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Abstract—More recent approaches to web log data 
representation aim to capture the user navigational patterns with 
respect to the overall structure of the web site. One such 
representation is tree-structured log files which is the focus of 
this work. Most existing methods for analyzing such data are 
based on the use of frequent subtree mining techniques to extract 
frequent user activity and navigational paths. In this paper we 
evaluate the use of other standard data mining techniques 
enabled by a recently proposed structure preserving flat data 
representation for tree-structured data. The initially proposed 
framework was adjusted to better suit the web log mining task. 
Experimental evaluation is performed on two real world web log 
datasets and comparisons are made with an existing state-of-the-
art classifier for tree-structured data. The results show the great 
potential of the method in enabling the application of a wider 
range of data mining/analysis techniques to tree-structured web 
log data. 
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I.  INTRODUCTION 

Web mining is the use of data mining techniques to 
automatically extract useful information and knowledge 
patterns from the web documents and services [1]. The 
problem differs depending on the type of information mined 
and the knowledge sought after in the application. Hence, 
within the general problem one can distinguish between web 
content mining – extracting information and analysing the 
structure of the documents on the web, web usage mining 
(also referred to as web log mining) - mining for user access 
and browsing patterns, and web structure mining – mining 
the structure of the hyperlinks within the web [2, 3]. The 
work presented in this paper is focused on the web usage 
mining problem, and more specifically to mining of web log 
data represented in tree-structured form. 

The type of information commonly sought after during 
the analysis of web logs is: users’ browsing patterns, analysis 
of users visiting the same web pages, most frequent usage 
paths, paths occurring frequently inside user interactions 
with the site, detecting users who visit certain pages 
frequently, etc. [4]. This information is often extracted using 
the frequent pattern mining algorithms where the user 
interactions with a web site are represented as separate 
records in transactional or sequential databases. Many 
methods have been developed for this purpose, and frequent 
itemset and sequence mining algorithms are commonly used 
to efficiently extract interesting associations, that reveal 
common user activities and interests [5-7]. Besides these 
advances in web log mining, a number of works focused on 

web log data represented in a more complex form so that the 
navigational pattern and the overall structure of the web site 
can be described in the data [8-10]. One example is the 
LOGML language proposed in [11] which allows for a more 
detailed and informative representation of web logs, using an 
XML template. The set of requested web pages and traversed 
hyperlinks in a web log file are represented as a web graph 
(tree) which is a subset of the web site graph of the web 
server being analysed. In the context of tree mining, a tree-
structured pattern will contain more descriptive information 
in comparison with an itemset or sequence pattern. This was 
demonstrated in [12] where it is shown that representing web 
logs in a tree-structured form allows one to mine for 
substructures which are more informative, because they 
often reveal more information regarding the structure of the 
web site and users’ navigational patterns. 

In this work we take an alternative approach for web log 
mining, based on our recently proposed [13] structure 
preserving flat data representation for tree-structured data 
such as XML. The conversion process is based on the 
extraction of a database structure model within which each 
tree instance can be matched to generate the flat data 
representation that captures the structural properties. The 
work demonstrated the effectiveness of the method when the 
XML schema is well defined and the attributes/values in 
each instance follow the same order with respect to the 
schema. Decision tree learning performed very well when 
applied on a synthetic dataset for classifying instances 
according to their structural properties. However, when 
tested on web log data, while it had satisfactory classification 
accuracy, the task was fairly complex and took long time to 
execute. This is because the structure of instances of web log 
data can vary greatly among sessions and having a database 
structure model that captures all of them can be quite 
inefficient as well as classification accuracy can suffer due to 
the many irrelevant nodes present. Hence in this work, the 
approach of database structure model extraction and flat data 
format generation is modified to suit better for web log data. 
The user can supply the minimum frequency threshold for 
the part of the structural characteristics to be considered as 
part of the database structure model extracted and hence as 
part of the training set. In web log data this interprets to only 
the frequently occurring navigational patterns within user 
sessions to be taken into account.  The not so common 
navigational patterns within a session are therefore ignored, 
while the behavior that can be classified as relevant is still 
captured. The experimental evaluation is performed using 
two real world web log datasets and the comparisons are 
made with existing structural classifier. The results indicate 



the suitability of the method as an alternative approach to 
web log mining. Furthermore, given that many more data 
mining/analysis techniques exist for flat data representation, 
the conversion approach in itself can potentially enable a 
wider range of techniques to be applied for mining of tree-
structured web log data. This will hasten the application 
process, as any already developed data mining method can 
be directly applied, rather than individually adapting each of 
the methods to tree-structured data. 

The rest of the paper is organized as follows. In Section 2 
we overview some of the related works. The definitions of 
concepts essential for understanding the proposed method 
are described in Section 3. Section 4 overviews the basics of 
the structure preserving flat data representation for tree-
structured data and the extensions proposed in this work. 
Experiments are provided in Section 5. In Section 6 we 
summarize the paper and indicate areas of future 
investigation. 

II. RELATED WORKS 

Web usage mining aims to discover information such as: 
users’ browsing patterns, analysis of users visiting the same 
web pages, most frequent usage paths, paths occurring 
frequently inside user interactions with the site, detecting 
users who visit certain pages frequently, etc. [3, 4, 14]. Due 
to the nature of the web log data, many of the aims can be 
satisfied using frequent pattern mining approaches, where the 
pattern can correspond to either an itemset, sequence or a 
graph structured item [11]. One can then form association 
rules from the extracted patterns. For example, the 
WEBMINER system has been developed to discover 
association patterns and sequential patterns from server 
access logs [15]. Many approaches have been developed that 
apply (modifications of) association rule and sequential 
pattern discovery techniques to analyse web logs [9, 16-18]. 
Other techniques have also proved useful for web usage 
analysis, such as statistical analysis, clustering, classification 
and dependency modelling. For example, WebPersonalizer 
system [19] provides a framework for mining web log data 
and provides recommendations to users based on their 
similarities to previous users. It uses a combination of 
association rule mining, clustering, sequence mining, and 
classification. A unifying probabilistic framework for 
clustering individuals where the data is in non-vector form 
has been proposed in [20]. A general expectation-
maximization procedure for clustering is adopted and the 
framework has been successfully applied to cluster 
individuals based on their web navigation behaviour. The 
discovery of recurrent patterns embedded in sequences of 
web page requests is also of importance for web usage 
mining. In [21] the authors proposed the use of the Bayes 
error rate framework for analysing problems of this nature in 
a Markov context. In [22], a different approach is adopted 
that combines OLAP and data mining techniques to analyse 
web logs for prediction, classification and time-series 
analysis. As in general data mining, pre-processing of the 
web usage patterns is an important issue and some 
approaches have been discussed in [4]. For a more detailed 

overview of the existing web log mining techniques, please 
refer to [5-7].    

Most of the techniques discussed above mine web logs 
that are represented in a relational or sequential database, and 
hence, usually adopt a frequent itemset or sequence mining 
based approach for discovering interesting associations. We 
will now examine some approaches that represent web logs 
using a graph structure in order to extract more informative 
patterns. These approaches are motivated by the observation 
that additional information such as navigational patterns and 
subsessions are harder to realize from the traditional 
representation of web logs, and as such have proposed 
alternative ways for representing web log data and mining it. 
For example, in order to capture navigational patterns, the 
work presented in [23] models the web log data as a directed 
weighted graph where the weights indicate the probabilities 
that reflect the user interaction with the web site. They refer 
to this representation as hypertext probabilistic grammar and 
have tailored the association rule framework for analysing 
such representations. They have extended their work in [8] 
by making use of entropy as an estimator of statistical 
properties of the hypertext grammar. The MiDAS algorithm 
[9] map web log data onto a concept hierarchy and then 
discover sequences of hits by extracting pattern trees where a 
node contains all the properties of a hit (URL, frequency, 
timestamp) and the links represent the relationships between 
the nodes. A notion of the aggregate tree is proposed in [24], 
used for pre-processing of a sequential web log file. It 
eliminates duplicates and merges all sequences with common 
prefixes together so that each node in the tree is annotated 
with a number of sequences having the same prefix up to and 
including this node. This tree is then scanned using an 
analytical procedure to discover the navigational behaviour 
of users. In [10], the granularity of user sessions is increased 
by adding information about sub-sessions within web page 
access sessions, in order to predict the following set of pages 
to be visited by a user. The sub-session information is 
represented using a tree structure and the frequent path 
within the tree indicates the set of pages likely to be visited 
from a given node (page) in the tree.   

In the abovementioned work, the main motivation for 
representing web log data as a tree structure is to add 
granularity to the information that can be extracted from web 
logs and inferences that can be made, as well as simplify the 
mining process to some extent. In order to enable easier, 
more meaningful and standardized representation of web log 
data which can capture information related to the structure of 
the web site and navigational patterns (sub-sessions), 
LOGML language was developed [11]. It is an XML 1.0 
application for describing log reports of web servers. The set 
of requested web pages and traversed hyperlinks in a web 
log file are represented as a web graph (tree) which is a 
subset of the web site graph of the web server being 
analysed. In [12], an algorithm for mining ordered embedded 
subtrees was presented and it was demonstrated how it can 
be useful for extracting additional information from web log 
data represented in tree-structured form, in comparison when 
itemset mining or sequence mining approach was applied.              



III. PROBLEM BACKGROUND 

As the focus of this paper is on tree-structured web log 
data, this section first defines some tree related concepts and 
then proceeds with an example tree representation of web 
server log sessions. To lay the necessary ground for 
describing the proposed method in Section 4, we conclude 
the section with a definition of commonly used string 
encoding for trees.   

A graph consists of a set of nodes (or vertices) that are 
connected by edges. Each edge has two nodes associated 
with it. A path is defined as a finite sequence of edges. A 
rooted tree has its top-most node defined as the root that has 
no incoming edges. In a tree there is a single unique path 
between any two nodes. A node u is said to be a parent of 
node v, if there is a directed edge from u to v. Node v is then 
said to be a child of node u. Nodes with the same parent are 
called siblings. A rooted ordered labelled tree can be 
denoted as T = (v0, V,L,E), where (1) v0 V is the root vertex; 
(2) V is the set of vertices or nodes; (3) L is a labelling 
function that assigns a label L(v) to every vertex vV; (4) E 
= {(v1,v2)| v1,v2 V AND v1 ≠ v2} is the set of edges in the 
tree, and (4) for each internal node the children are ordered 
form left to right. The problem of frequent subtree mining 
can be generally stated as: given a database of trees Tdb and 
minimum support threshold (σ), find all subtrees that occur at 
least σ times in Tdb [25]. A pre-order traversal of a tree can 
be defined as follows: If ordered tree T consists only of a 
root node r, then r is the pre-order traversal of T. Otherwise 
let T1, T2, ..., Tn be the subtrees occurring at r from left to 
right in T. The pre-order traversal begins by visiting r and 
then traversing all the remaining subtrees in pre-order 
starting from T1 and finishing with Tn. For an extensive 
overview of the frequent subtree mining field the interested 
reader is referred to [25-27]. 

To illustrate how a user session can be represented as a 
tree consider two simple sessions in Fig. 1 that have been 
logged from our institutes’ web server. Each session starts 
from the home page www.debii.curtin.edu.au, denoted with 
‘/’ in Fig. 1. For faster processing the strings are commonly 
mapped to unique integers, and in Table 1 we present the 
mapping used in this example (note that ‘.html’ is ignored).  

 
Session 1: 
/ 
/about.html 
/about/objectives.html 
/about/mission-and-vision.html 
/research.html 
/research/topics.html 
/research/topics/50-data-mining-and-semantic-

technologies.html 
/research/topics/51-business-intelligence.html 
/phd-a-msc.html 
 
Session 2: 
/ 
/research.html 
/research/topics.html 

/research/publications.html 
/research/projects.html 
/research/seminars.html 
/contact-us.html 

Figure 1.  Example user sessions 

TABLE I.  INTEGER MAPPING FOR WEB PAGES FROM FIG. 1 

ID Web Page 
0 Home page 
1 about 
2 objectives 
3 mission-and-vision 
4 research 
5 Topics 
6 50-data-mining-and-semantic-

technologies 
7 51-business-intelligence 
8 phd-a-msc 
9 publications 
10 projects 
11 seminars 
12 contact-us 

 
The access sequence of web pages from Fig. 1 can be 

represented in a tree-structured way as shown in Fig. 2. The 
order of pages accessed is reflected by the pre-order traversal 
of the tree. The corresponding tree structure is more 
informative than just a sequence of pages accessed as it 
captures the structure of the web site, and navigational 
patterns over this website. By organizing them in such a 
way, specific pages can be considered under the same 
context. An example of this is the two pages being grouped 
under the ‘topics’ parent node with label 5 in the tree of 
session 1, and four pages under the ‘research’ parent node 
with label 6 in the tree of session 2. The session 1 has come 
from an IP within the university and is an example of most 
likely a student gaining some general information about the 
institute and then looking at the postgraduate study related 
information. The second session came from an IP external to 
the university (most likely from another university within 
Perth), where the user was interested in some research topic 
and after finding out a public seminar being held, contacted 
the institute for more information. 

 

 
Figure 2.  Tree representation of user sessions (Fig. 1) 

A common way of representing trees is using the pre-
order (depth-first) string encoding (φ) as described in [12]. 



The pre-order string encoding [12] of a tree T, denoted as 
φ(T), can be generated by adding vertex labels in a pre-order 
traversal of a tree T = (v0,V,L,E), and appending a backtrack 
symbol (for example ‘-1’, ‘-1’L) whenever we backtrack 
from a child node to its parent node. For example, the pre-
order string encoding of the two trees from Fig. 2 are, 
φ(session 1)=’0 1 2 -1 3 -1 -1 4 5 6 -1 7 -1 -1 -1 8 -1’ and 
φ(session 2)=’0 4 5 -1 9 -1 10 -1 11 -1 -1 12 -1’. 

IV. METHOD DESCRIPTION 

This section starts first with description of the flat 
representation of tree-structured data (henceforth referred 
simply as table) initially proposed in [13]. We then discuss 
its main characteristics and some of the limitations when 
applied to web log data. This leads to the adjustment of the 
method described at the end of the section. 

A. Basis of the approach 

The first row of a (relational) table consists of attribute 
names, which in a tree database are scattered through 
independent tree instances (transactions). One way to 
overcome this problem is to first assume a structure 
according to which all the instances/transactions are 
organized. Each of the transactions in a tree database should 
be a valid subtree of this assumed structure, which we refer 
to as the database structure model (DSM). This DSM will 
become the first row of the table, and while it does not 
contain the attribute names, it contains the most general 
structure where every instance from the tree database can be 
matched to. The DSM needs to ensure that when the labels of 
a particular instance from the tree database are processed, 
they are placed in the correct column, corresponding to the 
position in the DSM where this label was matched to. Hence, 
the labels (attribute names) of this DSM will correspond to 
pre-order positions of the nodes of the DSM and sequential 
position of the backtrack (‘-1’) symbols from its string 
encoding.  

The process of extracting a DSM from a tree database 
consists of traversing the tree database and expanding the 
current DSM as necessary so that every tree instance can be 
matched against DSM. Let the tree database consisting of n 
transactions be denoted as Tdb = {tid0, tid1, …, tidn-1}, and 
let the string encoding of the tree instance at transaction tidi 
be denoted as φ(tidi). Further, let |φ(tidi)| denote the number 
of elements in φ(tidi), and φ(tidi)k (k = {0, 1, …, |φ(tidi)|-1}) 
denote the kth element (a label or a backtrack ‘-1’) of φ(tidi). 
The same notation for the string encoding of the (current) 
DSM is used, i.e. φ(DSM). However, rather than storing the 
actual labels in φ(DSM), ‘x’ is always stored to represent a 
node in general. The process of extracting the DSM from Tdb 
can be explained by the pseudo code in Fig. 3 [13].  

To illustrate the complete conversion process using DSM 
please refer back to Fig. 2. We use the string encoding to 
represent the DSM and since the order of the nodes (and 
backtracks (‘-1’)) is important we label the nodes and 
backtracks sequentially according to their occurrence in the 
string encoding. For nodes (labels in the string encoding), xi 
is used as the attribute name, where i corresponds to the pre-
order position of the node in the tree, while for backtracks, bj 

is used as the attribute name, where j corresponds to the 
backtrack number in the string encoding. Hence, from our 
example in Fig. 2, the string encoding of extracted DSM is 
φ(DSM) = ‘x0 x1 x2 b0 x3 b1 x4 b2 x5 b3 b4 x6 x7 x8 b5 x9 b6 b7 b8 
x10 b9’. To fill in the remaining rows (instances) every string 
encoding of each tree from Fig. 2 is scanned and when a 
label is encountered it is placed to the matching column (i.e. 
under the matching node (xi) in DSM), and when a backtrack 
(‘-1’) is encountered, a value ‘yes’ is placed to the matching 
column (i.e. matching backtrack (bj) in DSM). This is easily 
done by tracking the level of the instance tree and the DSM 
as they are being matched. The remaining entries are 
assigned values of ‘no’ (indicating non existence). The 
resulting table is shown in Table 2 (DSM: row 1, session 1: 
row 2, session 2: row 3). 
 

Database Structure Model (DSM) Extraction  
Input: tree database Tdb 
Output: DSM  
inputNodeLevel = 0 // current level of φ(tidi)k    
DSMNodeLevel = 0 // current level of φ(T(hmax, dmax))k   
φ(DSM) = φ(tid0) // set default DSM  (use ‘x’ instead of         

labels)  
for i = 1 to n – 1  // n = |Tdb|   
   for each φ(tidi)k in φ(tidi)    
      for each p = 0 to (|φ(DSM)|-1)     
         if  φ(tidi)k = -1 then inputNodeLevel– –  
                               else inputNodeLevel++  
         if φ(DSM)p=‘bi’ then DSMNodeLevel– –  
                              else DSMNodeLevel++ 
         if inputNodeLevel   DSMNodeLevel 
            if  φ(tidi)k = -1 then              
               while inputNodeLevel ≠ DSMNodeLevel 
                  p++ 
                  if  φ(DSM)p = -1 then DSMNodeLevel– –  
                                         else DSMNodeLevel++ 
                endwhile 
              else 
  while inputNodeLevel ≠ DSMNodeLevel 
                    append ‘x’ at position p+1 in φ(DSM)   
      k++ 
      p++ 
                     if  φ(tidi)k = -1 then inputNodeLevel– –  
                                           else inputNodeLevel++ 
                 endwhile 
      endfor 
   endfor 
endfor 
return DSM 

Figure 3.  Pseudo code for DSM extraction 

TABLE II.  FLAT REPRESENTATION OF TREES IN FIG. 2 

x0x1x2b0x3b1 x4 b2 x5 b3b4 x6 x7 x8 b5 x9 b6 b7 b8x10b9

0 1 2 y 3 y n n n n y 4 5 6 y 7 y y y 8 y
0 4 5 y 9 y 10 y 11 y y 12 n n n n n n y n n

 
One can see that the database structure model DSM 

determines what a valid instance of a particular tree 



characteristic is, and takes the exact positions of tree instance 
within the DSM into account. This implies that if two 
subtrees have the same labels and are structurally the same, 
but their nodes have been matched against different nodes in 
DSM (i.e. they occur at different positions) they would be 
considered as instances with different characteristics. For 
example, in Fig. 2, the subtree with encoding ‘4 5’ would be 
considered to occur in both sessions as defined within the 
current tree mining framework. However, within the flat 
representation they have been matched to different nodes 
within the DSM. This key difference is caused by the fact 
that not all the instances of a tree database may follow the 
same order or will have all the elements of the document 
input structure (e.g. XML schema) available. However, if all 
the instances in a tree database always follow the same 
structure and node layout as the input document structure 
(hence DSM), then there would be no such difference. This 
was experimentally demonstrated in [13]. Additionally, an 
example scenario was discussed when this distinguishing 
characteristic may be desired, as the different occurrence 
may indicate different context. Another motivation of the 
method is that it can overcome some complexity issues 
caused by existence of the nodes in every record, which are 
mainly there to contextualize the information [13]. Because 
the method enables the use of other data mining methods that 
do not rely on generation of frequent subtrees discriminative 
class characteristics are easier detected.    

In [13] the method was successfully applied for a 
structural classification problem, and the extraction of the 
DSM as just explained was necessary in order to capture all 
of the differing characteristics of a class. However, when 
tested on web log data, while satisfactory classification 
accuracy was achieved, it was evident that web log data 
posed a challenging classification problem for the proposed 
method. As there are many different ways of navigating a 
website and the number of web page visits within a session 
can vary greatly, extracting DSM within which each user 
session can be undesired. It becomes much larger than 
necessary to capture the majority of trees in the database and 
running time and classification accuracy are negatively 
affected.    

B. Adapting the approach  to web log data 

In this work, the approach is modified to be better 
applicable for web log data. Essentially the user can supply 
the minimum frequency threshold for the part of the 
structural characteristics to be considered as part of the DSM 
extracted and hence as part of the training set. In web log 
mining, this interprets to taking only the frequent enough 
navigational patterns into account, while ignoring the not so 
common navigational patterns from a user session.  

During the DSM extraction phase, we store the number of 
times that a tree instance has matched a node or backtrack in 
the progressively built DSM. Occurrence of each node 
attribute within the DSM implies the existence of a specific 
backtrack attribute to ensure structural validity of the pre-
order string encoding (e.g. x2 implies b0 and x7 implies b7 
from Table 2). Hence, after the whole DSM is extracted, it is 
safe to simply remove any nodes and backtracks that do not 

satisfy the minimum frequency set by the user. This will 
result in DSM reflecting the structure that was exhibited by 
as many instances as the user specified minimum frequency 
threshold. Another modification needs to occur when 
building the flat data representation by matching every tree 
instance to DSM, since we still want parts of the sessions that 
exhibit frequent navigational patterns to be part of the dataset 
to be mined. Essentially, each instance is matched against the 
DSM, and the current levels of the tree instances and DSM is 
tracked. Whenever the levels match, the label or ‘y’ is stored 
in the corresponding column of the table, and when levels do 
not match, either the DSM or the tree instance encoding is 
traversed until the levels match. Any non matched entries in 
the table are assigned the ‘n’ value indicating non existence 
in the currently processed tree instance. 

The conversion process can be formulized as follows. Let 
the tree database consisting of n instances be denoted as Tdb 
= {tid0, tid1, …, tidn-1}, and let the string encoding of the tree 
instance at transaction tidi be denoted as φ(tidi). The DSM is 
extracted from Tdb using the procedure explained earlier. 
Further, let |φ(tidi)| denote the number of elements in φ(tidi), 
and φ(tidi)k (k = {0, 1, …, |φ(tidi)|-1}) denote the kth element 
(a label or a backtrack ‘-1’) of φ(tidi). The flat data format or 
table FT (C, R) (C = columns, R = rows) is set up where C = 
{c0, c1, …, cm-1} (m = |C| = |φ(DSM)|), and R = {r0, r1, …, rp-

1} ( p = |R| = n+1 (i.e. extra column for attribute names). The 
value in column number x and row number y is denoted as FT 
(cx, ry). Hence, to set the attribute names FT (ci, r0) = 
φ(DSM)k  where i = k = {0, 1, …, (|φ(DSM)|-1)). The process 
of populating the entries from FT using Tdb is explained by 
the pseudo code in Fig. 4.  

 
Tree database Tdb to flat data format FT conversion 
Input: Tdb, DSM 
Output: FT  
// set up the attribute name row in FT 
FT (ci,r0)=φ(DSM)k   i=k={0, …, (|φ(DSM)|-1)) 
inputNodeLevel = 0 // current level of φ(tidi)k    
DSMNodeLevel = 0 // current level of φ(DSM)k   
// populate FT 
for i = 0 to n – 1  // n = |Tdb|   
   for each φ(tidi)k in φ(tidi)    
      for p = 0 to (|φ(DSM)|-1)     
         if  φ(tidi)k = -1 then inputNodeLevel– –  
                                  else inputNodeLevel++ 
         if φ(DSM)p=‘b’ then DSMNodeLevel– –  
                                    else DSMNodeLevel++ 
         if inputNodeLevel = DSMNodeLevel 
            if  φ(tidi)k = -1 then FT (cp,ri+1) = ‘y’  
                                     else FT (cp,ri+1) = φ(tidi)k 
             else // level mismatch  
             if φ(tidi)k = -1 then // traverse φ(DSM) until 

match              
               while inputNodeLevel ≠ DSMNodeLevel 
         FT (cp,ri+1) = ‘n’ 
                  p++ 
                  if  φ(DSM)p = -1 then DSMNodeLevel– –  
                                               else DSMNodeLevel++ 
                endwhile 



               FT (cp,ri+1) = φ(tidi)k 
              else // traverse φ(tidi) until match   
  while inputNodeLevel ≠ DSMNodeLevel 
             k++ 
             if  φ(tidi)k = -1 then inputNodeLevel– –  
                                      else inputNodeLevel++ 
                 endwhile 
                FT (cp,ri+1) = φ(tidi)k 
      endfor 
   endfor 
endfor 
return FT 

Figure 4.  Pseudo code for tree database to flat format conversion 

V. EXPERIMENTAL EVALUATION 

The purpose of the experiments performed, is to 
demonstrate that by using the proposed tree database 
transformation, one can still discover useful knowledge from 
tree-structured web log data using techniques developed for 
flat data format. As case in point we evaluate the C4.5 
decision tree algorithm [28] and Naive Bayes classifier using 
Weka software [29]. The results are compared with the 
XRules structural classifier [30], which discovers association 
rules based on the algorithm for discovering frequent ordered 
embedded subtrees [12].  

Experiment 1. The first experiment is performed using 
the web access trees from the computer science department 
of the Rensselaer Polytechnic Institute previously used in 
[30] for evaluating the XRules structural classifier. In this 
dataset the tree instances are labeled according to two 
classes, namely the internal and external web site access. All 
of the three datasets (US1924, US2430, US304) were 
combined and instances were replicated to make the class 
distribution even. The resulting dataset had 68302 instances 
out of which 66% was used for training and the remainder 
for testing. For the XRules approach we have used the 
default confidence parameter of 0.5 (50%), while the support 
threshold was varied from 0.3 to 0.01. Since different 
support thresholds were used, in our approach the flat data 
representation of the dataset is done separately for each 
support threshold, as the extracted database structure model 
(DSM) varies, and hence the number of attributes used 
during decision tree learning. Since XRules approach will 
not generate any rules that do not satisfy the minimum 
support threshold, this was reflected in the constraint of the 
C4.5 for minimum instances per leaf in the decision tree. For 
the Bayesian classifier we could not impose such a 
constraint, and hence the default classifier from Weka is used 
on the flat data generated by frequency adjusted DSM. Being 
a completely different approach, we will exclude the 
Bayesian classifier from discussion, but will show its results 
as another example of a standard classifier enabled for 
application to tree-structured data. 

The comparison of predictive accuracy (%), for different 
support values is shown in Fig. 5.  Comparing C4.5 and 
XRules, one can see that using the C4.5 algorithm achieves 
better accuracy in all the cases. For thresholds of 0.3 and 0.2 

the rules generated within the XRules approach do not 
satisfy the minimum support and confidence threshold for 
this dataset, and a default rule was used. Similarly, the C4.5 
decision tree only consisted of 2 rules namely b5 = ‘y’ (class 
1) and b5 = ‘n’ (class 0), for support = 0.3. These rules only 
correspond to the existence of a particular node in the 
structure and not the actual value that the node has, as any 
specific value did not occur frequently enough to satisfy the 
minimum support threshold. For support value of 0.3, the 
extracted DSM was ‘x0 x1 x2 x3 x4 b0 b1 x5 b2 b3 x6 b4 x7 b5 b6’, 
and hence through the rule(s) the existence of node x7 was 
checked indirectly by checking b5 and used for classification. 
For the support value of 0.2 one can see from Fig. 5 that the 
same classification accuracy was detected. However, the 
C4.5 decision tree has generated 2428 rules based on the 
value of the first node accessed in a session. This is because 
the at such lower support threshold the specific rules were 
used for classification. However, it is clear that the simple 
two rules detected at support of 0.3 for checking the 
existence or non-existence of a node is preferred, which was 
only captured by the storage of backtrack (bi) attributes 
within the DSM. This indicates a useful property of the 
approach that needs to be further explored.  
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Figure 5.  Accuracy on combined CSLogs data 

As for the remainder of support values, the frequent 
subtree miner [12] within the XRules classifier typically 
created more rules initially in comparison to the number of 
leaf nodes in C4.5 decision tree, but after applying the 
confidence threshold these reduced significantly below the 
number of leaf nodes in C4.5. Please note that the XRules 
approach, consists of several phases namely the XMiner 
engine based on [12] which discovers the rules to be used for 
classification which then need to be evaluated by finding the 
default class in training and accuracy in testing, as discussed 
in [30]. In Fig. 6 we show the time taken by the C4.5 
algorithm and the XMiner engine of XRules. In addition, the 
confidence measure used in XRules greatly reduces the 
number of rules that need to be generated, and the methods 
are based from different classes of data mining techniques. 
As such, these are not completely compatible, but the time 
performance of C4.5 can be considered satisfactory for 
reasonable support thresholds. At 0.01 support, the time 
taken is much larger because a leaf node can capture many 
instances and the DSM extracted according to the frequency 
is much larger (221 attributes as opposed to 63 at support 



0.05). Hence many more tests need to be performed for 
suitable split-nodes in the decision tree. 
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Figure 6.  Time performance on combined CSLogs data 

Experiment 2. For the second experiment we have taken 
apache2 (v2.2.3) web server log files from our own website 
(debii.curtin.edu.au) for a 4 month period in its native 
(default) format. All “access” log files, which contain 
attempts to access pages on this website were taken, while 
messages stored in the normal error message log were 
excluded. We have removed all requests/lines that do not 
request a page via a GET or POST request (e.g. HEAD or 
other requests will be ignored). Furthermore, we have 
excluded all automatic inclusion requests that appear each 
and every time a particular page is opened. For example, a 
page may include a number of images, scripts, stylesheets 
(css) and others. In the log file they would appear as single 
separate requests and hence would interfere and could be 
seen as requests (clicks) that have been done manually. 
Hence, we only retain all requests where someone has 
entered our website and has navigated from one page to 
another by clicking on forms and hyperlinks. Similar to the 
CSlogs dataset [12, 30] we have classified requests to our 
website in “internal” (within the university) and “external” 
(outside the university). As the amount of requests in these 
two classes is different, we have taken the larger proportion 
(which is external) and duplicated entries from “internal” to 
match the “external” ones in numbers.  We have defined a 
session as visiting a webpage from the same computer with 
no more than 30 minutes in between page visits. We have 
also ignored sessions where less than three web pages are 
navigated to, as there is really no navigational pattern 
inherent in such session. In order to avoid storing automated 
requests, we have also excluded any request or sequence of 
requests that are performed by bots (e.g. search bots from 
google, yahoo or bing) by using the robots.txt as our anchor. 
Every time a sequence of requests is commenced with a 
request to access robots.txt, this is excluded as usual (bots 
request this file only to determine their permissions to index 
or crawl the website). Furthermore, we excluded any request 
that is well known to be an attack to our content management 
system (CMS), usually results in HTTP GET requests with 
403 (forbidden) replies (as we have mod_security installed, 
they can be easily detected). 

The grouped user sessions were converted to trees as was 
explained with the illustrative example in Section 3. The 
resulting dataset had 18840 instances out of which 66% was 
used for training and the remainder for testing. The same 

parameter setting as for the first experiment was applied to 
both approaches. The comparison of predictive accuracy 
(%), for different support values is shown in Fig. 7.  As one 
can see the XRules approach has clearly outperformed the 
C4.5 decision tree for this dataset for all support thresholds. 
The performance of XRules is particularly better when 
higher support thresholds are used, and as they are lowered 
we see that the accuracy of the C4.5 decision tree is 
approaching that of XRules. The time performance is shown 
in Fig. 8. 
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Figure 7.  Accuracy on DEBII Logs data 
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Figure 8.  Time performance on DEBII Logs data 

The accuracy results comparison between C4.5 and 
XRules are quite contrasting to the previous results on 
CSLogs data, and one needs to investigate the differences 
between the dataset to determine the inconsistency in results. 
It could be due the fact that the data from the second 
experiment was collected over a longer period of time, where 
there is a greater variation among navigational pattern due to 
potential modifications of the web site. For example, as more 
web pages are added/removed the particular access to web 
page may not occur in the same position in the navigational 
pattern. The general navigational patterns are captured by the 
database structure model, for the given frequency, and this 
could also explain why the frequency has to be reduced to 
such a great deal in order to generalize over those variations 
of navigational patterns during a larger time period. On the 
other hand, it could be due to the fact that different data 
mining methods are used, and perhaps better accuracy could 
be achieved when different classifiers are used. This was 
clearly the case for NaiveBayes classifier as in all 
experiments it had better run time and accuracy, and 
investigation of other classifiers is left as future work. 



VI. CONCLUSIONS AND FUTURE WORK  

The work presented in this paper has investigated an 
alternative approach to tree-structured web log representation 
and mining. It first converts the tree-structured data into a 
flat representation that preserves the structural and attribute-
value information. This enables an application of a wider 
range of data mining/analysis techniques. The decision tree 
learning was taken as a case in point and the approach 
performed better than an existing structural classifier in one 
case, and worse in another. Some interesting properties were 
revealed as some rules were based on the existence of a node 
within a tree structure reflecting the general navigational 
pattern. This needs to be investigated further, together with 
the cases when the differing characteristics of the approach 
are desired. Furthermore, as many other techniques exist for 
flat data format, future work will also investigate their use on 
the proposed representation, with stronger focus on 
clustering techniques. 
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