interactions
with the site, detecting users who visit certain pages
frequently, etc. [4]. This information is often extracted using
the frequent pattern mining algorithms where the user
interactions with a web site are represented as separate
records in transactional or sequential databases. Many
methods have been developed for this purpose, and frequent
itemset and sequence mining algorithms are commonly used
to efficiently extract interesting associations, that reveal
common user activities and interests [5-7]. Besides these
advances in web log mining, a number of works focused on

web log data represented in a more complex form so that the
navigational pattern and the overall structure of the web site
can be described in the data [8-10]. One example is the
LOGML language proposed in [11] which allows for a more
detailed and informative representation of web logs, using an
XML template. The set of requested web pages and traversed
hyperlinks in a web log file are represented as a web graph
(tree) which is a subset of the web site graph of the web
server being analysed. In the context of tree mining, a tree-
structured pattern will contain more descriptive information
in comparison with an itemset or sequence pattern. This was
demonstrated in [12] where it is shown that representing web
logs in a tree-structured form allows one to mine for
substructures which are more informative, because they
often reveal more information regarding the structure of the
web site and users’ navigational patterns.

In this work we take an alternative approach for web log
mining, based on our recently proposed [13] structure
preserving flat data representation for tree-structured data
such as XML. The conversion process is based on the
extraction of a database structure model within which each
tree instance can be matched to generate the flat data
representation that captures the structural properties. The
work demonstrated the effectiveness of the method when the
XML schema is well defined and the attributes/values in
each instance follow the same order with respect to the
schema. Decision tree learning performed very well when
applied on a synthetic dataset for classifying instances
according to their structural properties. However, when
tested on web log data, while it had satisfactory classification
accuracy, the task was fairly complex and took long time to
execute. This is because the structure of instances of web log
data can vary greatly among sessions and having a database
structure model that captures all of them can be quite
inefficient as well as classification accuracy can suffer due to
the many irrelevant nodes present. Hence in this work, the
approach of database structure model extraction and flat data
format generation is modified to suit better for web log data.
The user can supply the minimum frequency threshold for
the part of the structural characteristics to be considered as
part of the database structure model extracted and hence as
part of the training set. In web log data this interprets to only
the frequently occurring navigational patterns within user
sessions to be taken into account. The not so common
navigational patterns within a session are therefore ignored,
while the behavior that can be classified as relevant is still
captured. The experimental evaluation is performed using
two real world web log datasets and the comparisons are
made with existing structural classifier. The results indicate

the suitability of the method as an alternative approach to
web log mining. Furthermore, given that many more data
mining/analysis techniques exist for flat data representation,
the conversion approach in itself can potentially enable a
wider range of techniques to be applied for mining of tree-
structured web log data. This will hasten the application
process, as any already developed data mining method can
be directly applied, rather than individually adapting each of
the methods to tree-structured data.

The rest of the paper is organized as follows. In Section 2
we overview some of the related works. The definitions of
concepts essential for understanding the proposed method
are described in Section 3. Section 4 overviews the basics of
the structure preserving flat data representation for tree-
structured data and the extensions proposed in this work.
Experiments are provided in Section 5. In Section 6 we
summarize the paper and indicate areas of future
investigation.

II. RELATED WORKS

Web usage mining aims to discover information such as:
users’ browsing patterns, analysis of users visiting the same
web pages, most frequent usage paths, paths occurring
frequently inside user interactions with the site, detecting
users who visit certain pages frequently, etc. [3, 4, 14]. Due
to the nature of the web log data, many of the aims can be
satisfied using frequent pattern mining approaches, where the
pattern can correspond to either an itemset, sequence or a
graph structured item [11]. One can then form association
rules from the extracted patterns. For example, the
WEBMINER system has been developed to discover
association patterns and sequential patterns from server
access logs [15]. Many approaches have been developed that
apply (modifications of) association rule and sequential
pattern discovery techniques to analyse web logs [9, 16-18].
Other techniques have also proved useful for web usage
analysis, such as statistical analysis, clustering, classification
and dependency modelling. For example, WebPersonalizer
system [19] provides a framework for mining web log data
and provides recommendations to users based on their
similarities to previous users. It uses a combination of
association rule mining, clustering, sequence mining, and
classification. A unifying probabilistic framework for
clustering individuals where the data is in non-vector form
has been proposed in [20]. A general expectation-
maximization procedure for clustering is adopted and the
framework has been successfully applied to cluster
individuals based on their web navigation behaviour. The
discovery of recurrent patterns embedded in sequences of
web page requests is also of importance for web usage
mining. In [21] the authors proposed the use of the Bayes
error rate framework for analysing problems of this nature in
a Markov context. In [22], a different approach is adopted
that combines OLAP and data mining techniques to analyse
web logs for prediction, classification and time-series
analysis. As in general data mining, pre-processing of the
web usage patterns is an important issue and some
approaches have been discussed in [4]. For a more detailed

overview of the existing web log mining techniques, please
refer to [5-7].

Most of the techniques discussed above mine web logs
that are represented in a relational or sequential database, and
hence, usually adopt a frequent itemset or sequence mining
based approach for discovering interesting associations. We
will now examine some approaches that represent web logs
using a graph structure in order to extract more informative
patterns. These approaches are motivated by the observation
that additional information such as navigational patterns and
subsessions are harder to realize from the traditional
representation of web logs, and as such have proposed
alternative ways for representing web log data and mining it.
For example, in order to capture navigational patterns, the
work presented in [23] models the web log data as a directed
weighted graph where the weights indicate the probabilities
that reflect the user interaction with the web site. They refer
to this representation as hypertext probabilistic grammar and
have tailored the association rule framework for analysing
such representations. They have extended their work in [8]
by making use of entropy as an estimator of statistical
properties of the hypertext grammar. The MiDAS algorithm
[9] map web log data onto a concept hierarchy and then
discover sequences of hits by extracting pattern trees where a
node contains all the properties of a hit (URL, frequency,
timestamp) and the links represent the relationships between
the nodes. A notion of the aggregate tree is proposed in [24],
used for pre-processing of a sequential web log file. It
eliminates duplicates and merges all sequences with common
prefixes together so that each node in the tree is annotated
with a number of sequences having the same prefix up to and
including this node. This tree is then scanned using an
analytical procedure to discover the navigational behaviour
of users. In [10], the granularity of user sessions is increased
by adding information about sub-sessions within web page
access sessions, in order to predict the following set of pages
to be visited by a user. The sub-session information is
represented using a tree structure and the frequent path
within the tree indicates the set of pages likely to be visited
from a given node (page) in the tree.

In the abovementioned work, the main motivation for
representing web log data as a tree structure is to add
granularity to the information that can be extracted from web
logs and inferences that can be made, as well as simplify the
mining process to some extent. In order to enable easier,
more meaningful and standardized representation of web log
data which can capture information related to the structure of
the web site and navigational patterns (sub-sessions),
LOGML language was developed [11]. It is an XML 1.0
application for describing log reports of web servers. The set
of requested web pages and traversed hyperlinks in a web
log file are represented as a web graph (tree) which is a
subset of the web site graph of the web server being
analysed. In [12], an algorithm for mining ordered embedded
subtrees was presented and it was demonstrated how it can
be useful for extracting additional information from web log
data represented in tree-structured form, in comparison when
itemset mining or sequence mining approach was applied.

III. PROBLEM BACKGROUND

As the focus of this paper is on tree-structured web log
data, this section first defines some tree related concepts and
then proceeds with an example tree representation of web
server log sessions. To lay the necessary ground for
describing the proposed method in Section 4, we conclude
the section with a definition of commonly used string
encoding for trees.

A graph consists of a set of nodes (or vertices) that are
connected by edges. Each edge has two nodes associated
with it. A path is defined as a finite sequence of edges. A
rooted tree has its top-most node defined as the root that has
no incoming edges. In a tree there is a single unique path
between any two nodes. A node u is said to be a parent of
node v, if there is a directed edge from u to v. Node v is then
said to be a child of node u. Nodes with the same parent are
called siblings. A rooted ordered labelled tree can be
denoted as T = (v0, V,L,E), where (1) v0 V is the root vertex;
(2) V is the set of vertices or nodes; (3) L is a labelling
function that assigns a label L(v) to every vertex vV; (4) E
= {(v1,v2)| v1,v2 V AND v1 ≠ v2} is the set of edges in the
tree, and (4) for each internal node the children are ordered
form left to right. The problem of frequent subtree mining
can be generally stated as: given a database of trees Tdb and
minimum support threshold (σ), find all subtrees that occur at
least σ times in Tdb [25]. A pre-order traversal of a tree can
be defined as follows: If ordered tree T consists only of a
root node r, then r is the pre-order traversal of T. Otherwise
let T1, T2, ..., Tn be the subtrees occurring at r from left to
right in T. The pre-order traversal begins by visiting r and
then traversing all the remaining subtrees in pre-order
starting from T1 and finishing with Tn. For an extensive
overview of the frequent subtree mining field the interested
reader is referred to [25-27].

To illustrate how a user session can be represented as a
tree consider two simple sessions in Fig. 1 that have been
logged from our institutes’ web server. Each session starts
from the home page www.debii.curtin.edu.au, denoted with
‘/’ in Fig. 1. For faster processing the strings are commonly
mapped to unique integers, and in Table 1 we present the
mapping used in this example (note that ‘.html’ is ignored).

Session 1:
/
/about.html
/about/objectives.html
/about/mission-and-vision.html
/research.html
/research/topics.html
/research/topics/50-data-mining-and-semantic-

technologies.html
/research/topics/51-business-intelligence.html
/phd-a-msc.html

Session 2:
/
/research.html
/research/topics.html

/research/publications.html
/research/projects.html
/research/seminars.html
/contact-us.html

Figure 1. Example user sessions

TABLE I. INTEGER MAPPING FOR WEB PAGES FROM FIG. 1

ID Web Page
0 Home page
1 about
2 objectives
3 mission-and-vision
4 research
5 Topics
6 50-data-mining-and-semantic-

technologies
7 51-business-intelligence
8 phd-a-msc
9 publications
10 projects
11 seminars
12 contact-us

The access sequence of web pages from Fig. 1 can be

represented in a tree-structured way as shown in Fig. 2. The
order of pages accessed is reflected by the pre-order traversal
of the tree. The corresponding tree structure is more
informative than just a sequence of pages accessed as it
captures the structure of the web site, and navigational
patterns over this website. By organizing them in such a
way, specific pages can be considered under the same
context. An example of this is the two pages being grouped
under the ‘topics’ parent node with label 5 in the tree of
session 1, and four pages under the ‘research’ parent node
with label 6 in the tree of session 2. The session 1 has come
from an IP within the university and is an example of most
likely a student gaining some general information about the
institute and then looking at the postgraduate study related
information. The second session came from an IP external to
the university (most likely from another university within
Perth), where the user was interested in some research topic
and after finding out a public seminar being held, contacted
the institute for more information.

Figure 2. Tree representation of user sessions (Fig. 1)

A common way of representing trees is using the pre-
order (depth-first) string encoding (φ) as described in [12].

The pre-order string encoding [12] of a tree T, denoted as
φ(T), can be generated by adding vertex labels in a pre-order
traversal of a tree T = (v0,V,L,E), and appending a backtrack
symbol (for example ‘-1’, ‘-1’L) whenever we backtrack
from a child node to its parent node. For example, the pre-
order string encoding of the two trees from Fig. 2 are,
φ(session 1)=’0 1 2 -1 3 -1 -1 4 5 6 -1 7 -1 -1 -1 8 -1’ and
φ(session 2)=’0 4 5 -1 9 -1 10 -1 11 -1 -1 12 -1’.

IV. METHOD DESCRIPTION

This section starts first with description of the flat
representation of tree-structured data (henceforth referred
simply as table) initially proposed in [13]. We then discuss
its main characteristics and some of the limitations when
applied to web log data. This leads to the adjustment of the
method described at the end of the section.

A. Basis of the approach

The first row of a (relational) table consists of attribute
names, which in a tree database are scattered through
independent tree instances (transactions). One way to
overcome this problem is to first assume a structure
according to which all the instances/transactions are
organized. Each of the transactions in a tree database should
be a valid subtree of this assumed structure, which we refer
to as the database structure model (DSM). This DSM will
become the first row of the table, and while it does not
contain the attribute names, it contains the most general
structure where every instance from the tree database can be
matched to. The DSM needs to ensure that when the labels of
a particular instance from the tree database are processed,
they are placed in the correct column, corresponding to the
position in the DSM where this label was matched to. Hence,
the labels (attribute names) of this DSM will correspond to
pre-order positions of the nodes of the DSM and sequential
position of the backtrack (‘-1’) symbols from its string
encoding.

The process of extracting a DSM from a tree database
consists of traversing the tree database and expanding the
current DSM as necessary so that every tree instance can be
matched against DSM. Let the tree database consisting of n
transactions be denoted as Tdb = {tid0, tid1, …, tidn-1}, and
let the string encoding of the tree instance at transaction tidi
be denoted as φ(tidi). Further, let |φ(tidi)| denote the number
of elements in φ(tidi), and φ(tidi)k (k = {0, 1, …, |φ(tidi)|-1})
denote the kth element (a label or a backtrack ‘-1’) of φ(tidi).
The same notation for the string encoding of the (current)
DSM is used, i.e. φ(DSM). However, rather than storing the
actual labels in φ(DSM), ‘x’ is always stored to represent a
node in general. The process of extracting the DSM from Tdb
can be explained by the pseudo code in Fig. 3 [13].

To illustrate the complete conversion process using DSM
please refer back to Fig. 2. We use the string encoding to
represent the DSM and since the order of the nodes (and
backtracks (‘-1’)) is important we label the nodes and
backtracks sequentially according to their occurrence in the
string encoding. For nodes (labels in the string encoding), xi
is used as the attribute name, where i corresponds to the pre-
order position of the node in the tree, while for backtracks, bj

is used as the attribute name, where j corresponds to the
backtrack number in the string encoding. Hence, from our
example in Fig. 2, the string encoding of extracted DSM is
φ(DSM) = ‘x0 x1 x2 b0 x3 b1 x4 b2 x5 b3 b4 x6 x7 x8 b5 x9 b6 b7 b8
x10 b9’. To fill in the remaining rows (instances) every string
encoding of each tree from Fig. 2 is scanned and when a
label is encountered it is placed to the matching column (i.e.
under the matching node (xi) in DSM), and when a backtrack
(‘-1’) is encountered, a value ‘yes’ is placed to the matching
column (i.e. matching backtrack (bj) in DSM). This is easily
done by tracking the level of the instance tree and the DSM
as they are being matched. The remaining entries are
assigned values of ‘no’ (indicating non existence). The
resulting table is shown in Table 2 (DSM: row 1, session 1:
row 2, session 2: row 3).

Database Structure Model (DSM) Extraction
Input: tree database Tdb
Output: DSM
inputNodeLevel = 0 // current level of φ(tidi)k
DSMNodeLevel = 0 // current level of φ(T(hmax, dmax))k
φ(DSM) = φ(tid0) // set default DSM (use ‘x’ instead of

labels)
for i = 1 to n – 1 // n = |Tdb|
 for each φ(tidi)k in φ(tidi)
 for each p = 0 to (|φ(DSM)|-1)
 if φ(tidi)k = -1 then inputNodeLevel– –
 else inputNodeLevel++
 if φ(DSM)p=‘bi’ then DSMNodeLevel– –
 else DSMNodeLevel++
 if inputNodeLevel DSMNodeLevel
 if φ(tidi)k = -1 then
 while inputNodeLevel ≠ DSMNodeLevel
 p++
 if φ(DSM)p = -1 then DSMNodeLevel– –
 else DSMNodeLevel++
 endwhile
 else
 while inputNodeLevel ≠ DSMNodeLevel
 append ‘x’ at position p+1 in φ(DSM)
 k++
 p++
 if φ(tidi)k = -1 then inputNodeLevel– –
 else inputNodeLevel++
 endwhile
 endfor
 endfor
endfor
return DSM

Figure 3. Pseudo code for DSM extraction

TABLE II. FLAT REPRESENTATION OF TREES IN FIG. 2

x0x1x2b0x3b1 x4 b2 x5 b3b4 x6 x7 x8 b5 x9 b6 b7 b8x10b9

0 1 2 y 3 y n n n n y 4 5 6 y 7 y y y 8 y
0 4 5 y 9 y 10 y 11 y y 12 n n n n n n y n n

One can see that the database structure model DSM

determines what a valid instance of a particular tree

characteristic is, and takes the exact positions of tree instance
within the DSM into account. This implies that if two
subtrees have the same labels and are structurally the same,
but their nodes have been matched against different nodes in
DSM (i.e. they occur at different positions) they would be
considered as instances with different characteristics. For
example, in Fig. 2, the subtree with encoding ‘4 5’ would be
considered to occur in both sessions as defined within the
current tree mining framework. However, within the flat
representation they have been matched to different nodes
within the DSM. This key difference is caused by the fact
that not all the instances of a tree database may follow the
same order or will have all the elements of the document
input structure (e.g. XML schema) available. However, if all
the instances in a tree database always follow the same
structure and node layout as the input document structure
(hence DSM), then there would be no such difference. This
was experimentally demonstrated in [13]. Additionally, an
example scenario was discussed when this distinguishing
characteristic may be desired, as the different occurrence
may indicate different context. Another motivation of the
method is that it can overcome some complexity issues
caused by existence of the nodes in every record, which are
mainly there to contextualize the information [13]. Because
the method enables the use of other data mining methods that
do not rely on generation of frequent subtrees discriminative
class characteristics are easier detected.

In [13] the method was successfully applied for a
structural classification problem, and the extraction of the
DSM as just explained was necessary in order to capture all
of the differing characteristics of a class. However, when
tested on web log data, while satisfactory classification
accuracy was achieved, it was evident that web log data
posed a challenging classification problem for the proposed
method. As there are many different ways of navigating a
website and the number of web page visits within a session
can vary greatly, extracting DSM within which each user
session can be undesired. It becomes much larger than
necessary to capture the majority of trees in the database and
running time and classification accuracy are negatively
affected.

B. Adapting the approach to web log data

In this work, the approach is modified to be better
applicable for web log data. Essentially the user can supply
the minimum frequency threshold for the part of the
structural characteristics to be considered as part of the DSM
extracted and hence as part of the training set. In web log
mining, this interprets to taking only the frequent enough
navigational patterns into account, while ignoring the not so
common navigational patterns from a user session.

During the DSM extraction phase, we store the number of
times that a tree instance has matched a node or backtrack in
the progressively built DSM. Occurrence of each node
attribute within the DSM implies the existence of a specific
backtrack attribute to ensure structural validity of the pre-
order string encoding (e.g. x2 implies b0 and x7 implies b7
from Table 2). Hence, after the whole DSM is extracted, it is
safe to simply remove any nodes and backtracks that do not

satisfy the minimum frequency set by the user. This will
result in DSM reflecting the structure that was exhibited by
as many instances as the user specified minimum frequency
threshold. Another modification needs to occur when
building the flat data representation by matching every tree
instance to DSM, since we still want parts of the sessions that
exhibit frequent navigational patterns to be part of the dataset
to be mined. Essentially, each instance is matched against the
DSM, and the current levels of the tree instances and DSM is
tracked. Whenever the levels match, the label or ‘y’ is stored
in the corresponding column of the table, and when levels do
not match, either the DSM or the tree instance encoding is
traversed until the levels match. Any non matched entries in
the table are assigned the ‘n’ value indicating non existence
in the currently processed tree instance.

The conversion process can be formulized as follows. Let
the tree database consisting of n instances be denoted as Tdb
= {tid0, tid1, …, tidn-1}, and let the string encoding of the tree
instance at transaction tidi be denoted as φ(tidi). The DSM is
extracted from Tdb using the procedure explained earlier.
Further, let |φ(tidi)| denote the number of elements in φ(tidi),
and φ(tidi)k (k = {0, 1, …, |φ(tidi)|-1}) denote the kth element
(a label or a backtrack ‘-1’) of φ(tidi). The flat data format or
table FT (C, R) (C = columns, R = rows) is set up where C =
{c0, c1, …, cm-1} (m = |C| = |φ(DSM)|), and R = {r0, r1, …, rp-

1} (p = |R| = n+1 (i.e. extra column for attribute names). The
value in column number x and row number y is denoted as FT
(cx, ry). Hence, to set the attribute names FT (ci, r0) =
φ(DSM)k where i = k = {0, 1, …, (|φ(DSM)|-1)). The process
of populating the entries from FT using Tdb is explained by
the pseudo code in Fig. 4.

Tree database Tdb to flat data format FT conversion
Input: Tdb, DSM
Output: FT
// set up the attribute name row in FT
FT (ci,r0)=φ(DSM)k i=k={0, …, (|φ(DSM)|-1))
inputNodeLevel = 0 // current level of φ(tidi)k
DSMNodeLevel = 0 // current level of φ(DSM)k
// populate FT
for i = 0 to n – 1 // n = |Tdb|
 for each φ(tidi)k in φ(tidi)
 for p = 0 to (|φ(DSM)|-1)
 if φ(tidi)k = -1 then inputNodeLevel– –
 else inputNodeLevel++
 if φ(DSM)p=‘b’ then DSMNodeLevel– –
 else DSMNodeLevel++
 if inputNodeLevel = DSMNodeLevel
 if φ(tidi)k = -1 then FT (cp,ri+1) = ‘y’
 else FT (cp,ri+1) = φ(tidi)k
 else // level mismatch
 if φ(tidi)k = -1 then // traverse φ(DSM) until

match
 while inputNodeLevel ≠ DSMNodeLevel
 FT (cp,ri+1) = ‘n’
 p++
 if φ(DSM)p = -1 then DSMNodeLevel– –
 else DSMNodeLevel++
 endwhile

 FT (cp,ri+1) = φ(tidi)k
 else // traverse φ(tidi) until match
 while inputNodeLevel ≠ DSMNodeLevel
 k++
 if φ(tidi)k = -1 then inputNodeLevel– –
 else inputNodeLevel++
 endwhile
 FT (cp,ri+1) = φ(tidi)k
 endfor
 endfor
endfor
return FT

Figure 4. Pseudo code for tree database to flat format conversion

V. EXPERIMENTAL EVALUATION

The purpose of the experiments performed, is to
demonstrate that by using the proposed tree database
transformation, one can still discover useful knowledge from
tree-structured web log data using techniques developed for
flat data format. As case in point we evaluate the C4.5
decision tree algorithm [28] and Naive Bayes classifier using
Weka software [29]. The results are compared with the
XRules structural classifier [30], which discovers association
rules based on the algorithm for discovering frequent ordered
embedded subtrees [12].

Experiment 1. The first experiment is performed using
the web access trees from the computer science department
of the Rensselaer Polytechnic Institute previously used in
[30] for evaluating the XRules structural classifier. In this
dataset the tree instances are labeled according to two
classes, namely the internal and external web site access. All
of the three datasets (US1924, US2430, US304) were
combined and instances were replicated to make the class
distribution even. The resulting dataset had 68302 instances
out of which 66% was used for training and the remainder
for testing. For the XRules approach we have used the
default confidence parameter of 0.5 (50%), while the support
threshold was varied from 0.3 to 0.01. Since different
support thresholds were used, in our approach the flat data
representation of the dataset is done separately for each
support threshold, as the extracted database structure model
(DSM) varies, and hence the number of attributes used
during decision tree learning. Since XRules approach will
not generate any rules that do not satisfy the minimum
support threshold, this was reflected in the constraint of the
C4.5 for minimum instances per leaf in the decision tree. For
the Bayesian classifier we could not impose such a
constraint, and hence the default classifier from Weka is used
on the flat data generated by frequency adjusted DSM. Being
a completely different approach, we will exclude the
Bayesian classifier from discussion, but will show its results
as another example of a standard classifier enabled for
application to tree-structured data.

The comparison of predictive accuracy (%), for different
support values is shown in Fig. 5. Comparing C4.5 and
XRules, one can see that using the C4.5 algorithm achieves
better accuracy in all the cases. For thresholds of 0.3 and 0.2

the rules generated within the XRules approach do not
satisfy the minimum support and confidence threshold for
this dataset, and a default rule was used. Similarly, the C4.5
decision tree only consisted of 2 rules namely b5 = ‘y’ (class
1) and b5 = ‘n’ (class 0), for support = 0.3. These rules only
correspond to the existence of a particular node in the
structure and not the actual value that the node has, as any
specific value did not occur frequently enough to satisfy the
minimum support threshold. For support value of 0.3, the
extracted DSM was ‘x0 x1 x2 x3 x4 b0 b1 x5 b2 b3 x6 b4 x7 b5 b6’,
and hence through the rule(s) the existence of node x7 was
checked indirectly by checking b5 and used for classification.
For the support value of 0.2 one can see from Fig. 5 that the
same classification accuracy was detected. However, the
C4.5 decision tree has generated 2428 rules based on the
value of the first node accessed in a session. This is because
the at such lower support threshold the specific rules were
used for classification. However, it is clear that the simple
two rules detected at support of 0.3 for checking the
existence or non-existence of a node is preferred, which was
only captured by the storage of backtrack (bi) attributes
within the DSM. This indicates a useful property of the
approach that needs to be further explored.

40

50

60

70

80

90

0.3 0.2 0.1 0.05 0.01

Support (%)

A
cc

u
ra

cy
 (

%
)

C4.5 XRules NaiveBayes

Figure 5. Accuracy on combined CSLogs data

As for the remainder of support values, the frequent
subtree miner [12] within the XRules classifier typically
created more rules initially in comparison to the number of
leaf nodes in C4.5 decision tree, but after applying the
confidence threshold these reduced significantly below the
number of leaf nodes in C4.5. Please note that the XRules
approach, consists of several phases namely the XMiner
engine based on [12] which discovers the rules to be used for
classification which then need to be evaluated by finding the
default class in training and accuracy in testing, as discussed
in [30]. In Fig. 6 we show the time taken by the C4.5
algorithm and the XMiner engine of XRules. In addition, the
confidence measure used in XRules greatly reduces the
number of rules that need to be generated, and the methods
are based from different classes of data mining techniques.
As such, these are not completely compatible, but the time
performance of C4.5 can be considered satisfactory for
reasonable support thresholds. At 0.01 support, the time
taken is much larger because a leaf node can capture many
instances and the DSM extracted according to the frequency
is much larger (221 attributes as opposed to 63 at support

0.05). Hence many more tests need to be performed for
suitable split-nodes in the decision tree.

0.01

0.1

1

10

100

0.3 0.2 0.1 0.05 0.01

Support (%)

T
im

e
ta

ke
n

(s

ec
o

n
d

s)

C4.5 XMiner NaiveBayes

Figure 6. Time performance on combined CSLogs data

Experiment 2. For the second experiment we have taken
apache2 (v2.2.3) web server log files from our own website
(debii.curtin.edu.au) for a 4 month period in its native
(default) format. All “access” log files, which contain
attempts to access pages on this website were taken, while
messages stored in the normal error message log were
excluded. We have removed all requests/lines that do not
request a page via a GET or POST request (e.g. HEAD or
other requests will be ignored). Furthermore, we have
excluded all automatic inclusion requests that appear each
and every time a particular page is opened. For example, a
page may include a number of images, scripts, stylesheets
(css) and others. In the log file they would appear as single
separate requests and hence would interfere and could be
seen as requests (clicks) that have been done manually.
Hence, we only retain all requests where someone has
entered our website and has navigated from one page to
another by clicking on forms and hyperlinks. Similar to the
CSlogs dataset [12, 30] we have classified requests to our
website in “internal” (within the university) and “external”
(outside the university). As the amount of requests in these
two classes is different, we have taken the larger proportion
(which is external) and duplicated entries from “internal” to
match the “external” ones in numbers. We have defined a
session as visiting a webpage from the same computer with
no more than 30 minutes in between page visits. We have
also ignored sessions where less than three web pages are
navigated to, as there is really no navigational pattern
inherent in such session. In order to avoid storing automated
requests, we have also excluded any request or sequence of
requests that are performed by bots (e.g. search bots from
google, yahoo or bing) by using the robots.txt as our anchor.
Every time a sequence of requests is commenced with a
request to access robots.txt, this is excluded as usual (bots
request this file only to determine their permissions to index
or crawl the website). Furthermore, we excluded any request
that is well known to be an attack to our content management
system (CMS), usually results in HTTP GET requests with
403 (forbidden) replies (as we have mod_security installed,
they can be easily detected).

The grouped user sessions were converted to trees as was
explained with the illustrative example in Section 3. The
resulting dataset had 18840 instances out of which 66% was
used for training and the remainder for testing. The same

parameter setting as for the first experiment was applied to
both approaches. The comparison of predictive accuracy
(%), for different support values is shown in Fig. 7. As one
can see the XRules approach has clearly outperformed the
C4.5 decision tree for this dataset for all support thresholds.
The performance of XRules is particularly better when
higher support thresholds are used, and as they are lowered
we see that the accuracy of the C4.5 decision tree is
approaching that of XRules. The time performance is shown
in Fig. 8.

50

60

70

80

90

0.3 0.2 0.1 0.05 0.01

Support (%)
A

cc
u

ra
cy

 (
%

)

C4.5 XRules NaiveBayes

Figure 7. Accuracy on DEBII Logs data

0.01

0.1

1

10

0.3 0.2 0.1 0.05 0.01

Support (%)

T
im

e
ta

ke
n

(s

ec
o

n
d

s)

C4.5 XMiner NaiveBayes

Figure 8. Time performance on DEBII Logs data

The accuracy results comparison between C4.5 and
XRules are quite contrasting to the previous results on
CSLogs data, and one needs to investigate the differences
between the dataset to determine the inconsistency in results.
It could be due the fact that the data from the second
experiment was collected over a longer period of time, where
there is a greater variation among navigational pattern due to
potential modifications of the web site. For example, as more
web pages are added/removed the particular access to web
page may not occur in the same position in the navigational
pattern. The general navigational patterns are captured by the
database structure model, for the given frequency, and this
could also explain why the frequency has to be reduced to
such a great deal in order to generalize over those variations
of navigational patterns during a larger time period. On the
other hand, it could be due to the fact that different data
mining methods are used, and perhaps better accuracy could
be achieved when different classifiers are used. This was
clearly the case for NaiveBayes classifier as in all
experiments it had better run time and accuracy, and
investigation of other classifiers is left as future work.

VI. CONCLUSIONS AND FUTURE WORK

The work presented in this paper has investigated an
alternative approach to tree-structured web log representation
and mining. It first converts the tree-structured data into a
flat representation that preserves the structural and attribute-
value information. This enables an application of a wider
range of data mining/analysis techniques. The decision tree
learning was taken as a case in point and the approach
performed better than an existing structural classifier in one
case, and worse in another. Some interesting properties were
revealed as some rules were based on the existence of a node
within a tree structure reflecting the general navigational
pattern. This needs to be investigated further, together with
the cases when the differing characteristics of the approach
are desired. Furthermore, as many other techniques exist for
flat data format, future work will also investigate their use on
the proposed representation, with stronger focus on
clustering techniques.

REFERENCES
[1] O. Etzioni, “The world wide Web: Quagmire or gold mine,”

Communications of the ACM, 39(11), 1996, pp. 65-68.

[2] R. Cooley, B. Mobasher, B. and J. Srivastava, “Web mining:
Information and pattern discovery on the World Wide Web,” Proc.
Int’l Conf. on Tools with Artificial Intelligence, Newport Beach, CA,
1997, pp. 558–567.

[3] R. Kosala and H. Blockeel, “Web Mining Research: A Survey,”
SIGKDD Explorations, vol. 2(1), 2000, pp. 1-15.

[4] R. Cooley, B. Mobasher, and J. Srivastava, “Data preparation for
mining World Wide Web browsing patterns,” Journal of Knowledge
and Information Systems, 1, 1, 1999.

[5] M. Eirinaki and M. Vazirgiannis, “Web Mining for Web
Personalization”, ACM Transactions on Internet Technology, vol. 3,
no. 1, February, 2003.

[6] F.M. Facca and P.L. Lanzi, Mining interesting knowledge from
Weblogs: a survey,” Data and Knowledge Engineering, 2004.

[7] D. Pierrakos, G. Paliouras, C. Papatheodorou, and D. Spyropoulos,
“Web Usage Mining as a Tool for Personalization: A Survey,” User
Modeling and User-Adapated Interaction, Springer Netherlands, vol.
13, no. 4, November, 2003, pp. 311-372.

[8] J. Borges and M. Levene, “Data mining of user navigation patterns,”
Proc. of W’shop on Web Usage Analysis and User Profiling, in
conjunction with ACM SIGKDD Int’l Conference on Knowledge
Discovery and Data Mining, San Diego, CA., 1999 pp. 31-36.

[9] A.G. Buchner, M. Baumgarten, S. Anand, M.D. Mulvenna, and J.G.
Andhughes, “Navigation pattern discovery from Internet data,” Proc.
of the Web Usage Analysis and User Profiling Workshop, in conj.
with 5th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining (San Diego, August), 1999, pp. 25–30.

[10] E. Menasalvas, S. Millan, J.M. Pena, M. Hadjimichael, and O.
Marban, “Subsessions: a granular approach to click path analysis,”
Proc. IEEE Int’l Conference on Fuzzy Systems, 2002, pp. 878–883.

[11] J. Punin, M. Krishnamoorthy, and M.J. Zaki, “LOGML: Log markup
language for Web usage mining,” Proc. ACM SIGKDD Workshop on
Mining Log Data Across All Customer Touch Points, August, San
Francisco, CA, 2001.

[12] M.J. Zaki, “Efficiently mining frequent trees in a forest: algorithms
and applications,” IEEE Transaction on Knowledge and Data
Engineering, vol. 17, no. 8, 2005, pp.1021-1035.

[13] F. Hadzic, “A Structure Preserving Flat Data Format Representation
for Tree-Structured Data,” Proc. 2nd Workshop on Quality issues,
measure of interestingness, and evaluation of data mining models,
held in conj. with PAKDD, Shenzhen, China, May 24-27, 2011.

[14] J. Srivastava, P. Desikan, and V. Kumar, “Web mining – concepts,
applications and research directions,” Data Mining: Next Generation
Challenges and Future Directions, AAAI/MIT Press, Boston, MA,
2003.

[15] B. Mobasher, N. Jain, E. Han, and J. Srivastava, “Web mining:
Pattern discovery from world wide Web transactions”, Technical
Report TR-96-050, University of Minnesota, Dept. of Computer
Science, Minneapolis, 1996.

[16] F. Masseglia, P. Poncelet, and M. Teisseire, “Using data mining
techniques on Web access logs to dynamically improve hypertext
structure,” ACM SIGWEB Newsletter, vol. 8(3), 1999, pp. 13–19.

[17] J. Pei, J. Han, B. Mortazavi-as, and H. Zhu, “Mining access patterns
efficiently from Web logs,” Proc. of the 4th Pacific-Asia Conf. on
Knowledge Discovery and Data Mining (PAKDD’00), Kyoto, Japan,
2000, pp. 396-407.

[18] S.E. Jespersen, J. Thorhauge, and T.B. Pedersen, “A hybrid approach
to Web usage mining,” Proc. of the 4th Int’l Conf. on Data
Warehousing and Knowledge Discovery, 2002, pp. 73-82.

[19] B. Mobasher, R., Cooley, and J. Srivastava, “Automatic
personalization based on Web usage mining,” Communications of the
ACM, vol. 43(8) (August 2000), pp. 142–151.

[20] I.V. Cadez, S. Gaffney, and P. Smyth, “A General Probabilistic
Framework for Clustering Individuals and Objects,” Proc. of the 6th
ACM SIGKDD, Int’l Conf. on Knowledge Discovery and Data
Mining, Boston, MA, USA, 2000, pp. 140-149.

[21] D. Chudova and P. Smyth, “Pattern Discovery in Sequences under a
Markov Assumption,” Proc. of the 8th ACM SIGKDD, Int’l Conf. on
Knowledge Discovery and Data Mining,Edmond, Alberta, Canada,
2002, pp. 153-162.

[22] O.R. Zaiane, M. Xin, and J. Han, “Discovering Web access patterns
and trends by applying OLAP and data mining technology on Web
logs,” Proc. of Advances in Digital Libraries Conference (ADL’98),
April, Santa Barbara, CA, 1998.

[23] J. Borges and M. Levene, “Mining Association Rules in Hypertext
Databases,” Proc. of International Conference on Knowledge
Discovery and Data Mining (KDD’98), August, 1998, pp. 149–153.

[24] M. Spiliopoulou, “The laborious way from data mining to Web
mining,” International Journal of Computer Systems, Science, &
Engineering, vol. 14, 1999, pp. 113–126.

[25] F. Hadzic, H. Tan, and T.S. Dillon, Mining of Data with Complex
Structures, Studies in Computational Intelligence Series, vol. 333,
Springer, Berlin/Heidelberg, Germany, 2011.

[26] Y. Chi, S. Nijssen, R.R. Muntz, and J.N. Kok, “Frequent subtree
mining an overview,” Fundamenta Informaticae, Special Issue on
Graph and Tree Mining, vol. 65, no. 1-2, 2005, pp. 161-198.

[27] H. Tan, F. Hadzic, T.S. Dillon, and E. Chang, “State of the art of data
mining of tree structured information,” International Journal of
Computer Systems Science and Engineering, vol. 23, no 2, 2008.

[28] Quinlan, J.R. C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

[29] G. Holmes, A. Donkin, and I.H. Witten, “Weka: A machine learning
workbench,” Proc. 2nd Australia and New Zealand Intelligent
Information Systems Conference, Brisbane, Australia, 1994.

[30] M.J. Zaki and C.C. Aggarwal, “XRules: An Effective Structural
Classifier for XML Data,” Proc. of the 9th ACM SIGKDD
Conference, Washington DC, USA, 20003.

