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Sustainable cooling method for machining titanium alloy 

B Boswell1 and M N Islam  
Department of Mechanical Engineering, Curtin University, Perth, Western Australia, 
GPO Box U1987, WA6845 

E-mail: b.boswell@curtin.edu.au 

Abstract. Hard to machine materials such as Titanium Alloy TI-6AI-4V Grade 5 are notoriously 
known to generate high temperatures and adverse reactions between the workpiece and the tool 
tip materials. These conditions all contribute to an increase in the wear mechanisms, reducing 
tool life. Titanium Alloy, for example always requires coolant to be used during machining. 
However, traditional flood cooling needs to be replaced due to environmental issues, and an 
alternative cooling method found that has minimum impact on the environment. For true 
sustainable cooling of the tool it is necessary to account for all energy used in the cooling 
process, including the energy involved in producing the coolant. Previous research has 
established that efficient cooling of the tool interface improves the tool life and cutting action. 
The objective of this research is to determine the most appropriate sustainable cooling method 
that can also reduce the rate of wear at the tool interface. 

1. Introduction
Titanium Alloy has been widely used in the aerospace and automobile industries since the 1960s, and 
has been classified as a hard to machine material. During the intervening 50 year time period a number 
of tool tip materials have also been developed. These have reduced the effect of the chemical interaction 
and high thermal conductivity between the tool tip and the workpiece to help reduce tool wear [1, 2]. 
Common industrial practice for machining difficult titanium alloys is to select reasonable production 
rates of machining which can achieve an acceptable cost level. It is good practice not to allow tools to 
be cut to destruction, if production costs are not paramount i.e. the lower the tool wear the reduced 
number of used tool tips. Ideally, a tool tip should be used for as long as possible without risking damage 
to the tool or the workpiece, as long as the surface finish is maintained. A safe stopping point can 
typically be found by checking after a few cuts, by counting the workpieces produced and inspecting 
the surface finish and dimensions. By using these procedures it can be established how many acceptable 
parts can be produced before the tool tip fails.  According to Sandvik, for the intermediate stage turning 
of titanium, the parameters should be DOC 0.5 to 3.00 mm, feed range o.15 to 0.25 mm/rev and cutting 
velocity of 50 to 70 m/min.   According to the results from Nambi et al [3], the surface roughness 
improves by increasing the cutting speed when using a ceramic insert, which is the recommended tool 
tip material for titanium alloy TI-6AI-4V. However, it’s found necessary to still use coolant to prolong 
tool life [4-6], and accuracy of the workpiece [7]. The reliance of copious amounts of cutting fluid to 
remove the heat from the tool interface is unsustainable and warrants further research to eliminate its 
use. Coolants used today have been refined to be used by specific materials such as titanium alloy TI-
6AI-4V: the selected synthetic fluid combines chemical inertness and lubricating with cooling. 
Nevertheless, such coolants are still not sustainable as they become contaminated in the shop floor 
environment, and contribute 0.98kg-CO2/L equivalent CO2 emission of greenhouse gas during the life 
cycle of the liquid coolant, contributing to the environmental burden [8].   
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Selecting the optimum machining parameters has proven difficult for titanium alloy TI-6AI-4V, as 
the generated heat at the tool tip is not effectively removed by the chips as per other metals. As a result, 
using the most effective cooling method is critical for high material removal rate (MRR) to increase 
tool life. In terms of economical and sustainable machining, the selection of the correct machining 
parameters with cooling method is critical for modern manufacturing. The challenge for the cooling 
method for TI-6AI-4V is to reduce the tool tip temperature while having minimum environmental 
impact [9]. A review of research has shown that there has been limited examination of the effectiveness 
of cooling methods for hard-to-machine material. The effectiveness of the cooling may be determined 
by improvements to the tool life and the surface finish. The challenge is how to discover the optimum 
sustainable cooling method to produce TI-6AI-4V workpiece at an economic cost [10, 11]. The 
following discussion will attempt to explain how this can be achieved. 

2. Experimental cutting tests
The Design of Experiment (DOE) method was used to conduct experiments to establish the optimum 
cooling method for machining TI-6AI-4V material. This allowed the cutting speed and feed rate 
machining parameters to be robustly tested for each cooling method. A three level, three parameter 
array where 0, 1 and 2 represented the different levels of the three control levels is shown in Table 1. 
These given parameters resulted in a maximum test batch of 27 separate workpieces [12]. The test 
workpieces had a diameter of 60mm and length of 135mm to allow the workpiece to maintain its rigidity 
avoiding chatter. The length to diameter ratio of 8 was recommended by Lima et al. [13], and was used 
for the workpiece and cutting tool overhang. The depth of cut (DOC) for all tests remained constant at 
1mm, as previous research has shown that the DOC has the least effect on the cutting process [14].  

Table 1. Control parameters and their levels. 

Control Parameters Units Symbol 
Levels 

Level 0  Level 1  Level 2 
Cooling method A Cold Air MQL Cryogenic 
Cutting speed m/min B 120 150 180 
Feed rate mm/rev C 0.11 0.16 0.22 

Selection of this insert was a compromise to tool wear, since this research was to determine the best 
cooling method with respect to wear. A tungsten carbide tool insert was selected for the machining 
tests, instead of the harder ceramic insert [15, 16]. The insert only needed to be able to machine the 
material for a limited time, allowing suitable benefits of cooling the insert to be observed. This insert, 
according to Sandvik [17], is suitable to machine cast iron and abrasive non-ferrous materials, not 
normally used for hard titanium’ machining. Machining dry was used as the base tool life and 
environmental reference point. 

Determining accurate temperatures at the tool interface during machining has always proved to be an 
onerous task, due to the difficulty in obtaining these temperatures. For this reason Cook’s equation (1) 
was used.  
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+ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎       (1) 

An extraction unit (as shown in Figure 1) was used to remove excess oil particles inside the working 
area to avoid possible ignition of the swarf during machining. Also, the extraction unit was reversed 
during cryogenic cooling to ensure adequate oxygen levels for additional safety of the operator. 
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Figure 1. Arrangement of the extraction duct. 

The vortex tube (VT) supplying cold air to the tool tip used a customised fixture Figure 2, and a similar 
arrangement was used for providing MQL and liquid nitrogen (LN2). The MQL was delivered from a 
Uni-max lubrication system distributing atomised coolube metalwork lubricant, adjusted to a minimum 
level to prevent fumes generated during the machining process. The output air pressure was 48kPa, and 
the tubes used to supply the coolube ran through the top of the CNC machine, which was similar for 
the compressed air supply to the VT inside the cabinet. For LN2 the plastic tube was replaced by the 
flexible metal tube to prevent swarf damage causing leakage during the machining process. 

Figure 2. Machining setup for air cooling tests. 

The machining power data was measured by a Yokogawa CW140 clamp type power analyzer and the 
surface finish was obtained by using a Mitutoyo SJ-201 surface roughness tester. The tool wear was 
examined using a Pro MicroScan 5908 microscope.  

3. Results and analysis
To discover the results of the contribution of the interactions of the variables, a Pareto ANOVA analysis 
[18] was completed using the performance measures of temperature, tool life and surface roughness. 
By using the Pareto principle only 20% of the total machining configuration is needed to generate 80% 
of the benefit of completing all machining test configurations. The Pareto ANOVA identified which 
cooling method produced the optimum cutting processes, eliminating any effects that the different 
cutting speeds or feed rates may have on surface roughness, cutting force, cutting temperature, or tool 
life, and the results are presented in Tables 2 to 5. On examination of the surface roughness, the Ra value 
varies between 0.988µm (A0B2C0) and 6.98µm (A0B2C1) for cold air cooling, with MQL producing 
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the lowest Ra value 0.596µm (A1B0C0). A response graph illustrating the influence of the machining 
parameters on the surface roughness is presented in Figure 3. This clearly shows that the feed rate 
parameter (C) has the most significant effect on surface roughness, followed by cooling method (A) 
and then cutting speed (B). The interaction between B x C from previous research has shown to be the 
major contributor to effect the machining process in producing the best surface finish [19]. In these tests 
the interaction of A x C was the optimum combination to achieve a low surface roughness. The 
combination to produce a low surface roughness was, therefore, A0B1C0 (i.e. cold air, cutting speed of 
150 m/min, and feed rate of 0.11 mm/rev). The Pareto ANOVA for surface roughness given in Table 2 
confirmed that the feed rate influences the mean surface roughness, at most 47.15% with the cooling 
contributing 23.55% to the surface finish. All other parameters, both individual and their interactions, 
had minimal effect on surface roughness. 

Table 2. Pareto ANOVA analysis for surface finish. 

Figure 3. Effect of cutting parameters on surface finish. 

Inspection of the cutting force data presented in Figure 4 and Table 3 showed the influence of the 
machining parameters on the cutting power. It is clear again that the feed rate parameter (C) and the 
cooling method (A) are the dominant factors. The Pareto ANOVA for cutting force given in Table 3 
confirmed that the feed rate accounts for 76.41%, with the coolant contributing a meagre 9.61% to the 
cutting process. All other parameters, both individual and their interactions, had minimal effect on the 
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cutting power. The optimal combination to achieve lowest cutting force was, therefore, A2B1C0 (i.e. 
cryogenic cooling, cutting speed of 150m/min and feed rate of 0.11mm/rev). 

Table 3. Pareto ANOVA Analysis for Cutting Force. 

Figure 4. Effect of cutting parameters on cutting force. 

The tool tip temperature data shown in Figure 5 illustrates that the influence of the feed rate has 
minimum effect on changing the temperature, with the feed rate only contributing 11.85% (C). The 
cutting speed (B) and cooling method (A) are near equal and are the main contributing factors for the 
tool tip temperature. The Pareto ANOVA for cutting temperature is given in Table 4 showing that the 
coolant contributes 28.52% to the cutting process, and the cutting speed contributes 29.03%. This 
identifies that the appropriate cooling method is relevant in obtaining a sustainable machining process.  
The optimal combination found to achieve lowest temperature was A2B1C0 (i.e. cryogenic cooling, 
cutting speed of 150m/min and feed rate of 0.11mm/rev). 
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Table 4. Pareto ANOVA analysis for cutting temperature. 

Figure 5. Effect of cutting parameters on tool tip temperature. 

The data presented in Table 5 shows the influence all the machining parameters have on the tool life. 
Here all the cutting parameters have a contribution to make, with (C) the feed rate and temperature not 
being as dominant as previously shown, as in Table 2 and 3. Pareto analysis indicates that the feed rate 
(C) and (A) the cooling method, are near equal factors for tool life. The Pareto ANOVA for tool life 
given in Table 6 shows that the feed rate now only accounts for 26.29%, with the coolant contributing 
23.01% and cutting speed contributing 35.48% to the cutting process. All other parameters, both 
individual and their interactions, had minimal effect on the tool life. The optimal combination to achieve 
longest tool life was, therefore, A2B0C0 (i.e. cryogenic cooling, cutting speed of 120m/min and feed 
rate of 0.11mm/rev). 
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Table 5. Pareto ANOVA analysis for tool life. 

Figure 6. Effect of cutting parameters on tool life. 

4. Discussion
Experimental investigations by S.M. Yuan et al. [20] of air cooling when machining Ti–6Al–4V alloy 
found that the addition of a small amount of oil has led to better surface finish and tool life compared 
to dry, wet or MQL.  

The wear mechanism specific to titanium alloys, is called “chemical crater wear”. Chemical crater 
wear is caused by the chemical affinity between the carbide of the cutting tool and the titanium 
workpiece [21]. This chemical reaction weakens and eventually damages the carbide tip at higher 
temperatures. In addition, the low thermal conductivity accelerates the temperature rise at the cutting 
zone, as will any increase in the cutting speed. These wear reactions make efficient cooling of the tool 
essential to prolong tool life.  

The energy consumption during the machining process is important, due to the fact that the lower 
the power consumed in the manufacturing process, the smaller the carbon foot print of the product. 
Figure 8 is typical of the graphs for power usage during the machining tests for the different feed rates 
used. The trend identified from the power data was as expected, i.e. the higher the feed rate the more 
power is needed. This confirmed the relationship for the cutting force (due to the cutting speed and feed 
rate) and power for these cutting tests. From Table 3 the cooling method (A) accounted for 9.61% 
contribution, effecting a reduction on the cutting force, indicating that the colder the tool interface, the 
less power is required. From a sustainability point of view, power consumption is the main concern in 
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the manufacturing industry. This will gain even more importance when countries implement carbon tax 
in the future.  

The compressed air supply to the VT and MQL was measured at 198 SLPM which accounts for 
761W of energy used by the compressor. For simplicity it was assumed that the LN2 evaporated linearly 
with time resulting in an average of 0.24kg of LN2 evaporating per minute during the testing. The energy 
consumed for its production can be estimated at 0.5 kW hr/kg taken from C. Knowlen. et al. [22]. This 
has been based on suppling LN2 from a large production facility. For 10 minutes of cutting the energy 
consumed would be 720W, and the cost of suppling LN2 from BOC was AU$1.53 / litre in (August 
2015). 

Figure 8. Measured cutting power at a feed rate of 0.22 mm/rev 

It is now obvious from the power data recorded during the cutting tests that the optimum cutting 
parameters are important to reduce the power foot print of machining titanium alloy. However, it is 
apparent that removing traditional coolant is the best option since it would provide the largest reduction 
in carbon foot print, as changes to the other parameters are limited. 

Finding the optimum cooling method and reducing the power consumption will greatly reduce the 
manufacturing cost. It is apparent that the higher the cutting speed, the more power is required for 
machining. The highest power is when using MQL. It was observed that the cutting power consumed 
in air cooling is nearly as low as in the cryogenic cooling method. In air cooling the power consumption 
is only 2-7% higher than cryogenic cooling. Contrasting using MQL with air cooling shows a reduction 
in the power consumption by nearly 26%, at the cutting speed of 120m/min (B0), with a feed rate of 
0.16mm/rev (C1) and 0.22mm/rev (C2). Therefore, from the cutting power consumption point of view, 
implementing air cooling at the feed rate of 0.11mm/rev (C0) is highly recommended.  

4.1. Effect on chip formation 
Chip formation allows a comparison to be made of the cooling methods for the same cutting parameters 
by observation. The length of the chips can show how effective the chip breaking is for different cutting 
conditions while machining. Figure 8 shows the overall length of the chips generated for air cooling, 
MQL and cryogenic cutting condition.  The length of the chips generated by air cooling and cryogenic 
cooling conditions were similar, but the air cooled chip produced a coiled spring like shape. This 
suggests that the temperature and plasticity of the chips is higher than when being cooled by LN2. For 
all the cooling methods the effectiveness of the chip breaker was inadequate, as shown by the chips. 
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Figure 8. Chip formation for varying cutting speeds and cooling methods. 

Chips generated when using MQL cooling become crinkly and roll into a ball, with the overall length 
of the chips, if unwound, being significantly longer than that of air cooling or cryogenic cooled chips. 
This indicates high plasticity and a higher temperature, with the chip shear force not being large enough 
to break the chip. The difference of the overall length of the chips generated from air cooling and 
cryogenic cutting condition is more noticeable as the cutting speed increases. The overall length of the 
cutting chips from air cooling was 11% longer than that of cryogenic cooling. The shortest overall chip 
length was obtained while machining the titanium alloy under cryogenic cooling. The chip breaking 
effect is completely lost with MQL cooling (as shown in Figure 9) where a metal like wire ball is 
formed. This was caused by the high cutting speed leading to plastic deformation at the shear zone, 
caused by the large amount of heat produced, with poor cooling. In contrast, the chips generated in air 
cooling or cryogenic cooling were shorter, as the heat at the cutting zone was dissipated more 
efficiently. The overall length of the cutting chips from air cooling cutting conditions were 32% longer 
than that in cryogenic cooling. The chip breaking of the cutting chips while machining titanium alloy 
is very important. Machining titanium alloy using MQL cooling, at high cutting speed adds to the fire 
hazard, since fire can occur at the cutting zone, causing the ball like metal swarf to ignite. This danger 
is always present, with fine cuttings and high cutting temperature as the chips retain the heat. Unlike 
the lower temperature produced by air cooling or cryogenic cooling which made the cutting chips 
become brittle and easy to break due to chip stress. 
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4.2. Cooling effect on tool wear 
This research found the formation of built up edges affects the surface quality of the machined 
component at lower cutting speeds. At higher cutting speeds the effect of the formation of built up edge 
is not noticed. The flank wear and tool crater depth for different cutting parameters and cooling 
conditions are shown in Figure 10. The level of flank wear under air cooling and cryogenic cooling was 
very similar. It was apparent that the flank wear was significantly increased using MQL at the cutting 
speed of 120 m/min and comparing it with cold air and LN2. There was slight discolouration on the tool 
insert after machining, with air cooling at a cutting speed of 150m/min. Discolouration affected MQL 
cooling most, while there was little or no discolouration on the tool insert when cryogenic cooling was 
used. This indicated that the heat dissipation by cryogenic cutting condition was better than that of air 
cooling condition. MQL cooling, the heat generated in the machining operation was dissipated 
inefficiently.   

Figure 10. Tool wear for varying cutting speeds and cooling methods. 
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Machining titanium alloy at a high cutting speed of 180m/min caused substantial crater and flank wear 
to the tool tip with air cooling and MQL cooling. Crater wear on the tool tips caused by the chemical 
affinity between the carbide tool tip and the titanium workpiece was observed to be higher when MQL 
was used. The chemical reaction which weakens and eventually damages the carbide tip is shown to 
react faster as the temperature at the cutting zone becomes higher.  

4.3. Future of sustainable machining of titanium alloys 
Reviewing the current practices of machining titanium alloys has revealed that this material, although 
considered a hard to machine material, can be machined quite efficiently when the correct machining 
parameters are used. In most cases has been found by trial and error. Future research investigates what 
the best machining parameters are with respect to sustainable machining practices. This fundamentally 
means the removal of the traditional cutting fluid and replacement with an environmentally friendly 
method. The research in this paper discussed three distinct methods where no traditional coolant was 
used, each providing different performances.  Cold air is the best practical option to use, as it provides 
the necessary cold with no undue safety requirement and minimum cost axillary equipment. Future 
research needs to investigate the most optimum energy efficient method of providing sustainable cold 
air.      

5. Conclusion
The main environmental burden for machining is due to the energy consumption of the machine tool 
which is unavoidable [23]. This means the only option available is to reduce the energy foot print of the 
cutting parameters, with the liquid coolant being the only applicable parameter. The flood fluid 
parameter was also identified in its own right as a major environmental burden and needs to be 
eliminated where possible. Cold air was found to provide the best surface finish for most of the cutting 
speeds compared to cryogenic cooling or MQL. Since the surface roughness is a critical priority for TI-
6AI-4V workpieces, this would suggest air cooling to be the best option.  Unfortunately, cold air 
provides the shortest tool life, with MQL cooling having a 37% increase over air cooling, and cryogenic 
cooling resulting in an increase of 63% over cold air. Obviously LN2 is most likely the best cooling 
method if tool life alone is the criteria used. Tool life for cold air would have been improved in these 
tests if colder air had been produced from the vortex tube, air as cold as -500C is possible when a suitable 
air pressure is available. The cutting tests showed that even though air cooling temperatures were not 
as low as LN2, the cutting performance was not significantly different. Taking into account 
environmental considerations, LN2 is no longer the winner, as the cost of producing LN2 is significantly 
higher than providing compressed air. Cryogenic cooling is more difficult to use than cold air and cold 
air generation also has a smaller carbon footprint than LN2. Therefore, for sustainable machining, the 
recommendation for the TI-6AI-4V workpiece is to implement cold air cooling at a cutting speed of 
150 m/min with DOC of 1mm, and feed rate of 0.22 mm/rev as the optimum cutting conditions 
(A0B1C0). 
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