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Abstract 10 

The low potassium concentration in inland saline water (ISW) restrains the normal development of 11 

cultured marine organisms, and thus, possesses challenges for the development of ISW aquaculture. 12 

Therefore, assessing the effects of potassium fortification in ISW on the performance of cultured 13 

marine species is an important step to determine the feasibility of their culture in ISW. The aim of this 14 

research was to investigate the effects of potassium fortification in ISW on the performance of early 15 

life stages of the blue mussel Mytilus edulis including fertilised eggs, trochophore, veliger and 16 

pediveliger larvae. These stages were reared in five different levels of potassium-fortified ISW, 17 

namely 20, 40, 60, 80 and 100% of potassium levels equivalent to the potassium level in ocean water 18 

(OW) and two controls namely, ISW at 27 ppt (ISW27) and OW at 25 ppt (OW25). The results 19 

showed that the higher levels of potassium in ISW, particularly with 100% K
+
 fortification 20 

(ISW100K
+
), invariably improved the survival and size, and reduced the developmental stage interval 21 

and deformities of blue mussel larvae. Deformities, such as faulty cell cleavage, abnormal formation 22 

of trochophore larvae, protruding mantle in veliger larvae, and indented shell margin in veliger and in 23 

pediveliger, were observed when reared in any ISW. However, rearing in ISW did not result in any 24 

deformities in settlement larvae. The number of deformities was reduced at higher K
+
 fortification 25 

levels, and there were no deformities in pediveliger larvae reared in ISW100K
+
 and in OW. These 26 

results showed that K
+
 fortification in ISW improves the performance of the rearing of the larval 27 

stages of the blue mussel. 28 

Keywords: deformity, fortification, early life stage, inland saline water, K
+
, Mytilus edulis. 29 

1. Introduction 30 

Salinization caused by natural and anthropogenic reasons (Bennetts et al., 2006; Szabolcs, 1989) has 31 

rendered more than 80 million hectares (Ghassemi et al., 1995) of land in more than 100 countries 32 

useless for agricultural production (NLWRA, 2000; Rengasamy, 2006). On the other hand, inland 33 

saline water (ISW) has the potential to be used as a suitable resource for aquaculture of marine species 34 

(Barson and Barrett-Lennard, 1995). Many studies have attempted to investigate the potential to 35 
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culture various marine seaweeds (Kumar et al., 2010), invertebrates (Fotedar et al., 2008; Prangnell 36 

and Fotedar, 2006b; Tantulo and Fotedar, 2006) and vertebrates (Barman et al., 2005; Doroudi et al., 37 

2006; Fielder et al., 2001). However, commercialisation of ISW aquaculture is constrained due to 38 

salinity fluctuations caused by the alteration of rainfall and high solar radiation (Prangnell, 2007), 39 

fluctuating calcium concentrations (Prangnell and Fotedar, 2006b), and deficiency of potassium ions 40 

relative to ocean water (OW) (Nulsen, 1997; Prangnell and Fotedar, 2006b). Most  marine species, 41 

when cultured in ISW, show a low survival rate (Fielder et al., 2001; Partridge and Creeper, 2004; 42 

Roy et al., 2009), growth rate (Partridge and Creeper, 2004; Roy et al., 2009), and a high risk of 43 

skeletal myopathy (Partridge and Creeper, 2004).  44 

However, the fortification of potassium to ISW has been shown to improve survival and growth rates 45 

in many adult marine species such as mulloway Argyrosomus japonicas (Doroudi et al., 2006), 46 

Australian snapper Pagrus auratus (Fielder et al., 2001), grey mullet Mugil cephalus (Barman et al., 47 

2005), western king prawn Penaeus latisulcatus (Prangnell, 2007; Prangnell and Fotedar, 2006b), 48 

Pacific white shrimp Litopenaeus vannamei (Liu et al., 2014; Roy et al., 2010), black tiger prawn 49 

Penaeus monodon (Tantulo and Fotedar, 2006), and alga Gracilaria cliftonii (Kumar et al., 2010). So 50 

far, these studies mainly focus on the adult stages of marine species, and only a few studies 51 

investigated the effects of potassium fortification in ISW on the development of larval stages of 52 

marine species, e.g. juvenile greenlip abalone Haliotis laevigata (Fotedar et al., 2008), and the prawns 53 

P. monodon (Rahman et al., 2005; Tantulo and Fotedar, 2006) and P. latisulcatus (Prangnell, 2007; 54 

Prangnell and Fotedar, 2006b). 55 

Among marine species, blue mussels are an important candidate for aquaculture (Hickman, 1992) due 56 

to their wide distribution, no supplementary feeding requirements, higher nutritional value, and good 57 

taste (Gosling, 1992, 2008; Seed, 1992). Blue mussel aquaculture is practised in many European 58 

countries and China (Smaal, 2002) with different culture methods (Buck et al., 2010; Smaal, 2002). In 59 

Australia, blue mussels are cultured in Tasmania, Western Australia, Victoria, South Australia and 60 

New South Wales with the production of 3585 tonnes in 2013 valued at ca.10 million dollars (Stephan 61 

and Hobsbawn, 2014). However, the production of blue mussels is restrained due to the poor seed 62 
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supply and the legislative limitations regarding environmental issues and questions with respect to the 63 

sustainability of coastal aquaculture (Smaal, 2002). In this context, the development of blue mussel 64 

aquaculture in ISW may mitigate the environmental issues facing coastal aquaculture (Ogburn, 1998) 65 

and also add value to ISW aquaculture by offsetting the costs of the negative effects of salinization 66 

(Gooley et al., 1998). However, it is imperative to investigate the culture potential of early stages in 67 

K
+
 ISW rather than trying to acclimate the juveniles who were previously cultured in OW into ISW. 68 

This study aimed to investigate the effects of potassium fortification in ISW on the performance of the 69 

early life stages of blue mussels. 70 

2. Materials and methods 71 

2.1. Blue mussels 72 

Adult blue mussels (shell length 5.30 ± 0.30 cm) were collected from Esplanade Nedlands, Western 73 

Australia (31
°
59‘S, 115

°
48‘E) and were transported directly to the Aquatic Research Laboratory, 74 

Curtin University. The mussels were cleaned of any epifauna, epiflora and other attached materials 75 

with a plastic brush before acclimating them indoors in a glass tank (198 L, 1.1 × 0.6 × 0.3 m; length 76 

× width × depth) for 10 days. The tank was supplied with 1 µm-filtered OW at 25 ppt under a static 77 

condition and with continuous aeration. During the acclimation, the water temperature was 78 

maintained at 20
°
C (Yaroslavtseva and Sergeeva, 2006) using an automatic heater (Sonpar, HA-200, 79 

Zhongshan, Guangdong, China). Twenty percent of the water was exchanged daily before the addition 80 

of microalgae (Instant algae, Shellfish Diet 1800, Reed Mariculture, USA).  81 

Microalgae were cultured in 10-L carboys. The seawater was chlorinated (0.1 mL.L
-1

) for 24 h, then 82 

neutralised with 0.1 g. L
-1

 sodium thiosulfate and enriched with an F2 algae boost (1 mL.L
-1

) before 83 

the addition of microalgae inoculum. Microalgae were cultured under the 12:12 light:dark condition at 84 

a pH range of 7.5 to 8 and room temperature of 22
°
C. During the experiment, larvae from veliger 85 

onwards were fed with the microalgae at 80,000 cells. mL
-1

 (Gazeau et al., 2010). 86 

2.2. Spawning induction 87 
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The mussels were induced to spawn by the temperature shock method (Pronker et al., 2008; 88 

Thompson, 1979). Fifteen blue mussels were placed in a spawning tank containing OW at 25 ppt, 89 

with continuous aeration. Water temperature was rapidly increased from 20
°
C to 30

°
C in 90 

approximately 2 hours using the automatic heater. Once the spawning of the mussels had completed, 91 

the adults were returned to the acclimation tank. Fertilised eggs were collected using a 30 µm sieve, 92 

placed and maintained in a glass beaker (5 litre) filled with OW, filtered through 1-µm filter, with 93 

continuous aeration. Fertilised eggs were counted using a Sedgewick-Rafter counting chamber under 94 

a microscope (BH-2, Olympus, Japan), diluted to a density of 100 eggs.mL
-1

 in OW (25 ppt) into a 95 

glass tank (V = 15 L), namely a stocking tank, before the commencement of the experiment. 96 

2.3. Experimental design and testing 97 

To test whether the addition of potassium to ISW improved the performance of early life stages of the 98 

blue mussel, each of the four early stages, namely fertilised eggs, trochophore, veliger and pediveliger 99 

were reared in one of the five different levels of potassium fortification: 20% (ISW20K
+
), 40% 100 

(ISW40K
+
), 60% (ISW60K

+
), 80% (ISW80K

+
) and 100% (ISW100K

+
). The levels of potassium 101 

addition in ISW were equivalent to the typical concentration of potassium in the OW at the same 102 

salinity. ISW at salinities of 27 ppt and OW at 25 ppt were used as controls, as our previous results 103 

(unpublished) have shown that the iso-osmotic point (the point when the osmolality of the 104 

haemolymph and external medium are the same at a particular salinity) of blue mussels in OW and 105 

ISW were 700 mOsm.kg
-1

 and 800 mOsm.kg
-1

, respectively. These osmolalities equate to 25 and 27 106 

ppt in OW and ISW, respectively. In order to keep the energy expenditure limited to ionic regulation 107 

caused by only K
+
 gradients between the haemolymph and external environment and minimise the 108 

energy expenditure due to the overall osmoregulation, 25 and 27 ppt of OW and ISW, respectively, 109 

were used as two controls in the current trial. OW and ISW were procured from Hillarys (31
°
49’S, 110 

115
°
45’E) and a lake at Wannamal (31

°
15’S, 116

°
05’E), Western Australia, respectively. The 111 

salinities of OW and ISW were reduced to 25 and 27 ppt, respectively, by adding deionised water. All 112 

K
+
 fortification levels were prepared by mixing hydrous potassium chloride (purity > 99%, Sigma-113 
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Aldrich, Germany) with ISW27 to obtain the stock water. These stock waters were stored separately 114 

in 125 l plastic containers and were filtered through 1 µm filter before using for the experiment. 115 

The ionic composition of these water treatments used in this experiment was analysed by CSBP Soil 116 

& Plant Laboratory, Bibra Lake, WA using Inductively Coupled Plasma spectroscopy. To measure 117 

the osmolality of the media, 50 µL of water from each of seven stocked waters were collected using a 118 

200 µL pipette. The measurements were performed using a cryoscopic osmometer – Osmomet 030 119 

(Gonotec, Inc, Germany). 120 

To obtain the trochophore stage, 100 individuals at the two-cell stage were transferred from the 121 

stocking tank of OW at 25 ppt to petri dishes (in triplicate) containing 20 mL of one of the water types 122 

to observe the appearance of trochophore every 30 minutes. The trochophore stage was marked by the 123 

time at which 50% of the fertilised eggs were transformed to the trochophore stage (Bayne, 1965). 124 

Similarly, 100 newly transformed larvae at each stage of trochophore and veliger were transferred 125 

from the stocking tank to petri dishes containing one of the different water types for the observation of 126 

the transformation of these larvae to the next stage of veliger and pediveliger every 6 hours, 127 

respectively.  128 

Similarly, to observe the settlement, 100 newly transformed pediveliger larvae from the stock tank 129 

were placed into each 40 µm-cell strainer (BD Falcon, BD Biosciences, Bedford, USA). Each cell 130 

strainer was placed into 250 mL glass beakers containing one of the different water types with 131 

continuous aeration. The development of larvae was observed every 12 hours until they settled. The 132 

byssal threads of adult blue mussels were placed into each cell strainer for larvae settlement (Eyster 133 

and Pechenik, 1987). Twenty per cent of the water in each beaker was exchanged daily. Each stage 134 

was exposed to different water types in triplicate.  135 

2.4. Data analysis 136 

Survival was calculated based on the formula: S = 100 × (nt/no)  137 
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where S is the survival (%), nt is the number of larvae of the blue mussels at time t, and no is the 138 

number of the early larvae of the blue mussels at the commencement of each stage. 139 

Sizes of each larval stage were measured at the end of the corresponding development stage when 140 

50% of the larvae had moulted to the next developmental stage. The developmental stages of blue 141 

mussels were identified under the microscopes (SZH and BH-2, Olympus, Japan) based on the 142 

morphological description (His et al., 1997; Redfearn et al., 1986; Saranchova and Flyachinskaya, 143 

2001). 144 

Developmental stage interval (DSI, hours) was estimated by subtracting the time when 50% of larvae 145 

moulted to the next developmental stage from the time when they were newly moulted from the 146 

previous development stage. 147 

Morphological deformity was determined based on previous descriptions (Andersen et al., 2013; His 148 

et al., 1997; Kurihara, 2008). Deformity was calculated based on the formula: D = 100 × (nd/no) 149 

where D is the deformity (%), nd is the number of deformed larvae of the blue mussels at time t, and 150 

no is the number of the larvae of the blue mussels at the commencement of each stage. 151 

2.5. Statistical analysis  152 

One-way analysis of variance (ANOVA) and the least significant difference (Tukey’s post-hoc tests) 153 

multiple comparisons were used to determine the significant differences (p < 0.05) among the means. 154 

Percentage values were arcsine-transformed to achieve normality for ANOVA assumption. Linear and 155 

second order regression analyses were performed on the survival, size, DSI and deformity of blue 156 

mussels as a function of K
+
 fortification levels in ISW. Data were represented as mean ± standard 157 

error (SE). All statistical analyses were performed in SPSS version 22 for Windows.  158 

3. Results 159 

3.1. Environmental parameters and haemolymph osmolality 160 
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The addition of K
+ 

to ISW brought the K
+
 concentrations closer to K

+
 concentrations in OW without 161 

changing the concentrations of other ions. The Na
+
/K

+
 ratios decreased with the elevated K

+
 162 

concentrations (Table 1). 163 

3.2. Survival 164 

Over 78 per cent of the fertilised eggs transformed successfully to trochophore, and K
+
 fortification 165 

had no effect (p > 0.05) on the hatching success of fertilised eggs. Similarly trochophore larvae were 166 

transformed to veliger with ca. 80% of success. Higher K
+
 levels significantly (p < 0.05) increased the 167 

survival of pediveliger from ca. 55% to 68% (Fig. 1). Similarly, the number of the newly settling  168 

larvae was significantly (p < 0.05) higher at higher K
+
 (Fig. 1), wherein, the percentage of settling 169 

larvae reached ca. 62% in the highest K
+
 levels (ISW100K

+
), 24% higher than the ISW control, 170 

showing the  high sensitivity of pediveliger and settlement stages to the increased K
+
 fortification. 171 

Stronger linear correlations were shown between survival rate with pediveliger and settling larvae. 172 

However, survival of trocophore exhibited stronger (R
2
 = 0.95) second order relationship with K

+ 173 

fortification levels in ISW. The survival of veliger stage of blue mussels was independent of K
+
 levels 174 

as shown by R
2
 value of 0.53.  175 

3.3. Size 176 

Size of trochophore (81–84 µm), veliger (120–138 µm) and pediveliger (301–331 µm) were not 177 

affected (p > 0.05, Fig. 2) by K
+
 levels (Fig. 2). Fortification of K

+
, (Fig. 2) significantly (p < 0.05) 178 

increased the size of settling larvae from 497 µm at the lowest K
+
 level to 610 µm at the highest K

+
 179 

level (25 % increase in size). This also highlighted the sensitivity of settling larvae to the increase in 180 

K
+
 fortification levels. There was no difference in the size of settling larvae when exposed to 181 

ISW100K
+
 than when reared in OW25 (Fig. 2). Linear regression analysis between K

+
 concentrations 182 

and the size of early larval blue mussels showed strong correlations in pediveliger (R
2
 = 0.89) and 183 

settlement stages (R
2
 = 0.87). Size of veliger larvae was weakly correlated (R

2
 = 0.65) with K

+
 184 

concentrations, whereas no correlation (R
2
 = 0.01) was observed in trochophore stage (Table 2). 185 

3.4. Developmental stage interval (DSI) 186 
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DSI of all larval stages were shorter (p < 0.05) under higher K
+
 levels (Fig. 3). Fertilised eggs lasted 187 

10.33 to 12.5 hours before hatching to trochophore. It took 42.0 to 44.5 hours for trochophore larvae 188 

to develop into veliger larvae. DSI for pediveliger varied from 675.3 to 721.7 hours to settle using 189 

byssal threads. DSI was strongly negatively correlated with K
+
 fortification levels in ISW at all 190 

studied development stages. However, this negative correlation was linear only in settlement stages 191 

(Table 2).  192 

3.5. Morphological deformity 193 

Normal and abnormal formation of each early stages of blue mussel were shown in Figure 5 and 6, 194 

respectively. Four types of deformities were observed during the larval stages, namely faulty cell 195 

cleavage (Fig. 6a, b, c), abnormal formation in trochophore larvae (Fig. 6d), protruding mantle in 196 

veliger larvae (Fig. 6e), and indented shell margin in veliger (Fig. 6f) and in pediveliger (Fig. 6 g). 197 

Deformities occurred in larval stages from trochophore to pediveliger, but were not detected at the 198 

settlement stage. Overall, the deformity percentage was low (lower than 5% in all larval stages in any 199 

water types). The highest deformity of 4.67% occurred in ISW with no K
+
 fortification. The K

+
 200 

fortification in ISW did not influence (p > 0.05) the deformity rate of trochophore and veliger larvae. 201 

The deformity rate of pediveliger larvae decreased (p < 0.05) with the increase in K
+
 levels. K

+
 202 

concentrations showed strong negative linear correlations with percentages of deformities in 203 

trocophore, veliger and pediveliger larvae but stronger positive second order correlation was observed 204 

between K
+
 levels and number of deformities in fertilised eggs (Table 2). 205 

4. Discussion 206 

Marine species can be successfully cultured in ISW after ISW is either modified by fortifying 207 

it with K
+
 salts (KCl or potassium fertilizers) (Fisher et al., 2013; Fotedar et al., 2008; 208 

McNevin et al., 2004; Prangnell, 2007; Prangnell and Fotedar, 2006b; Tantulo and Fotedar, 209 

2006)  or formulated feed (Romano and Zeng, 2012; Roy and Davis, 2010; Saoud et al., 210 

2007b) for the target species is supplemented with K salts. More studies aiming to culture and 211 

improve the feasibility of the hatchery production of marine species in ISW and potassium-fortified 212 
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ISW are needed. The lack of studies on the hatchery development of molluscs, including blue 213 

mussels, in ISW warrants further investigation. 214 

Potassium is a primary intracellular ion in aquatic animals (Roy et al., 2010; Shiau and Hsieh, 2001) 215 

and plays a crucial role in acid-base balance, osmoregulation, maintaining membrane potentials 216 

(Hadfield et al., 2012) and the Na
+
/K

+
 ATPase activity (Liu et al., 2014). Na

+
/K

+
 ATPase, a sodium 217 

pump that is present in the gill membrane, transports Na
+
 and Cl

-
 ions between the gill epithelial cells 218 

and haemolymph to maintain a stable osmoregulation in invertebrates (Charmantier et al., 1985; 219 

Mantel and Farmer, 1983). Na
+
/K

+
 ATPase activity is dependent on the ratio of Na

+
 and K

+
 in the 220 

surrounding environment (Tantulo and Fotedar, 2007). The optimal ratio of Na
+
/K

+ 
for the normal 221 

function of Na
+
/K

+
 ATPase in marine animals varies from 23.85 to 85.20 in juvenile H. laevigata 222 

(Fotedar et al., 2008), P. latisulcatus (Prangnell and Fotedar, 2005) and L. vannamei (Zhu et al., 223 

2004). A deficiency of K
+
 can change the Na

+
/K

+
 ratio in a way that can inhibit the ability of Na

+
/K

+
 224 

ATPase to function. This may eventually result in the poor survival of marine species (Fisher et al., 225 

2013; Prangnell and Fotedar, 2005, 2006a; Tantulo and Fotedar, 2007; Zhu et al., 2004). In line with 226 

this, early developmental stages of blue mussels showed higher survival rates when exposed to higher 227 

K
+
 in ISW. The highest survival and growth at Na

+
/K

+
 ratio of 28.58 in ISW100K

+
 was similar to the 228 

survival in OW25 that also had the Na
+
/K

+
 ratio of 28.58. The lowest survival occurred at the Na

+
/K

+
 229 

ratio of 100.27 in ISW27, suggesting that it is possible to add K
+
 to ISW to adjust the optimal Na

+
/K

+
 230 

ratio for better survival of early larvae of the blue mussels.  231 

The osmoregulation is a high energy demanding process (Chong-Robles et al., 2014; Saoud et al., 232 

2007a), and the deficiency of K
+
 results in a significant imbalance of ions between internal and 233 

external media (Panikkar, 1968) and forces the pediveliger and settlement larvae to allocate more 234 

energy to fix the imbalance through ion-regulatory mechanisms (Deaton, 2001; Silva and Wright, 235 

1994). Consequently, energy allocated for growth is reduced (Zhu et al., 2004), resulting in induced 236 

reduction in sizes of pediveliger and settlement larvae in K
+
-deficient waters. Further, the deficiency 237 

of K
+
 in the medium can be associated with higher energy investments in the formation and function 238 

of osmoregulatory organs.  239 
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In our study, K
+
 did not influence the size of early larvae, except during the settlement stage, 240 

suggesting that the effects of K
+
 on the size of early larvae of the blue mussel is related to the 241 

formation and functionality of osmoregulatory organs during the development of early larvae of the 242 

blue mussel (Bayne, 1971). Stages prior to pediveliger show no developed osmoregulatory organs 243 

such as ctenidia (Bayne, 1971), thus, K
+
 have no influence on the sizes of these earlier stages. 244 

Although the first ctenidial filaments are formed during the pediveliger stage, these ctenidia are not 245 

fully functional until the settlement stage (Bayne, 1971), when they are fully responsive to the ionic 246 

profile of the external medium. Hence, the K
+ 

levels in ISW could only have an impact at the 247 

settlement stage of the blue mussels. 248 

The effects of K
+
 on the DSI of the early larvae of blue mussels are not well understood. Possibly, the 249 

shorter DSI of the early larvae in the relatively higher K
+
 level (rather than in lower K

+
 levels) and the 250 

similar DSI of early larvae in ISW100K
+
 and OW25 indicate that the lower K

+
 levels (> 80%) 251 

interfere with normal physiological development and function, for example, by limiting the ionic 252 

exchange ability of the gills, as reported in P. latisulcatus (Prangnell, 2007), and consequently 253 

lengthening the DSI  of the blue mussels at lower K
+
 levels. In addition, it is possible that K

+
 254 

fortification of ISW influences the size of settling larvae indirectly through the underlying changes in 255 

the DSI. As longer time is spent in a particular developmental stage (longer DSI), more time larvae 256 

would have in increasing their sizes, hence the larger sizes.  257 

Types of morphological deformities of the early larvae that were exposed to different K
+
 fortifications 258 

in this study were similar to the deformity types found previously in  the blue mussel embryos 259 

exposed to copper (Hoare et al., 1995) or early larval mussels Mytilus galloprovincialis exposed to 260 

different pCO2 (Kurihara, 2008), artificial OW (His et al., 1997), and OW (His et al., 1997) with four 261 

deformity types. Trochophore and veliger larvae of the scallop Pecten maximus show similar 262 

deformities, two days after the exposure to elevated pCO2 levels (Andersen et al., 2013). In our study, 263 

the deformity rate of blue mussel larvae in all water types, even in ISW27, was under 10%, an 264 

acceptable rate as recommended by His et al. (1997). 265 
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Previous studies show that K
+
 is a metamorphic inducer because of its ability to influence cell 266 

membrane potential (Yool et al., 1986), and also induces larval metamorphosis and settlement of 267 

marine invertebrates (Carpizo-Ituarte and Hadfield, 1998; Sánchez-Lazo and Martínez-Pita, 2012; 268 

Wassnig and Southgate, 2012; Yang et al., 2008; Yang et al., 2011; Young et al., 2011; Yu et al., 269 

2008; Zhao et al., 2003). The addition of K
+
 to OW at 10

-3
 to 5 × 10

-2
 M induced the peak 270 

metamorphosis of M. galloprovincialis, and over 90% of the larvae were induced to settle at the 271 

excessive concentrations of 20, 30 and 40 mM (Yang et al., 2011). Therefore, it is good practice to 272 

culture early stages in K
+
-fortified ISW. 273 

From the aquaculture point of view, closing the entire life cycle of any target species in only one type 274 

of water is an important proposition to avoid further costs associated with the acclimation process to a 275 

different type of water. Therefore, successful hatchery production of blue mussel spats in K
+
 fortified 276 

ISW is a positive step towards the ISW culture of blue mussels. 277 

In conclusion, potassium-fortified ISW improves the survival rate and size, and reduces the 278 

developmental stage interval and deformities, of the early life stages of blue mussels. The 100% K
+
 279 

fortification of ISW improves the viability of culturing early stages of blue mussels in ISW. The study 280 

shows the feasibility of using ISW fortified K
+
 for culturing blue mussels in their early stages. 281 
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Highlights: 475 

- Information on the potential of culturing early life stages of blue mussel Mytilus edulis in 476 
inland saline water is lacking 477 

- Fortifying ISW with K+ increases the feasibility of culturing early stages of blue mussels. 478 

- Early stages of blue mussels, except settling larvae show four types of deformities. 479 

- It is feasible to culture early stages of blue mussels in K+ fortified inland saline water. 480 

  481 



18 
 

Figure captions 482 

Figure 1. Survival of early developmental stages of the blue mussel Mytilus edulis in response to K
+
 483 

fortification to ISWs. Data are presented as mean ± SE. Data with different letters are 484 
significantly different (p < 0.05). 485 

Figure 2. Sizes of early developmental stages of the blue mussel Mytilus edulis in response to K
+
 486 

addition to ISWs. Data are presented as mean ± SE. Data with different letters within a stage 487 
are significantly different (p < 0.05). 488 

Figure 3. Developmental stage interval of early developmental stages of the blue mussel Mytilus 489 
edulis in response to K

+
 addition to ISWs. Data are presented as mean ± SE. Data with different 490 

letters within a stage are significantly different (p < 0.05). 491 

Figure 4. Morphological deformity of early developmental stages of the blue mussel Mytilus edulis in 492 
response to K

+
 addition to ISWs. Data are presented as mean ± SE. Data with different letters 493 

within a stage are significantly different (p < 0.05). 494 

Figure 5. Development of early stages of blue mussels Mytilus edulis in response to K
+
 addition to 495 

ISWs. (a) eight cell stage; (b) trochophore larva; (c) veliger larva; (d, e, f) settlement larvae; 496 
thin arrow: foot; black arrows: byssal thread of adult blue mussels; white arrows: byssal thread 497 
of settlement larva of the blue mussels. Scale bar = 100 µm. 498 

Figure 6. Morphological deformity in early larval stages of the blue mussel Mytilus edulis in response 499 
to K

+
 addition to ISWs. (a, b, c) deformed cell division; (d) deformed trochophore; (e, f) 500 

deformed veliger and (g) deformed pediveliger. Scale bar = 100 µm. 501 
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Table 1. The ionic composition of ISWs and OW  519 

Parameters ISW27 ISW20K
+
 ISW40K

+
 ISW60K

+
 ISW80K

+
 ISW100K

+
 OW25 

Salinity (ppt) 27 27 27 27 27 27 25 

Osmolality 

(mOsm/k

g) 

719.00 

 

671.33  

 

680.33 

 

669.67 

 

675.67 

 

662.33 

 

659.67 

 

Na
+
 (mg.L

-1
) 6584.00 6824.00 6816.00 6872.00 6943.00 6774.00 6480.00 

K
+
 (mg.L

-1
) 65.66 96.25 127.00 152.40 182.30 217.50 226.70 

Ca
2+

 (mg.L
-1

) 431.10 465.20 462.50 456.90 461.50 451.60 231.20 

Mg
2+

 (mg.L
-1

) 1145.00 1202.00 1197.00 1189.00 1198.00 1173.00 749.30 

S
2+

 (mg.L
-1

) 453.40 483.50 475.90 471.50 477.20 464.70 515.90 

Na
+
: K

+
 ratio 100.27:1 70.90:1 53.67:1 45.21:1 38.09:1 28.58:1 28.58:1 

Mg
2+

: Ca
2+ 

ratio 2.66:1 2.58:1 2.59:1 2.60:1 2.60:1 2.60:1 3.24:1 

 520 
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Table 2. Linear (shown by *) and second order regressions of the survival, size, DSI and deformity 522 
numbers of the blue mussels as a function of K

+
 fortification levels in ISW 523 

Parameter Developmental stage Equation R
2
  

Survival (%)  Trochophore y = 0.001x
2
 - 0.291x + 98.140 0.95 

 Veliger y = 0.001x
2
 - 0.127x + 87.200 0.53 

 Pediveliger y = 0.117x + 45.938 0.72* 

 Settlement y = 0.167x + 26.074   0.88* 

Size (µm) Trochophore y = 0.000x
2
 + 0.007x + 81.69 0.01 

 Veliger y = 0.001x
2
 - 0.073x + 123.590 0.69 

 Pediveliger y = 0.149x + 295.070 0.89* 

 Settlement y = 0.928x + 425.950 0.87* 

DSI (hours) Trochophore y = -0.000x
2
 + 0.028x + 10.960 0.83 

 Veliger y = -0.000x
2
 + 0.047x + 42.370 0.83 

 Pediveliger y = -0.0008x
2
 + 0.314x + 626.240 0.91 

 Settlement y = -0.293x + 746.070 0.87* 

Deformity (%) Fertilised eggs y = 0.000x
2
 - 0.089x + 9.310 0.98 

 Trochophore y =-0.006x + 2.080 0.87* 

 Veliger y = -0.006x + 1.848 0.77* 

 Pediveliger y = -0.008x + 1.929 0.75* 
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