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Abstract 

Significant research efforts have been spent on studying the response and damage of 

structures subjected to blast loads for better life and property protections. The single-degree-of-

freedom (SDOF) approach has been widely adopted to simplify the structural response analysis 

for engineering design purpose. However, such approach under certain circumstances 

oversimplifies the structural behavior and might not give reliable predictions of structural 

responses to blast loads. On the other hand, although detailed high fidelity finite element (FE) 

approach is able to give relatively accurate predictions of structural response, it is, unfortunately, 

not straightforward for application and very time-consuming, which impedes its application 

among engineers. Therefore a method that can assure not only reliability but also efficiency is 

highly needed for design practice. In the present study, mode approximation method with P-I 

diagrams is applied to analyze response and damage of RC slab due to blast load. Slab under 

analysis is assumed rigid-plastic and simply supported. Shear failure, bending failure and 

combined failure modes are considered based on different failure modes. Critical equations for 

structural shear and bending failures are derived respectively with appropriate failure criteria. P-I 

diagrams are then developed for quick damage assessments. The analytical results are verified by 

comparing with high fidelity numerical simulations. The reliability and efficiency of using this 

approach for design and analyzing RC slab response under blast loads are demonstrated. 
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damage assessment 

1. Introduction 

Detonation of explosive materials due to accidents or terrorist activities is a great threat to 

buildings, infrastructures and civilians. For better protection of structures, properties and lives, 

efficient and accurate evaluation of existing facilities and new structures in resisting blast 

loadings is essential. Some standards such as DoD-6055.09-STD [1] provides ways for quick 

assessment of structural safety under explosions based on the Q-D (quantity of explosive charge 

and distance to structures) criteria. However, the definition of damage levels in DoD-6055.09-

STD [1] is unclear, i.e., it is not clear if the so-called damage in the standard relates to crack or 

collapse of infill or exterior walls, or other types of structure or structural element failure. 

Moreover, a structural element under blast loading might also experience different failure modes 

such as crush and spall failure of concrete structures, direct and diagonal shear, bending failure, 

etc., depending on element properties and blast loading conditions. Bending failure often occurs 

near center of a simply-supported structural element, while shear failure occurs close to supports. 

Based on experimental and analytical results, many researchers [2, 3] concluded that shear 

failure is highly likely to occur when a detonation is at a close-in distance from structure or when 

the span-to-height ratio of a structural element is relatively small.  

An equivalent single-degree-of-freedom (SDOF) approach has been widely used to 

simplify complex behaviour of structures or structural elements for efficient analysis of structural 

responses subjected to blast load. Some popular structural blast designs are based on the SDOF 

approach [4]. Although various extensions and applications of the SDOF approach have been 

carried out in many cases, it is appropriate for far-field detonations in which the loading 

environment can be approximated by a standard shape. The SDOF approach might oversimplify 

a structure or a structural element due to the limitation of its mathematical form. Based on the 

SDOF model, shear deformation effect was either neglected in the analysis [5-7] or considered 

separately by another SDOF model [8, 9]. For a mixed failure mode, the SDOF model becomes 

invalid. Moreover, the equivalent SDOF model is derived based on the assumption of a primary 

structural deflection shape, which is usually taken as the counterpart under static loads, and 

sometimes does not reflect the true dynamic structural deflections because of inertial resistance. 

Sometimes the structural deflection shape in forced response phase and free-vibration phase 
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changes, which clearly is not able to be captured by a SDOF model. To obtain more reliable 

structural response predictions, detailed finite element (FE) model were developed for numerical 

simulations, e.g. [34]. Although high fidelity numerical simulations are able to give reliable 

predictions of structural responses, it is normally very time consuming. 

The classical Mode Approximation Method (MAM) for rigid-plastic beam elements 

analysis has been used by many researchers. Research works have been done on different 

constraints and load distributions [10-12]. Comparison of results show that, Pressure-Impulse (P-

I) diagrams based on rigid-plastic model have advantages in characterizing combined failure 

modes, with acceptable accuracy when assessing structural damage. Although rigid-plastic model 

neglects elastic deformation, estimated deflections by the extended MAM in most cases agree 

very well with the final deflections observed in tests [13], and P-I diagrams derived from a rigid-

plastic model are very close to those from an elastic-to-perfectly-plastic SDOF model, especially 

when severe damage occurs. Ma et al. [14] further developed a P-I diagram method for damage 

assessment of structures subjected to blast load by considering both bending and shear damage. 

An explicit analytical solution based on the MAM for P-I diagrams was obtained which could be 

conveniently used for assessing structural damage. Later, Ma et al. [15] extended the MAM and 

P-I diagram method by decoupling soil-structure interaction to study underground box-shaped 

structure response against internal and external blast loads. The influences of nonlinear 

resistance-deformation relationship of materials, nonlinear soil-structure interaction parameters, 

and pulse shapes on P-I diagram based on the MAM were further discussed in [16-18]. 

Numerical and experimental studies on the response and failure of slab/plate have been 

done by many researchers. It has been observed that direct shear occurs near supports [19-21], 

and large inelastic deformation appears near center [22, 23]. Although some researchers tried to 

represent the slab response by an SDOF system [24], more results show that the combined failure 

appears under certain circumstances for both square and circular plates [25, 26]. However, the 

analytical solution based on MAM approach cannot be found yet in open literature. Theoretically 

using a beam element with MAM approach would not cause big errors in estimating the 

maximum deflection when the aspect ratio (ratio of long to short edge a bL L  , where aL  and 

bL  are lengths of long and short edge respectively) of a slab is larger than 2.0 because the slab 

with large aspect ratio is normally considered as a one-way slab. Correspondingly its response is 
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basically the same as a beam. When the aspect ratio is between 1.0 and 2.0, P-I diagram results 

will change since the length of structural element used in governing equations may adopt either 

shorter or longer edge. Therefore the MAM developed for beam or one-way slab may not lead to 

accurate predictions of responses of two-way slabs. The present study extended the MAM from 

beam element to two-way slab, aiming to develop a reliable and efficient analytical approach for 

design and analysis of protective structures subjected to blast load. To verify the results for 

different failure modes, high fidelity numerical simulations with validated numerical models are 

carried out on some special cases. A case study is given at the end of the present paper. 

2. Failure criteria and modes 

The present study focuses on four-side simply-supported slabs. According to the previous 

results obtained by other researchers [2, 3] for simply supported or clamped beams, the ratio of 

centerline-deflection to half-span is used to define the flexural damage levels since the largest 

ductile plastic deformation usually appears at the beam center due to bending response. The 

average shear strain is defined as shear damage levels since the shear plastic deformation usually 

appears near the supports, as shown in Fig. 1.  

 
Fig. 1 Sketch of shear and bending failure mode 

 

If a strip is taken at center of a slab to represent the maximum displacement caused by 

shear/bending force, its failure profile is the same as that of a beam. This has been adopted by 

civil engineers in design practice with respect to two-way RC slabs to simplify the design 

calculation. Therefore the maximum transverse displacement due to bending and direct shear 
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failure near supports in the present study can be expressed as follows according to results of Yu 

and Jones [2], Li and Jones [12], and Bai and Johnson [27]: 

 0m s vz L and z h     (1) 

where mz  is the maximum transverse displacement due to bending, L  is the half edge length in 

different failure modes, 0  is the ratio of centerline deflection to half span, sz  is the maximum 

transverse displacement due to direct shear, v  is the average shear strain in unit length,   is the 

half-width of the shear band obtained from experimental results, h  is the thickness of slab. In the 

present study,   is defined as 0.866 according to [28]. Table 1 shows different damage levels 

under empirical bending and shear failure criteria used in [14]. 

 

Table 1 Different damage level under empirical bending and shear failure criteria 

Failure type Criteria 
Light 

Damage (%) 

Moderate 

Damage (%) 

Severe 

Damage (%) 

Shear Average shear strain 1 2 3 

Bending 
Ratio of centerline 

deflection to half span 
2.5 6 12.5 

 

Pulse shape of blast load can be of many forms, e.g. rectangular, triangular, and parabolic. 

Pulse shape effect on the structural behavior has been discussed by many researchers, e.g., 

Youngdahl [29], Youngdahl [30], Li and Meng [31], Li and Jones [32], and the differences in 

responses obtained with different pulse shapes can be estimated though analytical results 

reported by Huang et al. [17]. In the present study, a triangular pulse load is used. As shown in 

Fig. 2, the triangular pulse load can be defined by the peak reflected pressure po, with equivalent 

duration dt  calculated based on impulse. The pressure acting on slab can be expressed as: 

 0 1
d

t
p p

t

 
  

 
  (2) 
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Fig. 2 Triangular pulse load 

 

Similar to the analysis for beam element, there are several possible transverse velocity 

profiles which include pure shear failure mode, pure bending failure modes, and combined 

failure modes. A dimensionless strength ratio is introduced as below [14]. 

 
0

02

aQ L

M
   (3) 

where 0Q  and 0M  are respectively the shear and bending strength of slab, aL  is the length for 

longer edge of slab. 

Table 2 shows the velocity profiles of different phases under different failure modes. Such 

profiles make it possible to consider different failure modes at the same time. Moreover, as 

judgment of failure only involves peak reflected pressure and dimensionless strength ratio of 

slab, it is convenient to use alternate velocity profiles to judge initiations of different failure 

modes, and response calculation can be carried out accordingly. Besides the numbers 1-5 that are 

used to distinguish the failure modes, sub-letters a and b are adopted to represent the case with 

failure along long or short edge, respectively. Coordinate of analysis model is defined in Fig. 3 in 

which the origin of coordinate system is at the centroid of slab. Failure profiles for each mode 

are shown in Fig. 4. Mode 1 contains pure shear failure that includes sub-mode 1a and sub-mode 

1b. Mode 2 is for simple bending failures with a plastic hinge at the center of the element, and 

this failure mode has two sub-modes named sub-mode 2a and sub-mode 2b. Mode 3, divided 

into sub-mode 3aa, sub-mode 3ab, sub-mode 3ba and sub-mode 3bb, can be considered as 

combinations of mode 1 and mode 2. Mode 4 is the complex bending failure mode which has a 

plastic zone at the middle of the element. Similar to mode 2, mode 4 is divided into sub-mode 4a 

and sub-mode 4b. Mode 5 contains combinations of mode 1 and mode 4, including pre-defined 

sub-mode 5aa, sub-mode 5ab, sub-mode 5ba, and sub-mode 5bb, as shown in Figure 4.  

Effective 

Duration 

td 

p0
 

Peak 

Pressure 



7 
 

Table 2 Velocity profile 

 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Phase 1 
 

    

Phase 2      

Phase 3 N.A. N.A.    

Phase 4 N.A. N.A. N.A. N.A.  

 

Fig. 3 Coordinate of analysis model 
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sub-mode 1a sub-mode 1b 

  
sub-mode 2a sub-mode 2b 

   
sub-mode 3aa sub-mode 3ab 

  
sub-mode 3ba sub-mode 3bb 

  
sub-mode 4a sub-mode 4b 

  
sub-mode 5aa sub-mode 5ab 

  
sub-mode 5ba sub-mode 5bb 

shear failure  bending failure  plastic zone 

 

Fig. 4 Failure profile of sub-modes 
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Derivation of structural final displacements for different sub-modes is summarized as 

follows. The boundary conditions are assumed not to change for the transition from one phase to 

another of a specified failure mode and damping is neglected. The final displacement and 

velocity of slab at the end of a particular phase are always used as the initial conditions in the 

following phase if applicable. 

Mode 1: pure shear failure 

Sub-Mode 1a: pure shear failure along the short edge. 

Shear failure mode describes the direct shear failure occurring at two supports along the 

short edges that carry the maximum shear force in x-axis direction. The deformation due to 

bending is ignored in this mode. There are totally two phases in this mode including a loading 

phase (phase 1) and a post-loading phase (phase 2) which are assumed to end at dt  and ft , 

respectively. 

The governing equation for phase 1 is 

 
s

Q
p mz

x


  


  (4) 

where Q  is the transverse shear force in slab, 0p  is the uniformed force acting on slab, m  is 

the unit mass of slab, sz  is the acceleration due to shear force. 

Boundary and initial conditions are 

     00 0, aQ x Q x L Q      (5) 

    0 0, 0 0s sz t z t     (6) 

where sz  and sz  are velocity and displacement due to shear force respectively, t  is the time 

variable. 

By integrating Eq.(4) with respect to time, at the end of phase 1 when dt t , the maximum 

slab displacement  s dz t  and velocity of  s dz t  are solved. 

In phase 2, the governing equation becomes 

 
s

Q
mz

x





 (7) 
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Motion termination time ft of phase 2 is determined when 0sz  . Final transverse 

maximum displacement of slab due to shear is derived as 

  
 2

0 0 0

02

d a

s f

p t p L Q
z t

mQ


  (8) 

Sub-Mode 1b: pure shear failure along the long edge. 

The equations and derivation are similar to mode 1a, but x-axis changes to y-axis. The 

governing equation for phase 1 changes to 

 s

Q
p mz

y


  


 (9) 

The governing equation for phase 2 changes accordingly, and aL  is replaced by bL  in the 

derivation which means the length of shorter edge of slab. The final structural maximum 

displacement is 

  
 2

0 0 0

02

d b

s f

p t p L Q
z t

mQ


  (10) 

Mode 2: simple bending failure (1 hinge) 

Sub-Mode 2a: simple bending failure along the long edge. 

There are also two phases in this mode including a loading phase (phase 1) and a post-

loading phase (phase 2) which end at dt  and ft respectively. In phase 1, the governing equation is 

 1m

a

Q x
p mz

x L

 
    

  

 (11) 

where mz  is the acceleration due to bending moment. 

Boundary and initial conditions are 

        0 00 0, , 0 , 0a aQ x Q x L Q M x M M x L          (12) 

    0 0, 0 0m mz t z t     (13) 

where M  is the bending moment in slab, mz  and mz  are velocity and displacement due to 

bending moment, respectively. 

In phase 2, the governing equation changes to 
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 1m

a

Q x
mz

x L

 
  

  

 (14) 

The final time ft of phase 2 can be determined with the condition 0mz  .The final 

maximum bending displacement is then derived as 

  
 2 2

0 0 0

0

3 2

8

d a

m f

p t p L M
z t

mM


  (15) 

Sub-Mode 2b: simple bending failure along the short edge 

Equations and derivation are similar to mode 1a. The governing equation for phase 1 

changes to 

 1m

b

Q y
p mz

y L

 
    

  

 (16) 

and the governing equation for phase 2 also changes accordingly. The final maximum bending 

displacement at slab center is 

  
 2 2

0 0 0

0

3 2

8

d b

m f

p t p L M
z t

mM


  (17) 

Mode 3: combined shear and simple bending failure 

Sub-Mode 3aa: combined failure mode, shear failure along the short edge and simple bending 

failure along the long edge 

Mode 3aa is the combination of mode 1a and mode 2a when both shear failure and bending 

failure occur in the slab. Shear failure occurs at two supports while bending failure induces 

plastic hinge at the center of the slab. Deformation of slab includes one loading phase (phase 1) 

and two post-loading phases (phase 2 and phase 3) which are assumed to end at dt , st , and ft

respectively. 

In phase 1, the governing equation is given by 

   1s m s

a

Q x
p mz m z z

x L

 
      

  

 (18) 

with the same boundary and initial conditions given in Eqs.(6), (12), and (13). 
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Similar to mode 1a and mode 2a, at the end of phase 1 when dt t  the maximum 

displacement and velocity of the element due to shear and bending deformation can be 

determined as  s dz t ,  s dz t ,  m dz t , and  m dz t  respectively. 

In phase 2, the governing equation is 

   1s m s

a

Q x
mz m z z

x L

 
    

  

 (19) 

Solving Eq.(19), at the end of phase 2 when   0s sz t  , displacement due to shear stops, 

while bending displacement remains to the next phase of motion. The maximum displacement 

associated to the shear mode is derived as below, and the maximum displacement and velocity 

due to bending motion can then be solved as 

  
 

 

2 2

0 0 0 0

0 0

4 6

4 3 2

d a a

s s

a

p t Q L p L M
z t

m M Q L

 



 (20) 

In phase 3, only response related to the bending failure mode remains, and the governing 

equation is the same as Eq.(14). Similarly, when motion terminates the final displacement is 

determined as 

  
 

 

2 2 3 2

0 0 0 0 0 0 0 0

0 0 0

5 4 3 6

4 3 2

d a a a

m f

a

p t p L M Q L M p L Q M
z t

mM M Q L

  



 (21) 

Sub-Mode 3ab: combined failure mode, both shear and bending failure along the short edge 

Equations and derivation are again similar to mode 3aa. The governing equations for phase 

1 change to 

 
  1s m s

b

s

Q y
p mz m z z

y L

Q
p mz

x

 
      

  


  


 (22) 

The governing equations for phase 2 and phase 3 change accordingly, and the final 

structural deflections are 

  
 2

0 0 0

02

d a

s s

p t p L Q
z t

mQ


  (23) 
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  
 2 2

0 0 0 0 0 0 0

0 0

3 2 4

8

d b a

m f

p t p L Q p L M M Q
z t

mM Q

 
  (24) 

Sub-Mode 3ba: combined failure mode, both shear and bending failure along the long edge 

Equations and derivation are similar to mode 3ab, but x coordinate is swapped with y 

coordinate. The governing equations for phase 1 change to 

 

  1s m s

a

s

Q x
p mz m z z

x L

Q
p mz

y

 
      

  


  


 (25) 

and the governing equations for phase 2 and phase 3 change accordingly. The final structural 

deflections are 

  
 2

0 0 0

02

d b

s s

p t p L Q
z t

mQ


  (26) 

  
 2 2

0 0 0 0 0 0 0

0 0

3 2 4

8

d a b

m f

p t p L Q p L M M Q
z t

mM Q

 
  (27) 

Sub-Mode 3bb: combined failure mode, shear failure along the long edge and simple bending 

failure along the short edge 

Equations and derivation are similar to mode 3aa, but x and y coordinates are swapped. The 

governing equation for phase 1 change to 

   1s m s

b

Q y
p mz m z z

y L

 
      

  

 (28) 

and the governing equations for phase 2 and phase 3 change accordingly, and the final structural 

deflections are 

  
 

 

2 2

0 0 0 0

0 0

4 6

4 3 2

d b b

s s

b

p t Q L p L M
z t

m M Q L

 



 (29) 

  
 

 

2 2 3 2

0 0 0 0 0 0 0 0

0 0 0

5 4 3 6

4 3 2

d b b b

m f

b

p t p L M Q L M p L Q M
z t

mM M Q L

  



 (30) 

Mode 4: complex bending failure (plastic zone at center with 2 plastic hinges) 

Sub-Mode 4a: complex bending failure along the long edge 
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Bending failure with a plateau deformation at the central portion of the slab may occur 

when blast load is sufficiently intensive. Being different from mode 2a, in this mode, two plastic 

hinges are generated offset from center of the slab. Three phases including one loading phase 

(phase 1) and two post-loading phases (phase 2 and phase 3) which end at dt , 1t , and ft , 

respectively are considered. 

In phase 1, the governing equation is expressed as 

 
0

a
m

a

L xQ
p mz

x L 

 
    

  

 (31) 

where 0  is the distance of plastic hinge from the slab center. 

Initial conditions are the same as Eqs.(6) and (13). Boundary conditions are as follows 

        0 0 0 00, , , 0a aQ x Q x L Q M x M M x L           (32) 

At the end of loading period, when dt t , the plastic hinge location indicated by 0  is 

derived as 

 0
0

0

6
a

M
L

p
    (33) 

In phase 2, the action of blast load has been end, and the velocity profile is the same as that 

in phase 1. However, the two plastic hinges start to move toward the center of slab. At the end of 

phase 2, the two plastic hinges meet at slab center and phase 3 motion then starts. The governing 

equation of phase 2 motion is 

 
0

a
m

a

L xQ
mz

x L 

 
  

  

 (34) 

In phase 3, the governing equation is the same as Eq.(14) and it can be solved in a similar 

way as for mode 2a.  

At the end of phase 3 when ft t , slab motion stops and the final bending displacement at 

slab center is given by 

  
 2 2

0 0 0

0

2 3

6

d a

m f

p t p L M
z t

mM


  (35) 

Sub-Mode 4b: complex bending failure along the short edge 
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Equations and derivation are similar to mode 4a, but x coordinate is replaced by y 

coordinate. The governing equation for phase 1 changes to 

 
0

b
m

b

L xQ
p mz

y L 

 
    

  

 (36) 

Half width of plastic zone is derived as 

 0
0

0

6
b

M
L

p
    (37) 

The governing equations for phase 2 and phase 3 change accordingly, and the final 

maximum structural displacement is 

  
 2 2

0 0 0

0

2 3

6

d b

m f

p t p L M
z t

mM


  (38) 

Mode 5: combined shear and complex bending failure 

Sub-Mode 5aa: combined failure mode, shear failure along the short edge and complex bending 

failure along the long edge 

Mode 5 is the most complicated mode which combines mode 1 and mode 4. There are 

altogether four phases including one loading phase (phase 1) and three post-loading phases 

(phase 2, phase 3, and phase 4). They are assumed to end at dt , st , 1t  and ft , respectively. 

In phase 1, both the shear and bending deformation occur. The governing equation is 

  
0

a
s m s

a

L xQ
p mz m z z

x L 

 
      

  

 (39) 

Boundary conditions are the same as Eq.(32), and initial conditions can be obtained from 

Eqs.(6) and (13). 

At the end of phase 1, half width of plastic zone is 

 
0

0

0

3
a

M
L

Q
    (40) 

In phase 2, velocity profile is the same as that in phase 1, while shear deformation tends to 

stop. The governing equation becomes 

  
0

a
s m s

a

L xQ
mz m z z

x L 

 
    

  
 (41) 
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At the end of phase 2 when st t , shear deformation stops. The final maximum shear 

displacement of phase 2 is given by 

  
 2 2

0 0 0 0

2

0

3 2

4

d

s s

p t p M Q
z t

mQ


  (42) 

In phase 3, the two plastic hinges start to move toward center of the slab. The governing 

equation is the same as Eq.(34). Similarly, at the end of phase 3, when 1t t , the two plastic 

hinges coincide at the slab center. 

In phase 4, the governing equation is the same as Eq.(14). Finally the maximum bending 

displacement is 

  
 2 2

0 0 0

0

2 3

6

d a

m f

p t p L M
z t

mM


  (43) 

Sub-Mode 5ab: combined failure mode, both the shear failure and complex bending failure 

along the short edge 

The governing equations for phase 1 change to Eq.(4) and 

  
0

b
s m s

b

L yQ
p mz m z z

y L 

 
      

  

 (44) 

Half width of plastic zone is derived as 

 0
0

0

6 a
b

L M
L

Q
    (45) 

The governing equations for phase 2, 3 and 4 change accordingly, and the final maximum 

structural displacements are 

  
 2

0 0 0

02

d a
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p t p L Q
z t

mQ


  (46) 
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0 0 0
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z t
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
  (47) 

Sub-Mode 5ba: combined failure mode, both shear failure and complex bending failure along 

the long edge 

The governing equations for phase 1 change to Eqs.(9) and (39). Half width of plastic zone 

is derived as 
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 0
0

0

6 b
a

L M
L

Q
    (48) 

The governing equations for phase 2, 3 and 4 change accordingly, and the final maximum 

structural displacements are 

  
 2

0 0 0
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  (49) 
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Sub-Mode 5bb: combined failure mode, shear failure along the long edge and complex bending 

failure along the short edge 

The governing equation for phase 1 changes to Eq.(44). Half width of plastic zone is 

derived as 

 
0

0

0

3
b

M
L

Q
    (51) 

The governing equations for phase 2, 3 and 4 change accordingly, and the final maximum 

displacements are as Eq.(42) and 

  
 2 2

0 0 0

0
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d b

m f

p t p L M
z t

mM


  (52) 

3. P-I diagrams and discussions 

In each sub-mode discussed in the above section, the final shear displacement sz  for direct 

shear failure, the final bending displacement mz  for bending failure, or both for combined failure 

are derived. Given certain failure criteria in terms of the maximum shear and bending 

displacements, P-I diagrams for different sub-modes then can be obtained. Similar to the work 

done by Ma et al. [14], in the present study, two normalized variables P* and I* of blast load are 

defined as: 

 
 

* *0 0

0 02

d

a

p p t
P and I

Q L mQ
   (53) 



18 
 

From equations for final displacements induced by shear and bending failure, P-I diagrams 

can be represented in unified forms as 

    * * * *, ,v aS P I h and B P I L        (54) 

where the shear and bending failure criteria given respectively in Eq.(1) are used. 

 * *,S P I  and  * *,B P I are implicit expressions and equal to the final shear and bending 

displacement respectively. 

3.1 Distribution of failure modes 

By determining the relevant parameters, P-I diagrams can be plotted for all sub-modes. The 

difference of sub-modes depends on peak reflected pressure 0p , dimensionless strength ratio  , 

and aspect ratio of slab  . 

Some general observations of structural responses as outlined below are used to judge the 

failure mode: 

1) in phase 1 (loading phase) of every mode, the structural acceleration induced by shear 

force or bending moment should be positive; 

2) in a post-loading phase, the structural acceleration should be negative; 

3) distance between plastic hinge and the slab center ( 0 ) in modes 4 and 5 should be 

larger than zero; 

4) the maximum bending moment should be smaller than the bending strength of slab in 

pure shear mode, and vice versa in pure bending mode. 

Judgment of slab failure sub-mode can be divided into two steps. The first step is to decide 

its failure mode according to Fig. 5, in which the half-span length L  in initial conditions used in 

flowchart is temporarily defined as aL . The second step is to decide its sub-mode by substituting 

aL  and bL  to expressions of structural accelerations, i.e. sz  and mz , respectively, that can be 

obtained by solving the governing equations in phase 1 if applicable. If both aL  and bL make the 

acceleration(s) larger than zero, shear failure will occur along the long edge and bending failure 

will occur along the short edge if applicable. If only aL  makes structural acceleration(s) smaller 

than zero, shear failure will appear along the short edge and bending failure will occur along the 
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long edge if applicable. For example, assuming a slab will fail in mode 3, when aL  and bL  make 

sz  in phase 1 larger than zero while only aL  can make mz  larger than zero, the sub-mode would 

be sub-mode 3ba. 

 
 

Fig. 5 Failure mode judging flowchart 
 

3.2 Model validation 

From Eqs.(53) and (54), P-I diagrams based on the MAM approach can be obtained for 

slabs. To validate the analytical solutions derived above, numerical simulations are carried out 

using commercial code ANSYS-AUTODYN. The obtained structural responses with derived P-I 

diagrams from numerical simulations are compared to those obtained from analytical solutions. 
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3.2.1 Material model, mesh convergence tests and model validation 

Before comparing the numerical simulation results with analytical predictions, the 

accuracy of numerical model is validated by simulating a field blasting tests. In the blast tests 

reported by Jones et al. [33], 2000×1000×100 mm3 RC slabs were tested. Both tensile and 

compressive faces of the RC slab were reinforced with ϕ12 mm steel bars with 100 mm interval 

along the long edge and ϕ12 mm steel bars with 200 mm interval along the short edge. The yield 

stress and Young’s modulus of the reinforcement are 600 MPa and 200 GPa, respectively. The 

static strengths of concrete are 39.5 MPa in compression and 8.2 MPa in tension. The short edges 

of RC slab were clamped while the other edges were set free. The RC slabs were tested under 

free field explosion with scaled distances of 3.0, 1.5 and 0.93 m/kg1/3, respectively. The 

construction details of the RC slabs are shown in Fig. 6. Numerical model and loadings 

according to experimental set-up are developed to simulate those tests.  

 

 

Fig. 6 Rebar arrangement of the RC slab tested by [33] (not to scale) 

 

In the present study, the material models used for concrete and reinforcing steel are RHT 

model and Johnson-Cook model, respectively. Both of the models are available in the 

AUTODYN material library database. Parameters for concrete and steel in the respective models 

are the same as those used in the tests as listed in Table 3.  
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Table 3. List of parameters of material models 

 

Parameter 
RHT concrete 

model 
Parameter 

Johnson-Cook 

steel model 

Reference density ρ=2.75 g/cm3 Reference density ρ=7.83 g/cm3 

Shear modulus G=11.79 GPa Shear modulus G=81.8 GPa 

Compressive strength fc=39.5 MPa Yield stress σy=600 MPa 

Tensile strength ft/fc=0.2076 Hardening constant B=510 MPa 

Shear strength fs/fc=0.18 Hardening exponent n=0.26 

Compressive strain 

rate exponent 
α=0.032 Strain rate constant C=0.014 

Tensile strain rate 

exponent 
δ=0.036 

Thermal softening 

exponent 
m=1.03 

  Melting temperature Tmelt=1793 K 
 

In the numerical simulation, the blast load is obtained from UFC-3-340-02 [4] and applied 

on 3-D RC slab model directly. The numerical models of 2000×1000×100 mm3 RC slab are built 

according to the descriptions in Jones et al. [33]. For mesh convergence test, a few models with 

different mesh sizes are built and a typical one is illustrated in Fig. 7. Considering computational 

cost and due to symmetry of the slab, only half of the slab is modelled. Simulation with scaled 

distance of 3.0 m/kg1/3 is carried out first. The aim of mesh convergence study is to find a proper 

mesh size which suitable for calculation and the possible shortest calculating time. The concrete 

material is considered as homogeneous for simplification, and an RHT model is adopted to 

minimize such material simplification. Four mesh sizes for concrete, which is modelled by solid 

elements, i.e. 32×32×24 mm3, 16×16×12 mm3, 8×8×6 mm3 and 4×4×3 mm3, respectively, are 

considered. The rebars are modelled by beam elements with element sizes of 32 mm, 16 mm, 8 

mm, and 4 mm accordingly. The two parts, namely concrete and rebars, are joined in 

AUTODYN automatically by the “join” command so that the concrete and reinforcement bars 

are assumed to be perfectly bonded. The numerically simulated time histories of deflections at 

the RC slab center with different mesh sizes are plotted and compared with that recorded in the 

test in Fig. 8. It can be seen that simulations with solid element sizes of 4×4×3 mm3 and 8×8×6 

mm3 for concrete and beam elements of 4 mm and 8 mm for rebars give similar structural 

response prediction, and the results agree well with the test data. It can also be observed in Fig. 8 

that although increasing the element size can reduce the element number and save the 

computational time, it cannot give accurate prediction of the structural response. To optimize the 
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effects of computational time and calculation accuracy, solid element size of 8×8×6 mm3 for 

concrete and beam element size of 8 mm for rebars are adopted in the subsequent simulations. 

 
 

Fig. 7 3-D model of RC wall and rebar mesh 

 

 
 

Fig. 8 Comparisons of numerical simulation results with testing data 

 

To further validate the numerical model, simulation of the RC slab under blast loading with 

the scaled distance of 1.5 m/kg1/3 is also carried out, and the simulation result is given in Fig. 9. 

Although the deflection time history was not given in the paper by Jones et al. [33], the authors 

stated that the maximum deflection was 7.9 mm. Given the numerical prediction of the 

maximum deflection of 6.9 mm, the difference is only 1 mm with error of -12.6%, indicating that 

the numerical model gives reasonable predictions of RC slab responses under blast loads. 
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Fig. 9 Numerically predicted structural deflection time history versus maximum deflection given 

in [33] 

 

3.2.2 Comparison of numerical and analytical results 

The validated numerical model is used to verify the proposed analytical model in this 

section. An RC slab with dimension of 3050×2440×115 mm3 (accordingly the aspect ratio of 

1.25) under free air blast load is employed. The boundary condition for the four sides of the slab 

is assumed simply supported. Considering computational cost and due to symmetry of the slab, 

only one quarter of the full slab is modelled and simulated. The full model of the RC wall and 

the arrangement of rebars are similar to those in Fig. 7. Solid elements of size 8×8×6 mm3 are 

used to model concrete and 8 mm beam elements are used to model rebars, as described above 

according to the mesh convergence test. The total numbers for solid and beam elements are 

557180 and 3160, respectively. 

Three series of numerical simulations are carried out and the method to obtain numerical 

P-I curves consists of four stages. In the first stage, three blast loads, which are estimated to 

cause light, moderate, and severe damages, respectively, in the RC slab, are obtained from final 

structural displacement equations in MAM approach. Secondly, the above three blast loads are 

used in numerical simulations to obtain the structural responses corresponding to the shear and 

bending damage for the three damage levels. The total simulation time is set as 300 ms to make 

sure that the peak structural response is captured and the model is in free-vibration phase. The 

average residual displacement values in the free vibration phase are considered as the permanent 
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displacements caused by shear and bending damage, respectively, and are set as reference for 

defining the damage in the following simulations. Thirdly, blast loads with different 

combinations of pressures and durations are used as input to calculate slab responses. The values 

of the input pressure and impulse are adjusted to assure that the errors between the simulated 

structural responses and the reference responses established in stage 2 are less than 5% for 

accepting the slab having the same level of damage as the reference case. Repeating this process, 

a series of P-I data points corresponding to the same slab damage level can be obtained. Lastly, 

the obtained pressure and impulse data points are connected by discrete Bezier splines to form 

the numerical P-I curves. 

Results from the numerical simulations are then compared with those from analytical 

solutions. Shear resistance of unit RC wall strip is calculated as 183.95 KN, and its bending 

resistance is 153.3 KN·m. Accordingly, the dimensionless strength ratio defined in Eq.(3) is 1.19. 

The failure pattern of the slab is sub-mode 3aa according to the guides mentioned in Section 3.1 

for judging the slab failure sub-mode. 

 

 

 
 

a) Light bending damage and moderate shear damage  
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b) Moderate bending damage and severe shear damage 

 

 
 

c) Severe bending damage and severe shear damage  

 

Fig. 10 Comparisons of analytical and numerical P-I diagrams of the example slab corresponding 

to the three damage levels  
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Fig. 10 compares the analytical and numerical derived P-I curves. The P-I curves based on 

numerical simulations normally locates at the lower left side of those from MAM approach, 

indicating the above derived analytical predictions based on MAM approach slightly 

underestimate the RC wall damage to blast load or over predict the wall blast loading resistance 

capacity. In scenarios corresponding to the moderate and severe damages as shown in Fig. 10b 

and Fig. 10c, shear and bending damages generated from the analytical solution and numerical 

simulation agree very well. However, errors of the P-I diagrams for both the shear and bending 

damage in low damage case (Fig. 10a) becomes considerable, especially in the impulsive and 

dynamic regions of the P-I diagram. The relatively prominent error in light damage level may be 

attributed to neglecting the elastic response of the wall in MAM approach. Under moderate to 

severe damage condition, the plastic deformation of the slab is significant and neglecting the 

small elastic deformation introduces only insignificant error. On the other hand, under light 

damage condition, the plastic deformation might be comparable to the elastic deformation in the 

numerical simulation. Neglecting elastic deformation in MAM approach therefore introduces 

relatively large errors. Nonetheless, the above comparisons demonstrate that the derived 

analytical solutions give good RC slab response predictions.   

3.3 Further discussions 

The aspect ratio   affects the distribution of failure modes. For example, when   is close 

to 1.0, initial condition of sub-mode 1a is approximately the same as sub-mode 1b, therefore the 

two sub-modes become similar/identical. For another instance, when   is large enough (larger 

than 2.0 based on the current analysis and engineering experience), shear failure will probably 

appear along the long edge and bending failure appears along the short edge. When   is between 

1.0 and 2.0, distribution of the sub-modes is complex. Some of initial conditions for different 

sub-modes overlap, and some sub-modes may only occur under very critical conditions, 

implying such sub-mode may not appear in practical applications. For example, initial conditions 

for sub-mode 5ab normally overlaps with sub-mode 5ba and 5bb, which means sub-mode 5ba or 

5bb has a higher chance to be initiated and sub-mode 5ab may never occur. 

Simply supported boundary condition may over-estimate structural response, but it is safe 

for design procedure. Full clamped boundary condition for beam element was discussed in [14] 

and the conclusion is compliant for slab in the present study. For other types of boundary 
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conditions with the combination of fixed, simply supported and free edge, the governing 

equations and failure modes will change accordingly. Future work is needed to include the 

boundary effects for more comprehensive understanding and wider application. 

4. An application example  

To demonstrate the applicability of the developed P-I diagrams, a case study is given for a 

structure under free air explosion. In a typical RC structure, the slab is made up of laced 

reinforced concrete with stirrups to increase its shear and bending strength. The transverse 

reinforcement ratio is 0.47 percent. Details of such blast design can be referred to UFC-3-340-02 

manual [4], and are omitted here. The RC slab is simply supported at four edges. Relevant 

parameters are given below. 

Longer half edge length: aL = 3 m 

Shorter half edge length: bL = 1.71 m 

Aspect ratio: 1.75   

Thickness: h = 0.2 m 

Unit square mass: m = 500 kg 

Shear strength: 0Q = 175.5 kN 

Bending strength: 0M = 127.7 kN∙m 

Charge weight: W = 125 kg 

Once R , the normal distance from charge center to the slab, is determined, the peak 

reflected pressure 0p  and the duration dt  can be obtained by the charts in [4]. Subsequently, 

normalized pressure and impulse can be calculated. In the present case study, we took three 

different standoff distances, i.e., R=22.00 m, 18.01 m and 14.75 m, respectively (see Table 4). 

 

Table 4 Case study 

Point Distance R 
Duration 

td 
Scaled 

Distance Z 

Normalized 

Impulse 
*I  

Pressure p0 
Normalized 

Pressure 
*P  

Z1 22.00 m 17.98ms 4.400 0.122 0.090MPa 1.026 

Z2 18.01 m 16.94ms 3.603 0.178 0.139MPa 1.584 

Z3 14.75 m 15.93ms 2.950 0.295 0.245MPa 2.792 
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The strength ratio   is calculated as 1.374 according to Eq.(3), and the failure criteria in 

Eq. (1) with 0 =2.5% and  =1% are used. The sub-mode is mode 3ba. In Fig. 11, point Z1 is in 

no-damage region, point Z2 is in shear damage region, and point Z3 is in combined damage 

region. That means, when the scaled distance is 2.950 m/kg1/3, the slab will suffer both shear and 

bending failure; when the scaled distance is 3.603 m/kg1/3, the slab will experience shear failure 

only; and when the scaled distance is 4.400 m/kg1/3, the slab is safe. 

 
 

Fig. 11 Application example 
 

5. Conclusions 

This paper presents analytical solutions of slab responses subjected to blast load. The 

analytical solutions are derived based on a rigid-plastic slab model. A total of fourteen possible 

sub-modes for slab failure are considered in the theoretical derivations. Accuracy of the derived 

analytical solutions is verified by numerical simulation results with a numerical model validated 

by field blasting test data reported by other researchers. 
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