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We report accurate ab initio theoretical predictions of the elastic, seismic, and structural anisotropy
of the orthorhombic Mg2SiO4 forsterite crystal at high pressures (up to 20 GPa) and temperatures (up
to its melting point, 2163 K), which constitute earth’s upper mantle conditions. Single-crystal elastic
stiffness constants are evaluated up to 20 GPa and their first- and second-order pressure derivatives
reported. Christoffel’s equation is solved at several pressures: directional seismic wave velocities and
related properties (azimuthal and polarization seismic anisotropies) discussed. Thermal structural and
average elastic properties, as computed within the quasi-harmonic approximation of the lattice poten-
tial, are predicted at high pressures and temperatures: directional thermal expansion coefficients, first-
and second-order pressure derivatives of the isothermal bulk modulus, and P-V -T equation-of-state.
The effect on computed properties of five different functionals, belonging to three different classes
of approximations, of the density functional theory is explicitly investigated. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4921781]

I. INTRODUCTION

Quantum-mechanical methods based on the Density
Functional Theory (DFT) and on periodic-boundary condi-
tions do represent an effective approach to the accurate
description of fine features of a large variety of properties (such
as structural, electronic, magnetic, spectroscopic, elastic,
piezoelectric, and optical) of crystalline materials at ambient
pressure and zero temperature.1–6 Nowadays, one of the
challenges, solid state computational approaches are facing, is
that of extending their applicability domain and predictiveness
to high pressure and temperature conditions. The effectiveness
of DFT-based methods in describing structural and elastic
properties of solids under pressure is well-known;7 several
techniques are available such as fitting energy-volume data
to analytical expressions of the equation-of-state (EOS) of
the system,8,9 computing the analytical stress tensor and
performing pressure-constrained geometry optimizations,10,11

and correcting the fourth-rank elastic tensor according to its
Lagrangian or Eulerian strain tensor formulation.12–15 The
description of thermal structural and elastic properties of
crystals requires to go beyond the standard harmonic approx-
imation to the lattice potential, whose limitations (including
but not limited to zero thermal expansivity and temperature
independence of elastic constants and bulk modulus) are well-
known.16,17 In this respect, due to its formal simplicity and
relatively low computational cost, an effective method of

a)Electronic mail: alessandro.erba@unito.it

choice is the so-called quasi-harmonic approximation (QHA),
which introduces the missing volume dependence of phonon
frequencies by retaining the harmonic expression for the
Helmholtz free energy of the system.18,19 A major advantage
of such a scheme is that it allows for a natural combination
of pressure and temperature on the same thermodynamic
ground.

Among other fields, geophysics would particularly benefit
from the knowledge of structural and elastic response of
minerals at earth’s mantle conditions (pressures up to 140 GPa
and temperatures up to 2000 K),20 as only such a full
characterization of all the major constituents of the mantle
could finally allow for a correct interpretation of seismological
data and for the validation of different compositional models
for the earth’s deep interior which have been proposed so
far.21–24 From an experimental point of view, a large amount
of X-ray diffraction studies were performed in past years
in order to measure the isothermal equations of state of
several rock-forming minerals to determine their isotropic
equilibrium bulk modulus and its pressure and temperature
derivatives.25 If at ambient conditions, different experiments
do agree with each other, very large differences among
them are found at high temperatures and pressures, which
prevent a reliable interpretation of seismic data.26 The picture
is even more unfavorable when considering the anisotropic
characterization of the elastic and structural response of
minerals, as experimental characterizations of their elastic
tensor or directional thermal expansivity at simultaneous
high pressure and temperature are extremely rare. In this

0021-9606/2015/142(20)/204502/11/$30.00 142, 204502-1 © 2015 AIP Publishing LLC
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respect, quantum-mechanical methods (taking advantage of
the techniques recalled above) offer a reliable alternative due
to their high accuracy.27,28

Most crystals of the earth’s mantle are structurally and
elastically anisotropic; rocks from the mantle do show mineral
preferred orientation and a large degree of alignment due
to stress, flow fields, and high temperatures which make
recrystallization a likely process.20,29–31 It is now accepted
that the top 200 km layer of the mantle behaves as an
anisotropic medium on a global scale.32 Elastic anisotropy
gives rise to several subtle features such as the azimuthal
anisotropy of both longitudinal and transverse seismic wave
velocities (i.e., elastic wave velocities depend on propagation
direction) and the shear-wave birefringence, that is, the two
polarizations of transverse seismic waves do travel with
different velocities with respect to each other. If disregarded,
anisotropic effects can be interpreted as inhomogeneities
such as layering or gradients.30 The anisotropy of the upper
mantle is mainly caused by the preferred orientation of
olivine crystals, (Mg1−xFex)2SiO4, as induced by geodynamic
phenomena. Olivine, indeed, is the most abundant mineral
of the upper mantle, exhibits a large elastic anisotropy (for
both longitudinal, about 25%, and transverse, about 18%,
seismic waves), and is known to give rise to large areas
with coherent crystal orientation. Forsterite, α-Mg2SiO4, is
an end-member of the olivine solid solution series and is one
of the most abundant silicates in the upper mantle (its atomic
structure is shown in Figure 1). It is stable up to about 14 GPa
and 1300–1500 K; beyond these boundaries, it undergoes
a phase transition to the β-Mg2SiO4 phase with wadsleyite
structure.

FIG. 1. Structure of the orthorhombic unit cell of α-Mg2SiO4 forsterite.
Oxygen atoms in red, magnesium atoms in brown, and silicon atoms in blue.
SiO4 tetrahedra and MgO6 octahedra are also shown in brown and blue,
respectively.

In this paper, we report about ab initio simulations of
the structural and elastic response of forsterite at typical
temperatures and pressures of the earth’s upper mantle. The
anisotropic thermal expansivity of α-Mg2SiO4 is investigated
through QHA calculations at simultaneous high P and T and
its elastic and seismic anisotropies characterized up to 20 GPa.
The temperature and pressure dependence of the adiabatic and
isothermal bulk modulus of forsterite is also characterized. The
effect of the particular choice of the exchange-correlation func-
tional, within the DFT, on computed properties is explicitly
investigated and documented by considering three different
levels of approximation, corresponding to three rungs of the
well-known “Jacob’s ladder.”33 A development version of the
C14 program6 is used for all calculations where some
of the present authors have recently implemented fully auto-
mated algorithms for the calculation of quasi-harmonic,28,34,35

photo-elastic,36 piezoelectric,37,38 and elastic15,39 properties of
crystals.

The elasticity of single-crystal forsterite under pressure
has been experimentally determined up to 4 GPa by Brillouin
scattering,40 up to 6 GPa by pulse-echo-overlap method,41

up to 16 GPa by a Brillouin scattering experiment42 (see
also references therein for previous investigations), and
simulated at the local density approximation (LDA) level
of theory.43–45 Several X-ray diffraction experiments have
investigated the anisotropic thermal expansivity of forsterite
at ambient pressure;46–49 a relatively recent X-ray diffraction
experiment by Katsura et al., performed in a Kawai-type multi-
anvil apparatus, has determined the thermal expansivity of
forsterite at simultaneous high pressure, up to 14 GPa, and high
temperature, up to 1900 K.50 A couple of previous theoretical
studies have described the isotropic thermal expansivity of
forsterite.51,52

The structure of the paper is as follows. Section II is
devoted to the illustration of the adopted computational setup
and techniques for pressure-constrained geometry optimiza-
tions, elastic tensor calculation and evaluation of thermal
structural properties within the quasi-harmonic approxima-
tion. In Sec. III, we discuss the elastic and seismic anisotropies
of forsterite under pressure, its structural anisotropy, and its
bulk modulus evolution at simultaneous high pressures and
temperature. Conclusions are drawn in Sec. IV.

II. METHODOLOGY AND COMPUTATIONAL SETUP

All the calculations reported in this study have been
performed with algorithms implemented in a development
version of the C14 program.6 An all-electron atom-
centered Gaussian-type-function (GTF) basis set is used for all
atoms; silicon, oxygen, and magnesium atoms are described by
(8s) (6311sp) (1d), (8s) (411sp) (1d), and (8s) (511sp) (1d)
contractions of primitive GTFs, respectively. The exponents
(in bohr−2 units) of the most diffuse sp shells are 0.32 and 0.13
(Si), 0.59 and 0.25 (O), and 0.68 and 0.22 (Mg); the exponents
of the d shells are 0.6 (Si), 0.5 (O), and 0.5 (Mg). The same
basis set has already been successfully utilized in a couple of
recent ab initio studies of vibrational and spectroscopic prop-
erties of forsterite.53,54 In order to check whether or not the (8s)
contraction of the 1s core orbitals could affect the description
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of the system under high pressures, a full de-contraction of
the 1s orbitals of all atoms has also been explored, which, as
expected, resulted in a constant lowering of the energy as a
function of the compression, thus leaving all relative quantities
(equilibrium volume, bulk modulus, etc.) unchanged.

Five different formulations of the exchange-correlation
functional of the DFT are considered, corresponding to
some of the most widely used schemes within the LDA,
such as the SVWN functional,55,56 the generalized-gradient
approximation (GGA), such as the PBE57 and PBEsol58

functionals, and hybrid approaches, such as the B3LYP59 and
PBE060 functionals. Thresholds controlling the accuracy of
Coulomb and exchange series are set to default values.61

Reciprocal space is sampled using a Monkhorst-Pack mesh
with a shrinking factor of 6 for the primitive cell of forsterite,
corresponding to 64 independent k-points in the irreducible
portion of the Brillouin zone. A pruned grid with 1454 radial
and 99 angular points is used to calculate the DFT exchange-
correlation contribution through numerical integration of
the electron density over the unit cell volume.61 The Self-
Consistent-Field (SCF) convergence on energy was set to
a value of 10−10 hartree for all geometry optimizations and
phonon frequency calculations.

A. Pressure-constrained structure optimization

A fully analytical scheme, based on the stress tensor, is
used for optimizing the crystal volume under a given external
pressure.11 The stress tensor σ is a symmetric second-rank
tensor that can be computed in terms of analytical energy
gradients with respect to lattice parameters,

σi j =
1
V

∂E
∂ϵ i j

=
1
V

3
k=1

∂E
∂a′

ki

ak j, (1)

with ϵ second-rank symmetric pure strain tensor and i, j, k
= x, y, z. In the second equality, ∂E/∂ϵ i j has been expressed
in terms of analytical energy gradients with respect to lattice
parameters of the strained lattice, whose calculation has been
implemented in the C program about ten years ago by
Doll et al. for 1D, 2D, and 3D periodic systems.62,63 In the
expression above, ai j are elements of a 3 × 3 matrix, A, where
Cartesian components of the three lattice vectors a1, a2, and
a3 are inserted by rows and V is the cell volume. When a
distortion is applied to the cell, the lattice parameters transform
as a′i j =

3
k=1(δ jk + ϵ jk)aik, where δ jk is the Kronecker delta.

Adding an external hydrostatic “pre-stress” σ
pre
i j = −Pδi j to

σi j and inverting Eq. (1) yield to the following expression for
the constrained gradients:

∂H
∂ai j

=
∂E
∂ai j

+ PV (A−1) j i. (2)

With the inclusion of a hydrostatic pressure, the function to
be minimized during the optimization process becomes the
enthalpy, H = E + PV , of the system.10

B. Elastic tensor calculation

If any finite pre-stress is absent, second-order elastic con-
stants are simply defined as second energy density derivatives

with respect to pairs of infinitesimal Eulerian strains,

C0
i jkl =

1
V0

(
∂2E

∂ϵ i j∂ϵkl

)
ϵ=0

. (3)

A scheme for the calculation of the elastic tensor has been
implemented in the C program39,64 that has been
generalized also to low-dimensionality, 1D and 2D, systems.65

When a finite pre-stress σpre is applied in the form of
a hydrostatic pressure P, within the frame of finite Eulerian
strain, the elastic stiffness constants become12–14,66,67

Ci jkl = C0
i jkl +

P
2
(2δi jδkl − δilδ jk − δikδ jl), (4)

provided that V0 in Eq. (3) is replaced by the equilibrium
volume V (P) at pressure P. An implementation in the
C program of the calculation of the stiffness tensor
C (and of S = C−1, the compliance tensor) under pressure
has recently been presented.15,68,69 A two-index representation
of the elastic stiffness tensor is obtained (Ci jkl → Cvu) by
exploiting Voigt’s notation, according to which v,u = 1,
. . . ,6(1 = xx, 2 = y y, 3 = zz, 4 = y z, 5 = xz, 6 = x y).70

This tensor, in general, exhibits 21 independent elements
that reduce to 9 in the case of orthorhombic crystals as
forsterite. For the elastic constant calculation, two strained
configurations are considered for each independent strain, with
a dimensionless strain amplitude of 0.01 (i.e., 1%). From the
knowledge of the elastic tensor, a number of elastic properties
can be deduced.70–72

C. Thermal structural properties

A fully automated scheme for computing quasi-harmonic
properties of crystals has recently been implemented in the
C program, which relies on computing and fitting (with
a cubic polynomial function) harmonic vibration frequen-
cies at different volumes after having performed volume-
constrained geometry optimizations.34,35 Harmonic phonon
frequencies are computed by diagonalizing the dynamical
matrix following a “direct space” approach.34,73–75 Quasi-
harmonic properties (such as the constant-pressure specific
heat, the thermal expansion coefficient, or the temperature
dependence of the bulk modulus) are computed by considering
a volume range extending from a −6% compression to a
+12% expansion with respect to the equilibrium volume; seven
equidistant volumes are considered in this interval.

The isotropic thermal expansion coefficient, αV(T), of the
system is obtained by minimizing the isothermal Helmholtz
free energy,

FQHA(T,V ) = UZP
0 (V ) + kBT


kp


ln

(
1 − e−

~ωkp(V )
kBT

)
, (5)

with respect to volume at several temperatures, where kB

is Boltzmann’s constant and UZP
0 (V ) is the zero-temperature

internal energy of the crystal which includes the zero-
point energy of the system, EZP

0 (V ) = 
kp ~ωkp(V )/2. The

anisotropic thermal expansion can be computed as well:
directional thermal expansion coefficients, αa(T), αb(T), and
αc(T), corresponding to the a, b, and c lattice parameters of
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forsterite can be determined which allow for a finer description
of the thermal expansion mechanism.28

The QHA allows for combining pressure and temperature
effects on structural and elastic properties of materials. By
differentiating Eq. (5) with respect to the volume and changing
sign, the thermal pressure is obtained,

P(V ; T) = −∂FQHA(V ; T)
∂V

. (6)

The description of the isothermal bulk modulus of the
system at simultaneous high-temperatures and high-pressures,
KT(P,T), can be obtained as an isothermal second derivative
of Eq. (5) with respect to the volume and by exploiting relation
(6),

KT(P,T) = V (P,T)
(
∂2FQHA(V (P,T); T)

∂V (P,T)2
)
T

. (7)

III. RESULTS AND DISCUSSION

A. Elastic anisotropy under pressure

As recalled in the Introduction, the top 200 km of the
earth’s upper mantle is known to behave as an anisotropic
elastic medium as regards the propagation of seismic waves.
In this respect, the large elastic anisotropy of olivine is believed
to be the main responsible due to the high degree of crystal
alignment. A detailed description of olivine anisotropy at
upper mantle conditions is necessary in order to correctly
interpret seismological data collected during earthquakes. The
characterization of the elastic anisotropy of a crystal requires
the determination of its elastic tensor: a fourth-rank symmetric
tensor with 21 components (i.e., elastic constants) which
reduce to 9 symmetry-independent ones for orthorhombic
crystals such as olivine (C11, C22, C33, C44, C55, C66, C12, C13,
and C23). In the present study, we compute the full set of elastic
constants of forsterite, the Mg-rich end-member of the olivine
solid solution, at different pressures, up to 20 GPa. Before
discussing into more detail some fine features of the elastic
anisotropy of forsterite, we have to make sure that the overall
elastic description of the system under increasing pressure
is reliable as compared with available experimental data.
In Figure 2, we report computed elastic stiffness constants,
Cvu, of Mg2SiO4 forsterite as a function of pressure, up
to 20 GPa (continuous lines). Experimental determinations
are reported as well, as obtained from a couple of Brillouin
scattering measurements by Zha et al.42 up to 16 GPa (solid
symbols), by Shimizu et al.40 up to 4 GPa (crosses), and
from a pulse-echo-overlap study up to 6 GPa by Yoneda
and Morioka41 (empty symbols). Some considerations are
(i) apart from a slight underestimation of C33, the absolute
values of all elastic constants are accurately predicted by
the calculations; (ii) all elastic constants do increase with
pressure; (iii) the slope of all computed elastic constants with
pressure agrees with experimental determinations, apart from
a slight underestimation for C55 and C66; and (iv) experi-
mental determinations of the elastic constants are not that
regular as a function of pressure, particularly so at high
pressures.

FIG. 2. Elastic stiffness constants of forsterite as a function of pressure, as
computed at the PBE level of theory (continuous lines) and as experimentally
determined by Zha et al.42 (full symbols), Yoneda and Morioka41 (empty
symbols), and Shimizu et al.40 (crosses).

In order to make a closer comparison with the experiment,
let us introduce Table I, where we report the absolute values
of the elastic constants at zero pressure, C0

vu, along with
their first-, dCvu/dP, and second-derivatives, d2Cvu/dP2, with
respect to pressure. Our computed values are compared
with those reported by Yoneda and Morioka41 in their
accurate experimental study: (i) the overall agreement be-
tween computed and experimental zero pressure constants
is remarkable; (ii) diagonal constants, from C11 to C66, are
slightly underestimated, more so for C33 than for the others;
(iii) the agreement on first pressure derivatives, the main
quantity to be considered in this kind of analysis, is rather
satisfactory in all cases; and (iv) the agreement on second
derivatives (i.e., a very fine feature of the pressure dependence
of the elastic constants) further confirms the high accuracy of
present calculations. All second-derivatives are negative but
that of the C23 elastic stiffness constant. At variance with a
previous ab initio simulation on the elasticity of forsterite
under pressure that was unable to reproduce such a fine
detail,43 present results do correctly describe this feature.
Present calculations do predict a large second-derivative of
C11 (−0.116) with respect to the experiment (−0.047); from
inspection of Figure 2, it is clearly seen that this is due to
the larger pressure range explored by present calculations as
the curvature in the low-pressure regime is much smaller. In
the last two rows of the table, the same data are reported for
the average bulk, K , and shear, G, moduli. Elastic properties
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TABLE I. Elastic constants of forsterite at zero pressure, C0
vu, and their first-

and second-derivatives with respect to pressure, as computed at the PBE level
of theory and as compared with accurate experimental determinations by
Yoneda and Morioka.41 Data on the polycrystalline average bulk modulus,
K and shear modulus, G, as obtained from the Voigt-Reuss-Hill averaging
scheme76 are reported as well.

C0
vu (GPa) dCvu/dP d2Cvu/dP2

Calc. Expt. Calc. Expt. Calc. Expt.

C11 323 329 7.13 7.22 −0.116 −0.047
C22 199 200 5.07 5.24 −0.068 −0.051
C33 225 237 5.09 5.57 −0.054 −0.094
C44 67 68 1.65 2.01 −0.042 −0.071
C55 79 82 1.16 1.46 −0.034 −0.021
C66 77 81 1.78 2.16 −0.054 −0.025
C12 71 66 3.70 3.59 −0.030 −0.009
C13 72 68 3.41 3.62 −0.010 −0.072
C23 76 72 3.10 2.94 0.016 0.077

K 129 129 4.12 4.19 −0.030 −0.018
G 78 81a 1.40 1.4b −0.042

aThe experimental value of the shear modulus from Suzuki et al.77

bFirst-order pressure derivative of the experimental shear modulus from Zha et al.42

of isotropic polycrystalline aggregates can be computed from
the elastic and compliance constants via the Voigt-Reuss-
Hill averaging scheme, for instance.76 For crystals of any
symmetry, the average bulk modulus K = 1/2[KV + KR] can
be defined as an average between Voigt upper bound

KV =
1
9
[C11 + C22 + C33 + 2(C12 + C13 + C23)]

and Reuss lower bound

KR = [S11 + S22 + S33 + 2(S12 + S13 + S23)]−1.

Similar expressions can be used to define the average shear
modulus, G.70,71 The computed value of the average bulk
modulus is 129 GPa and coincides with the experimental coun-
terpart. As we will discuss below, however, this agreement
partially comes from a cancellation of errors due to the fact
that zero-point motion and thermal effects are neglected in the
calculations while experimental data refer to ambient temper-
ature. A rather satisfactory agreement with the experiment is
also found on its first (4.12 compared with 4.19) and second
(−0.0030 compared with −0.0018) pressure derivatives. A
remarkable agreement is obtained also on the shear modulus
and its first-order pressure derivative. As we shall discuss in
Sec. III B, the inclusion of thermal effects will further increase
the agreement on the bulk modulus pressure derivatives.

Let us now discuss the seismic anisotropy of forsterite and
its evolution under increasing pressure. From a fundamental
point of view, within the elastic continuum model, the velocity
of propagation of a seismic wave traveling along any general
crystallographic direction represented by unit wave-vector,
q̂, can be obtained from the elastic tensor via Christoffel’s
equation, which can be given an eigenvalues/eigenvectors form
as follows:78,79

Aq̂U = V2U

with

Aq̂
jk
=

1
ρ


il

q̂iCi jkl q̂l, (8)

where Aq̂
jk

is Christoffel’s matrix, ρ is the crystal density,
i, j, k, l = x, y, z represent Cartesian directions, q̂i is the ith
element of the unit vector q̂, V is a 3 × 3 diagonal matrix
whose three elements give the acoustic velocities, and U
= (û1, û2, û3) is the eigenvector 3 × 3 matrix where each
column represents the polarization û of the corresponding
eigenvalue. The three acoustic wave velocities, also referred
to as seismic velocities, can be labeled as quasi-longitudinal
vp, slow quasi-transverse vs1 and fast quasi-transverse vs2,
depending on the polarization direction û with respect to
wave-vector q̂.13 From the analysis of directional seismic
wave velocities, the main aspects of the elastic anisotropy
of a crystal, such as shear-wave birefringence and azimuthal
anisotropy, can be fruitfully discussed, in particular as regards
their evolution on pressure. In principle, from accurate single-
crystal Brillouin scattering experiments, directional seismic
wave velocities can be measured which convey the essential
information for analyzing into detail the elastic anisotropy
of a crystal. However, just a couple of directional studies
have been performed so far for forsterite: by Yoneda and
Morioka41 at zero pressure and by Zha et al.42 at 6.1 and
16.2 GPa. In Figure 3, we report our computed seismic wave
velocities as a function of the crystallographic direction of
propagation. Longitudinal and transverse wave velocities are

FIG. 3. Directional seismic wave velocities of Mg2SiO4 forsterite. Zero-
pressure computed values are reported as dashed lines and compared with
experimental data by Yoneda and Morioka41 (full circles). Continuous lines
of increasing thickness correspond to computed velocities at 5, 10, 15, and
20 GPa. The PBE functional is used for the calculations.
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sampled starting from the [001] direction (i.e., the c axis),
then moving to the [100] one (a axis), then to the [010]
one (b axis), and finally coming back to [001]. Computed
values at zero pressure are reported as dashed lines and can
be compared with experimental directional determinations
by Yoneda and Morioka,41 reported as full circles. We
can clearly see how (i) both longitudinal and transverse
waves do exhibit a large anisotropy (i.e., large differences
as a function of the propagation direction), to be quantified
below; (ii) computed values are remarkably superimposed to
their experimental counterparts for both vp and vs; (iii) as
regards longitudinal waves, the crystallographic directions of
maximum and minimum propagation velocity are the [100]
and [010] ones, respectively; (iv) transverse waves show two
maxima along directions close to the [101] and [110] ones and
minima along [010] and [001]; (v) for all wave polarizations,
the (100) plane (i.e., the bc plane) is seen to be almost
elastically isotropic with small differences in velocity within
it, more so for transverse than for longitudinal waves.

As pressure increases (continuous lines of increasing
thickness in Figure 3), both longitudinal and transverse seismic
wave velocities increase, but in quite different ways. Longi-
tudinal velocities regularly increase (by 13% passing from 0
to 20 GPa) by slightly reducing their azimuthal anisotropy
and keeping their profile almost unchanged. Transverse veloc-
ities, on the contrary, evolve with pressure by significantly
modifying their azimuthal profile: (i) the maximum along the
[101] direction remains almost unchanged; (ii) a systematic
broadening of the maximum along the [110] direction occurs
as pressure passes from 0 to 20 GPa; (iii) a minimum along
the [011] direction appears at pressures above about 5 GPa.

In order to quantify the seismic anisotropy of forsterite
and its evolution with pressure, let us introduce the follow-
ing index for the so-called azimuthal anisotropy of quasi-
longitudinal and quasi-transverse seismic wave velocities:13

AX =
vXmax − vXmin

vX
, (9)

where X = p, s labels longitudinal and transverse waves and
vX is the polycrystalline isotropic average velocity, which can
be obtained from the Voigt-Reuss-Hill averaging scheme as71

v s =


G
ρ

and

v p =


K + 4

3 G
ρ

, (10)

where ρ is the crystal density. For transverse waves, a
polarization anisotropy index can be defined, which, given a
propagation direction [hkl], measures the difference in speed
of fast-transverse and slow-transverse waves,13

Apol
s,[hkl] =

v
[hkl]
s1 − v [hkl]

s2

v s
. (11)

The longitudinal, Ap, and transverse, As, azimuthal anisot-
ropies of forsterite are reported as a function of pressure
in the upper and middle panels of Figure 4, respectively.

FIG. 4. Azimuthal anisotropy of longitudinal (upper panel) and transverse
(middle panel) seismic waves as a function of pressure. Present PBE com-
puted data are given as continuous lines; dashed lines refer to previous LDA
theoretical determinations by da Silva et al.,43 while symbols are experimen-
tal data by Yoneda and Morioka41 (zero pressure) and Zha et al.42 (higher
pressures). (Lower panel) Directional polarization anisotropy (see Eq. (11))
as a function of pressure.

Experimental data by Yoneda and Morioka41 and Zha et al.42

are also reported for comparison: (i) experimental values
are quite disperse and do not allow for a straightforward
identification of a regular trend; (ii) our computed data
(continuous lines) show a linear reduction of the longitu-
dinal anisotropy from 25.2% at zero pressure to 22.3% at
20 GPa; (iii) the azimuthal anisotropy of transverse waves is
almost constant with pressure (showing a small minimum at
about 10 GPa). Despite the overall azimuthal anisotropy of
transverse waves remains almost constant (about 18%) with
pressure, the polarization anisotropy evolves quite differently
along different crystallographic directions. The Apol

s,[hkl] index,
introduced with Eq. (11), is given in the lower panel of Figure 4
as a function of pressure for six different crystallographic
directions. The polarization anisotropy is seen to significantly
increase along [100] (after 5 GPa) and [011], to decrease
along [101], [110], and [001], and to remain almost constant,
showing just a slight reduction, along [010].

B. Structural anisotropy and elasticity at upper
mantle conditions

In this section, structural and average elastic properties
of forsterite are discussed as a simultaneous function of
temperature, up to its melting point, and pressure, up to
18 GPa. The effect of the adopted DFT functional on
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computed thermal properties (thermal expansion coefficient,
equilibrium lattice parameters, and isothermal bulk modulus)
is investigated by considering five functionals belonging to
three distinct levels of approximation (i.e., three rungs of the
so-called “Jacob’s ladder”). As expected, different functionals
do provide very different absolute values of both equilibrium
volume and bulk modulus of forsterite (to be discussed below).
However, their descriptions of the thermal expansion and
temperature dependence of the bulk modulus are rather close
to each other up to the melting point and to the experimental
behavior up to about 1500 K, the only exception being the
B3LYP hybrid functional that starts deviating above about
800 K. In the upper panel of Figure 5, we report the
volumetric thermal expansion coefficient, αV(T), of forsterite
up to 2200 K, its melting temperature being TM = 2163 K.
Six experimental determinations are reported (see caption
of Figure 5 for details), which show discrepancies as large
as 25% among them. Three experimental datasets that agree
particularly well to each other are marked with full (instead of
empty) symbols and are here taken as a reference: those from
Anderson et al.49 (full circles), Gillet et al.80 (full rhombi),
and Fei and Saxena81 (full triangles). Some considerations on
the relative performance of DFT functionals can be made: (i)
the description of the thermal expansion of forsterite below
800 K is approximately correct for all functionals; (ii) as
already noticed in previous studies on different classes of
materials,28,34,35 the simple LDA functional systematically

FIG. 5. Upper panel: volumetric thermal expansion coefficient, αV (T ), of
forsterite as computed with five DFT functionals and as measured from vari-
ous experiments; Anderson et al.49 (full circles), Gillet et al.80 (full rhombi),
Fei and Saxena81 (full triangles), Katsura et al.50 (empty rhombi), Suzuki
et al.77 (empty triangles), and Bouhifd et al.46 (empty circles). Lower panel:
isothermal bulk modulus, KT (T ), of forsterite; experimental data are from
Anderson et al.49 (full circles) and Suzuki et al.77 (empty circles).

provides the lowest thermal expansion; (iii) the generalized
gradient PBE and PBEsol functionals and the global hybrid
PBE0 functional do provide a reliable description of the
thermal expansion up to about 1500 K while above that
temperature, explicit anharmonic effect is expected to play
a non-negligible role in the low-pressure thermal expansion
of forsterite; and (iv) the hybrid B3LYP functional provides
the largest expansion and significantly deviates from the
expected linearity above about 800 K. In the lower panel
of Figure 5, we report the isothermal bulk modulus, KT , of
forsterite, as computed according to Eq. (7) with the same five
functionals and as measured by Anderson et al.49 (full circles)
and Suzuki et al.77 (empty circles). Four functionals (LDA,
PBE, PBEsol and PBE0) provide a very similar description
of the temperature dependence of KT , which almost perfectly
matches the experimental slope up to about 1800 K while the
B3LYP hybrid functional strongly deviates above about 800 K.
As regards the absolute value of the isothermal bulk modulus,
the PBEsol and PBE0 functionals are found to provide a
satisfactory agreement with the experimental data while PBE
and LDA underestimate and overestimate them, respectively.

Let us now discuss the anisotropic thermal expansion of
forsterite. Being an orthorhombic crystal, forsterite exhibits
three distinct directional thermal expansion coefficients, αl,
where l = a, b, c labels the three fundamental lattice vectors.
In the three upper panels of Figure 6, a, b, and c are reported as

FIG. 6. In the three upper panels, the temperature dependence of the three
lattice parameters (a, b, and c) of forsterite is reported. Experimental data
from Ye et al.47 (full circles), Bouhifd et al.46 (empty circles), and Hazen48

(empty squares) are given. Computed data are obtained with the five DFT
functionals described in the text. In the lowest panel, the three directional
thermal expansion coefficients (αa, αb, and αc) are reported as a function
of temperature as computed with the PBE functional (continuous lines) and
as derived from experimental data by Ye et al.47 (empty symbols; circles for
αa, squares for αb, and triangles for αc).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.7.93.129 On: Fri, 08 Jan 2016 05:56:34



204502-8 Erba et al. J. Chem. Phys. 142, 204502 (2015)

a function of temperature. Experimental data from Ye et al.47

(full circles), Bouhifd et al.46 (empty circles), and Hazen48

(empty squares) are reported along with our computed values
(with the five DFT functionals). Again, it is clearly seen
that the thermal evolution of the cell is reasonably described
by all functionals but B3LYP that tends to overestimate the
thermal expansion at high temperatures, more so along the
b crystallographic axis. The LDA functional systematically
underestimates all three lattice parameters, B3LYP and PBE
do overestimate them while PBEsol and PBE0 do provide
the best agreement among them, just slightly overestimating
a. All adopted functionals do correctly describe the relative
thermal expansivity of the three lattice parameters (i.e., αb >
αc > αa). In the lowest panel of Figure 6, we report these
three thermal expansion coefficients, αl, as obtained with
the PBE functional (results with other functionals are rather
similar and are not shown for sake of clarity) and as derived
from experimental data from Ye et al.47 with a third-order
polynomial fitting. The agreement is absolutely remarkable
thus proving the ability of ab initio techniques in describing
fine thermal structural features of minerals.

As recalled in the introduction, if high-pressure or
high-temperature structural and elastic characterizations of
minerals are nowadays routinely accessible from experimental
measurements, this is no more the case for simultaneous high-
P, high-T conditions. In this respect, as we shall show below,
the combination of first-principle techniques and the QHA
does represent an effective strategy to reliably obtain such
a description. Equation (6), indeed, allows for computing
the pressure-volume-temperature relation of the system. An
accurate experimental determination of the P-V -T equation-
of-state of forsterite has been reported, as measured in 2009
by Katsura et al.50 with in situ X-ray diffraction, to compare
with; pressures up to 14 GPa and temperatures up to 1900 K
were considered in that study. The P-V -T equation-of-state of
forsterite is here reported in Figure 7, where experimental data
by Katsura et al.50 are given as full symbols and our computed
values, at the PBE level of theory, are given as continuous lines.
The V (P,T)/V0 ratio is reported as a continuous function of
pressure at 11 different temperatures, V0 being the equilibrium
volume at zero pressure and 300 K for both theory and
experiment. Apart from a slight underestimation of the volume
at simultaneous low-temperatures (up to 500 K) and high-
pressures (above 7 GPa), the agreement between the computed
and measured volume evolutions is extremely satisfactory
in the whole range of explored temperatures and pressures,
which is a remarkable finding as it proves the relatively
simple QHA to be a reliable approach for the investigation of
structural features of olivine minerals at earth’s upper mantle
conditions. The dashed line in the figure corresponds to the
“cold,” purely electronic, P-V equation-of-state of forsterite,
as computed at 0 K by neglecting zero-point energy (ZPE)
effects. A comparison with the black continuous line, which
corresponds to 0 K with inclusion of the ZPE term, shows
that ZPE significantly affects the equilibrium structure (by
1%), to an extent which is comparable to a temperature
change of about 500 K. Figure 7 is meant to show the
excellent agreement that is obtained at temperatures and
pressures of the earth’s upper mantle between experimental

FIG. 7. Pressure-volume-temperature relation of Mg2SiO4 forsterite, as com-
puted at PBE level in the present study (continuous lines) and as experimen-
tally determined by Katsura et al.50 with in situ X-ray diffraction measure-
ments (symbols). The V (P,T )/V0 ratio is reported as a continuous function
of pressure at 11 different temperatures, where V0 is the equilibrium volume
at zero pressure and 300 K. The dashed line represents the P-V relation as
computed at 0 K without including ZPE effects.

and computed data. Let us now have a closer look at the
pressure dependence of the thermal expansion in Mg2SiO4
forsterite, in particular by explicitly analyzing its anisotropic
behavior. In the upper panel of Figure 8, we report the three
directional thermal expansion coefficients, αl, corresponding
to the three direct lattice vectors, at six different pressures
(from 0 to 10 GPa, in steps of 2 GPa). We can clearly see
that (i) at all temperatures and pressures, their relative order is
unchanged, with αb > αc > αa; (ii) as pressure increases, the
high-temperature part of the curves becomes more linear as
anharmonic contributions to the thermal expansion are rapidly
suppressed; and (iii) pressure is affecting mostly the b axis,
followed by the c one, while the thermal expansion along the
a axis is the least affected.

The simultaneous dependence on temperature and pres-
sure of the isothermal bulk modulus, KT , of forsterite is
given in the lower panel of Figure 8 (continuous lines). The
isothermal bulk modulus is computed as a Helmholtz free
energy second derivative (see Eq. (7)) and can be compared
with measurements from X-ray diffraction experiments, for
instance. In the figure, full symbols are experimental data of
KT as measured by Anderson et al.49 (circles) and Suzuki
et al.77 (triangles). All computed values, as obtained at PBE
level, are upshifted by 6.2 GPa in the figure, in order to match
their experimental counterparts as we want to highlight the
correctness of their temperature (and pressure) dependence
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FIG. 8. Upper panel: directional thermal expansion coefficients, αl, where
l = a, b, c, as a continuous function of temperature, at six pressures (0, 2, 4,
6, 8, and 10 GPa). Lower panel: isothermal bulk modulus, KT (continuous
lines). At zero pressure, the adiabatic bulk modulus, KS, is also reported
(dashed line). Computed bulk modulus values are upshifted by 6.2 GPa.
Isothermal (full symbols) and adiabatic (empty symbols) experimental data
at zero pressure are from Anderson et al.49 (circles) and Suzuki et al.77

(triangles). The PBE level of theory is used for all computed data.

rather than of their absolute values, which are rather DFT
functional-dependent, as previously shown in Figure 5. By
comparing with the experiments at zero pressure, we see how
the quasi-harmonic description of forsterite allows for reliably
describing the thermal dependence of its bulk modulus up
to about 1800 K, which is a remarkable achievement. The
computed KT is then reported at five other pressures, up to
10 GPa (see below for a more quantitative analysis). Some
experimental techniques for measuring the bulk modulus of
a crystal, other than X-ray diffraction experiments which
naturally allow for the system to thermally equilibrate, involve
elastic waves and are characterized by very short time scales
that prevent the system from reaching a thermal equilibrium;
in these cases, an adiabatic bulk modulus, KS, is measured
instead of KT . Adiabatic and isothermal bulk moduli do
obviously coincide with each other at zero temperature,
KS always being larger than KT at any finite temperature.
According to the QHA, the adiabatic bulk modulus can be
derived from its isothermal counterpart as

KS(T) = KT(T) + αV(T)2V (T)T KT(T)2
CV(T) , (12)

where CV is the constant-volume specific heat of the system
as computed with standard statistical thermodynamics from
the phonon frequencies.35 Computed values of the adiabatic
bulk modulus at zero pressure are reported in the figure

TABLE II. Isothermal bulk modulus of Mg2SiO4 forsterite at zero pressure,
K 0

T , and its first-, dKT/dP, and second-derivatives, d2KT/dP2, with respect
to pressure at various temperatures. All values computed at the PBE level of
theory; K 0

T values are upshifted by 6.2 GPa and correspond to those reported
in Figure 8.

T (K) K 0
T (GPa) dKT/dP d2KT/dP2 (GPa−1)

0 131 4.13 −0.026
300 127 4.22 −0.031
500 123 4.32 −0.036
700 119 4.43 −0.043
900 114 4.55 −0.051
1100 110 4.70 −0.062
1300 105 4.89 −0.076
1500 99 5.12 −0.095
1700 94 5.42 −0.121
1900 88 5.80 −0.157
2100 81 6.31 −0.208

as dashed lines and compared with available experimental
determinations (empty symbols). Again the description of both
the absolute value of the KS − KT difference at all temperatures
and, accordingly, of the KS dependence on temperature is
found to be described very accurately within the QHA.

First and second pressure derivatives of the isothermal
bulk modulus, at several temperatures, are key quantities for
the geophysical characterization of the earth’s deep interior
and are extremely difficult to be determined experimentally.
In order to be as quantitative as possible in this respect, we
introduce Table II where we report at 11 distinct temperatures
(in the range 0–2100 K), the absolute value of the zero-
pressure isothermal bulk modulus, K0

T , its first pressure
derivative, K ′T ≡ dKT/dP, and its second pressure derivative,
K ′′T ≡ d2KT/dP2, as computed at the PBE level of theory.
Regular trends of both K ′T and K ′′T are found as a function
of temperature. The first-order pressure derivative of the bulk
modulus significantly increases as temperature is increased: it
passes from 4.13 at 0 K to 6.31 at 2100 K. The second-order
pressure derivative is always negative and its absolute value
dramatically increases by about one order of magnitude as
temperature passes from 0 to 2100 K.

IV. CONCLUSIONS

The elastic anisotropy of forsterite has been characterized
under pressures up to 20 GPa with ab initio theoretical simula-
tions. The evolution with pressure of directional seismic wave
velocities and seismic anisotropy (azimuthal and polarization)
has been determined. From quasi-harmonic calculations, the
P-V -T equation-of-state, the anisotropic thermal expansion
coefficients, and the bulk modulus dependence on temperature
and pressure have been accurately predicted at earth’s upper
mantle conditions of simultaneous high pressure and temper-
ature. By comparison with available experimental data, the
quasi-harmonic approximation is found to provide a reliable
description of all properties in the whole stability domain of
forsterite, 0–14 GPa of pressure and 0–1500 K of temperature,
which is a remarkable success of such a relatively simple
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scheme. These results prove the reliability and effectiveness of
DFT quasi-harmonic simulations in predicting high-pressure
high-temperature properties of minerals of geophysical
interest.

The temperature dependence of the elastic anisotropy
of forsterite has not yet been addressed in the present
study as it requires a full thermoelastic characterization of
the system (i.e., evaluation of the elastic tensor at several
temperatures) for which new algorithms are currently being
implemented into the C program by some of the present
authors.
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