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INTRODUCTION 
 
Transverse isotropy with the horizontal axis of symmetry (HTI) is the simplest anisotropic 
model to characterize a geological formation with vertical fractures.  We formulate an 
azimuthally dependent parametric equation for P-wave traveltimes in a layered HTI medium. 
Also, assuming a known vertical velocity model, we estimate simultaneously the fracture 
orientation and Thomsen’s anisotropy parameters in a stack of horizontal layers using a 
modified preconditioning conjugate gradient algorithm.  In a numerical example, we show that 
in the context of weak anisotropy, Thomsen’s anisotropy parameters ( and  ) and fracture 
orientation can be efficiently estimated using the P-wave traveltimes without a prior 
information. 
.   
TRAVELTIME EQUATIONS IN TI MEDIA 
 
Ursin and Stovas (2006) proposed a parametric solution of the Christoffel equation for a 

transversely isotropic medium with vertical axis of symmetry (VTI) by the expression 

                    2 2 2
0v p H   ,                                                                                  (1) 

where v  is the phase velocity, 0  is the vertical  velocity, p is the ray parameter, and H  is an 

anisotropy parameter, which is a function of the ray parameter and Thomsen’s anisotropy 

parameters.  

Equation (1) can be extended to an HTI medium using the equivalent VTI model formulated by 

Tsvankin (1997). This is accomplished by introducing the vertical Thomsen’s anisotropy 

parameters  v and  v , 
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where  
0 01 /f     .                                                                   (4) 

In an HTI medium, P-wave and S-wave velocities depend on the azimuth of the seismic survey 

with respect to the axis of symmetry. Figure 1 shows the geometry of a ray propagating in a HTI 

medium with ray (group) angle  . The phase vector lies in the plane constructed from the 



symmetry axis and the ray vector.   is the phase angle,   is the azimuth, and  is the ray 

angle of incidence. 
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Figure 1:  A schematic of a HTI medium ( After Tsvankin (1997) with some modifications) 
 
Using the relationship between the phase velocity and the phase angle with the ray velocity and 

the ray angle  given by Ursin and Hokstad (2003), together with the equation (1) and its  

derivatives,  we express the offset  and traveltime for a given ray as: 
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where  0     / 2 , and / 2   defines the symmetry plane of the constant phase velocity. 

In this expression, , ,k kH dH dp 
  , kz is the thickness of the layer k, 0v  is the vertical P-wave 

velocity and M is the number of layers. VTIX  and VTIT  are offset and traveltime for a VTI 

medium given by  Ursin and Stovas (2006) as: 
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Equations (7) and (8) have to be evaluated with the Thomsen’s anisotropy parameters in the 

vertical direction. 

To show the validity of equations (5) and (6), we have compared the resulting traveltimes with 

computed traveltimes for a HTI layer using the phase velocity given by Tsvankin (1997) with 

1000 ,  1940 / ,  780 / ,  0.03,  and 0.1p sz m v m s v m s       . Figure 2 shows the 

comparison of the computed traveltimes between Tsvankin (1997) and this method for different 

azimuths. For longer offsets and small azimuths, Tsvankin’s equation results in smaller 

traveltimes. 
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Figure 2: Traveltimes using Tsvankin’s equation and equation (5) for a HTI layer at different 
azimuths. 
 
RAY PARAMETER ESTIMATION IN TI MEDIA 
 
To estimate the ray parameter for a given ray path we minimize an objective function 

 2
r m cf x x   which is the square of the difference between the computed cx  and a measured 

offset mx using the Newton method (Nocedal and Wright, 1999),  

For a given ray parameter we compute the offset by summing the offsets from each ray element 

using the equations (6) and (7).  A random ray parameter is drawn from a uniform distribution 

in the range 1.e-05 – 1.e-4 and it undergoes a Newton method of minimization according to: 

   2 2
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where  

  2r m cf p x p x x        ,                                                           (10) 

    22 2 2 22 2r m cf p x p x x x p           .                                 (12) 



The first and second derivatives of offset with respect to ray parameter are computed 

analytically.  This method of ray parameter estimation is very accurate, fast and robust even for 

large values of Thomsen’s anisotropy parameters and for a large change in the vertical P-wave 

velocity at the interface of two layers. 

 
PARAMETERS ESTIMATION  
 
In contrast to the layer stripping methods in which the model parameters in each layer are 

minimized separately from the influence of the other layers, we consider the effect of all the 

rays contributing to a specific layer.  This, however, increase the nonlinearity of the objective 

function but results in a more robust parameter estimation. 
 
We follow the Dahl and Ursin (1991) approach to compute the partial derivatives of traveltime 

with respect to model parameters in layered media analytically.  Since we express the 

traveltimes as a function of ray parameter, the derivative of traveltimes with respect to any 

model parameter has to consider the derivative of ray parameter with respect to any model 

parameter as well.  This will be accomplished by taking the derivative of offset with respect to 

each model parameters as: 
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where jm  is the model parameter for a layer  j, x  is the source-receiver offset , and  p is the ray 

parameter.  Since the offset is given for a given ray, the derivative of the offset with respect to 

any model parameter is zero, 0jdx dm  .  This result in derivatives of the ray parameter with 

respect to a given model parameter as: 
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Given the equation (14), the derivative of the traveltime with respect to each model parameter 

can be expressed as the sum of the derivative of traveltime with respect to a model parameter 

for a given layer, at a constant ray parameter and a derivative term including the effect of the 

change in the ray parameter for a ray path as the consequence of change in a model parameter 

as: 
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A quadratic objective function, without imposing a specific model space structure given by 

Tarantola (2005), can be used to minimize the residual error as: 
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where TN  is the number of traces, obs  stands for measured traveltimes, and syn  for computed 

traveltimes.  We assume there is no correlation between the data, hence, the off-diagonal 

elements are zero.   The diagonal elements or the variances could simply be the errors in picking 

the traveltimes.  

Using an iterative scheme we update the prior model vector m according to: 
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In practice, we assume that the  data, as well as model parameters are independent, hence, the 

correlation between two different elements is zero.  So, the covariance matrices of model MC  

and data DC  are diagonal and contain the variances.  Since, we assume that DC is proportional 

to identity matrix, we look at the product of gradient T f and data residual vector 
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where the indices i  , j , and k  repeat over the  number of offsets N ,   the number of layers 

1M  , and the model parameters respectively.  

To minimize the objective function (17) we use a nonlinear preconditioning conjugate gradient 

algorithm (Nocedal and Wright, 1999; Saad, 2000; Bonnans et al., 2003) with  modifications in 

search direction scheme by Kalkreuter and Simma (1996), 
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where H is the Hessian matrix, h  is the search direction, r  is the gradient  equation (19) , 

  is the Polak-Ribiére  scalar,  is the machine precision, i  is the iteration number, and   is 

the step length and could be computed either by inexact line search criteria such as Wolfe 

conditions (Nocedal and Wright, 1999) or exact methods such as Brent algorithm (Press et al., 

2002).  is the inner product operator.  We may use the objective function to stop the 

conjugate gradient algorithm. 

 
 
NUMERICAL RESULTS 
 
To evaluate the robustness of the inversion, we simulate noise free traveltimes for the model 

given in table 1 over 9 reflectors from a single shot in 96 geophone locations in 50 metres 

intervals. The nearest offset is at 200 metres, while the farthest is at 4950 metres.  The fracture 

directions are kept the same for all HTI layers.  We estimate the ray parameter for each ray path 

in the HTI and VTI layers using the Newton minimization of the offsets in equations (6) and (7), 

respectively.  In the following minimization we kept the thicknesses and vertical velocities 

constant and only optimized the Thomsen’s anisotropy parameters and the azimuth of axis of 

symmetry of HTI layers.  We draw a random prior model from a uniform distributions for the 

azimuth and the anisotropy parameters from the following intervals: 

0 / 2   , 0.05 0.20   and 0 0.20  . We use a modified preconditioning conjugate 

gradient algorithm (Kalkreuter and Simma, 1996; Nocedal and Wright, 1999) to minimize the 

traveltimes.  Figure 3 shows the convergence of the objective function, which reached the 

solution after 60 iterations.  Table 2 shows the estimated model parameters, where all model 

parameters converged to the true solution.  Figures 4-8 show the convergence pattern of the 

azimuths for all HTI layers,  and   for layer 6 and 7. Azimuthal dependencies have 

significant impact on the value of the objective function and converge very fast, while 

Thomsen’s anisotropy parameters have smaller effect and converge slower.  

 

   

Table 1:  True Layer properties which has        Table 2:  Prior and estimated model parameters  
used for simulating observed  traveltime 



0 20 40 60 80 100
Iteration

-0.1

-0.08

-0.06

-0.04

-0.02



0 20 40 60 80 100
Iteration

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08



0 20 40 60 80 100
Iteration

0

0.04

0.08

0.12

0.16

0.2



0 20 40 60 80 100
Iteration

0.04

0.06

0.08

0.1

0.12

0.14

0.16



0 2 4 6 8 10
Iteration

0

20

40

60

80

A
zi

m
ut

h

Layer 2 
Layer 4 
Layer 6 
Layer 8 

0 20 40 60 80 100
Iteration

1E-005

1E-003

1E-001

1E+001

1E+003

1E+005
O

bj
ec

tiv
e 

Fu
nc

tio
n

 
 
 

 
 

 
 

 
 

 
 

 
 
Figure 3: Convergence of the objective function.         Figure 4: Convergence of the azimuths.  
 
 

 

 

 

 

 

 

 

 
 
 
 
Figure 5: Convergence pattern of   for layer 7           Figure 6: Convergence pattern of   for 
(VTI).                                                                           layer 7 (VTI). 
 
  

 
 

 
 

 
 

 
 
 

 

 
 
Figure 7: Cconvergence pattern of   for layer 6          Figure 8: Cconvergence pattern of   for  
(HTI).                                                                           layer 6 (HTI). 
 
 



CONCLUSION AND DISCUSSION 
 
We have derived parametric traveltime and offset equations for ray tracing purposes for 

compressional waves in a horizontal transversely isotropic medium with horizontal axis of 

symmetry, where the elastic properties of the medium are laterally invariant. We have 

developed an unconstrained minimization algorithm using a preconditioning conjugate gradient 

method to estimate the fracture orientation and interval Thomsen’s anisotropic parameters in a 

succession of layers with VTI and HTI anisotropy from the inversion of  P-wave traveltimes. 

We have modelled  noise free traveltimes, more data from different azimuths will make the 

inversion robust in case of noisy traveltime. 
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