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Abstract  

A genetic-based pore network  extraction  method  from micro-computed tomography (micro-

CT) images is proposed in this paper. Several variables such as the number, radius and location 

of pores, the coordination number, as well as the radius and length of the throats are used herein 

as the optimization parameters. Two approaches to generate the pore network structure are 

presented. Unlike previous algorithms, the presented approaches are directly based on 

minimizing the error between the extracted network and the real porous medium. This leads to 

the generation of more accurate results while reducing required computational memories. Two 

different objective functions are used in building the network. In the first approach, only the 

difference between the real micro-CT images of the porous medium and the sliced images from 

the generated network is selected as the objective function which is minimized via a genetic 

algorithm (GA). In order to further improve the structure and behavior of the generated network, 

making it more representative of the real porous medium, a second optimization has been used in 

which the contrast between the experimental and the predicted values of the network 
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permeability is minimized via GA. We present two case studies for two different complex 

geological porous media, Clashach sandstone and Indiana limestone. We compare porosity and 

permeability predicted by the GA generated networks with experimental values and find an 

excellent match. 

 

Keywords: Porous media, Pore Network Model,  Optimization, Petroleum, Permeability, 

Numerical analysis 

 

1. Introduction 

Considering the growth of computing power in recent years, pore network model studies in 

different areas, including petroleum and chemical engineering, materials science, hydrology and 

also in novel technologies such as bio- and nanotechnology have become an attractive field for 

research (Dullien, 1992; Nukunya et al., 2005; Rajabbeigi et al., 2009). Pore network models are 

frequently used in petroleum and chemical engineering applications in order to predict various 

parameters of a porous medium such as the absolute and relative permeability as well as heat and 

mass transfer coefficients (Surasani et al., 2008; Blunt, 2001; Valvatne et al., 2005). In a pore 

network model the void space in the porous medium is described by a network of pores 

connected by a set of throats. Typically both, pores and throats have size distributions which 

depend on the porous medium itself; this is particularly the case for complex geological porous 

materials.  

To describe the flow behavior inside the medium, it is therefore necessary to generate a 

representative three dimensional structural model of the pore morphology based on the available 

pores and throats, and this process still remains a very challenging issue. The often used 
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assumption of a regular cubic network is a current technical limitation as the pore space in a 

naturally occurring porous medium (e.g. rock on which we focus in this text) is often highly 

irregular; so regular structures are not truly representative with associated limited predictive 

power. Therefore, seeking a way for the construction of deterministic pore space models which 

include the irregular features and lead to better predictions is an attractive area for current and 

future research. Historically, modeling of rock pore space using pore networks began by Fatt 

(1956a; 1956b; 1956c). The next major milestone was then achieved by Chatzis and Dullien 

(1977), they extended such models to three dimensions. Wilkinson and Willemsen (1983) 

presented the concept of reverse percolation, where the critical points of the system were 

automatically identified. These models were capable of performing drainage and imbibition 

calculations and predicting capillary pressure curves for multiphase flow with different 

precisions (Bryant and Blunt, 1992; Piri and Blunt, 2005). Generally, these works provided 

regular or randomly irregular, unrealistic networks, having a low forecasting capability. 

Researchers then presented several methods to build more realistic networks: A sedimentation 

process was suggested where the pore space geometry was obtained by measuring distribution 

centers of the grains (Bryant et al., 1993; Bakke and Øren, 1997) , sectioned 2D images, 

photographed by digital camera, of the pore space were used and 3D space was generated using a 

two-point correlation function (Vogel and Roth, 1997; Okabe and Blunt, 2004; Okabe and Blunt, 

2005), and despite limitations, this method was successful in describing the rock flow properties. 

Researchers then started to image rock samples with micro-tomography (micro-CT) (Hazlett, 

1995;  Ioannidis, 2000) and 3D models were directly extracted from such images (Spanne et al., 

1994; Auzerais et al., 1996). This method is limited when dealing with small pores, because the 

resolution limit is currently approximately one micrometer. Different researchers suggested 
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different extraction methods based on these images: Zhao et al. (1994) used a multi-orientation 

scanning algorithm, Baldwin et al. (1996) developed a thinning algorithm, and Lindquist (2002) 

determined the medial axis of the geometrical structures of the pore space while other 

researchers continued this work (Arns et al., 2004a, 2004b; Al-Raoush et al., 2003). Silin and 

Patzek (2006) used a maximum ball algorithm, which sets spheres into the segmented pore space 

of micro-CT images to determine the position of the pores; the biggest maximal balls were 

defined as pores; Dong and Blunt (2009) further improved this algorithm. With further 

improvement of the micro-CT technology many researchers used micro-CT images to study 

multi-phase flow through porous media for various processes (Blunt et al., 2002; Pentland et al., 

2010; Valvatne and Blunt, 2004; Al-Futaisi and Patzek, 2003; Okabe and Blunt, 2007; Iglauer et 

al., 2010; Iglauer et al., 2011). 

Research work is now conducted to further improve the networks, i.e. to increase quality of the 

pore space extraction. The importance of finding the optimum pore network model is clear, but 

there is generally a lack of optimization studies in this field and most of the methods do not have 

a systematic algorithm for manipulating variables to obtain the optimum pore network model. 

Genetic Algorithm (GA) is one of the advanced, and robust techniques used to solve various 

optimization problems, e.g. Jamshidi et al. (2009) generated a random pore network model by 

means of L-systems, which is a mathematical framework to model the growth of filament based 

plants. They used GA to produce optimized random pore network models by optimization of L-

system parameters. The study presented here uses GA to generate representative cylindrical pore 

networks of a sandstone and a carbonate rock. We propose two methods: in the first method, the 

fitness function is defined as the difference between sliced micro-CT and pore network images. 

In the second method, a two-step optimization is performed. Initial pore positions are obtained 
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with the same objective function as used in the first approach. Throat locations and sizes are then 

determined in a second step through the minimization of differences between the experimental 

and predicted values of the absolute permeability. The proposed approach is more accurate in the 

sense of reproducing the real geometrical properties of the porous medium such as the 

coordination number, sizes of throats, and cylindrical overall control volume of the porous 

medium. These methods were tested on two samples, Clashach sandstone and Indiana limestone. 

The results show that the proposed methods have great abilities in terms of predicting the actual 

porosity and permeability values for real reservoir rocks. 

 

2. Network Extraction Algorithm  

The 3D cylindrical network model of Clashach sandstone generated with the two-step 

optimization is shown in Figure 1a, Figure 1b is the upper side view. Cylindrical networks have 

priority over the previously constructed cuboid-shaped models; this is because micro-CT images 

are usually acquired in a cylindrical form and the experimental measurements are usually 

performed on cylinder-like cores. As illustrated, the generated network structure is entirely 

irregular which makes it flexible enough to represent the complex real pore morphology. In 

comparison, regular network structures are usually characterized by uniform throats of various 

geometry with uniform length and different aspect ratios. In the irregular networks, however, all 

parameters can vary to achieve the best optimization. 

 

Figure 1. Schematic map of the pore network model (a) 3D (b) upper view 

Specifically, in the proposed network an unlimited number of throats can be connected to a pore. 

In addition, pores can be placed anywhere in the network, and they can adapt any sizes; this 
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method has more flexibility and the generated network is much more representative of real 

geological porous media. Location and size of throats and pores, as well as the coordination 

number of pores are obtained with GA with the two methods used here. The optimization 

algorithm to construct the pore network is shown in Figure 2.  

 

Figure 2. Construction and optimization algorithm for pore network generation. Each 

chromosome in GA represents a specific network model 

 

Each constructed network is sliced and the image of the sliced surface is built. The resulting 

image is then compared with its corresponding micro-CT image. The above slicing step is 

repeated to compare all network images with all micro-CT images. The surfaces depend on how 

the pores and throats are cut precisely. Such sliced images are therefore suitable for representing 

location and size of pores and throats. Different ways of cutting cylindrical throats and spherical 

pores are shown in Figure 3. 

 

Figure 3. Possible ways of cutting cylindrical throats (a) and spherical pores (b) 

Prior to comparing the results, all images are converted to binary formats and cropped to the 

same size. Figure 4 shows this comparison for a sample of real and sectioned images of Clashach 

sandstone. 

 

Figure 4. Schematic view of the binarized sliced micro-CT image (a) and the corresponding 

network slice image (b) for Clashach sandstone  

3. Optimization of cylindrical network model 
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Network optimization is performed in order to minimize the structural difference between the 

pore network model and the real pore space. Gradient-based searching algorithms are not 

suitable for the optimization of large-scale and discrete spaces. This is mainly due to the fact that 

the calculation of the elements of objective function gradients is impossible for discrete variables 

and computationally demanding for continuous variables. GA is thus selected for the task of 

optimization, due to its robust and efficient performance compared to the other non-gradient 

based algorithms. A brief review of the genetic algorithm and its application for 

optimization problems is presented in the following. 

 

3.1 Genetic Algorithm (GA) 

The development of genetic algorithms was inspired by genetic science and Darwin's evolution 

theory. GA works based on the idea of survival of the fittest which is what happens in nature 

during the evolution of various species. GAs have been used in various disciplines to solve 

optimization problems, e.g., in pattern recognition, feature selection, image understanding and 

machine learning. GA consists of a main loop in which various species (individuals), being 

represented by their own chromosome, are assessed. These species find a chance (based on their 

fitness) to mate with each other and produce their offspring which are assessed and compete 

against each other in the next generation. The individuals which perform better (are more fit) 

dominate the population (the set of individuals in each generation) of next generations. This 

leads to the concept of the “survival of the fittest” which is the main concept of GA. GA begins 

with an initial set of individuals whose chromosomes are built in a random manner 

(Boozarjomehry and Masoori, 2007). Each chromosome represents a point in the search space 

and is a tentative solution of the optimization problem. Each chromosome represents an 
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individual which is a set of values for the decision variables existing in the optimization problem. 

Hence a chromosome contains the values of the decision variables (i.e. Phenotypes); these values 

can be represented as continuous real numbers and/or discrete types in the form of binary strings 

called genotypes. Despite the fact that both versions of genetic algorithms (i.e. GA with 

continuous chromosomes and GA with discrete chromosomes) have been used, Discrete GA 

seems to be more efficient and robust when compared to continuous GA (Goldberg, 1989; 

Sivanandam and Deepa, 2008). In each generation, both types of GA go through a loop in which 

the following tasks are completed for each chromosome: 

 Values of the decision variables are extracted from chromosome content.  

 The objective function is evaluated based on the obtained values of the decision 

variables. 

 The fitness of the chromosome, which is a measure of the suitability of each 

chromosome, is calculated based on the calculated objective function.  

Having obtained the fitness of all individuals, they are ranked based on their fitness function. 

The mating pool, which is the set of chromosomes that are appropriate to be used as the parents 

of next generation individuals, is then built. The individuals with higher fitness have more 

representatives in the mating pool. This increases the chance of chromosomes with higher fitness 

in the selection of two parents whose mating leads to two individuals in the next generation. The 

mating is performed with crossover and mutation operators (Michalewicz, 1996). After obtaining 

the population of the next generation (which may contain some elites of the current generation as 

well) the next generation begins and the above steps are repeated to produce the third generation, 

and so on.  
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3.1.1 Initialization 

The initial population is created by random generation of chromosomes. Each chromosome is a 

binary string, containing a set of ‘0’ or ‘1’ characters. Each decision variable in the original 

optimization problem is therefore mapped in this way to a set of genes whose length depends on 

the feasible range and the variable precision. As an example, for a decision variable xi whose 

value is set between ai and bi with precision pi, the required number of genes can be calculated 

through the following equation: 

 

2log ( ) 1i i
i

i

b a
n

p

 
  

 
                                                                                                            (1) 

 

The total number of genes in a chromosome (nt) is then determined using the following equation: 

 

t in n                                                                                                                                        (2) 

 

The inverse phenotypic transformation is used to convert the genotypes into their corresponding 

phenotypes (Boozarjomehry and Masoori, 2007; Goldberg, 2002). 

 

3.1.2 Genetic Operators 

Genetic operators are used throughout the Genetic algorithm. The genetic algorithm produces the 

population of the next generation via these operators. The implemented operators are crossover 

and mutation operators which are among the most commonly used operators in GA (Langdon 

and Poli, 2002). 
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3.1.3 Selection Operator 

This type of operator selects two chromosomes from the mating pool. The mating of the two 

selected parents results in two offsprings which are part of the population in the next 

generation. Various selection methods have been proposed for GA, and the most commonly used 

selection method is the roulette wheel method (Langdon and Poli, 2002). 

 

3.1.4 Crossover 

The crossover operator is the main operator used in the mating of the selected parents through 

information exchange between them, and results in two new chromosomes (called offspring of 

the parents) in the new generation. The performance of the GA severely depends on the 

performance of this operator. The crossover rate (Pcrossover) is defined as the ratio of the number 

of offspring produced in each generation to the population size (N). Crossover rate shows the 

degree of exploitation of the search space by the algorithm. The most commonly used type of 

crossover is the single point crossover in which a randomly selected block of genes are 

exchanged between parent chromosomes. Another alternative of the crossover operator is multi 

point crossover in which more blocks are exchanged between parent chromosomes (Goldberg, 

2002). 

 

3.1.5 Mutation 

The mutation operator, which applies random changes to the offspring obtained by crossover, is 

responsible for the exploration of the search space. The mutation rate or probability (Pmutation) is 

defined as the percentage of the total number of chromosomes on which the mutation operator is 
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applied. With a smaller mutation rate, the variety in the candidate solution shrinks and less 

exploration will occur (Schmitt, 2001). 

 

3.1.6 Fitness Evaluation 

In order to obtain the fitness of each chromosome, the chromosome needs to be decoded to its 

constituting decision variables. The obtained decision variables are then used to calculate the 

value of the objective function which is related to the fitness of the chromosome. This fitness 

represents the degree of suitability of the chromosome in the population (Schmitt, 2001). 

 

3.1.7 Termination criterion 

The algorithm continues producing generations until a stopping criterion is fulfilled. Various 

stopping criteria can be used, e.g.(Dudek, 2004): 

 The algorithm stops when the maximum number of generation has been reached. 

 Similarity of a specific percentage of chromosomes. 

 Difference between the maximum fitness and the average fitness is less than a specific 

value.  

 

3.1.8 Genetic library 

The MATLAB GA toolbox is used in this work. GA toolbox initializes a random sample of 

individuals with different variables to be optimized. A binary steady-state GA with a single point 

crossover and mutation has been used. 

 

3.2 Implemented fitness function  
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In this study, the optimum pore-network structure has been obtained using two approaches. In 

the first approach, the optimum structure is obtained based on the minimization of the sum of 

absolute difference between the 3-D binary matrices extracted from the micro-CT images and the 

sectioned pore network model. Where as in the second approach, a two step optimization is used. 

In this approach, the first step is similar to the procedure used in the previous approach. In the 

second step, the best alternatives obtained in the first step are further optimized to minimize the 

relative errors between the experimental values of the absolute permeability ( expK ) and the 

predictions from the simulated pore network structure (
modelK ). Equations 3 and 4 express the 

objective functions used in the first and second steps of the optimization, respectively. 

 

 
1( )

( )

micro CT PMM M
E X

Total Number of Voxels

 



                                                                            (3) 

 

mod exp

2

exp

( )
elK K

E X
K


                                                                                                                  (4) 

Mmicro-CT: 3D binary matrix for micro-CT image 

MPM: 3D binary matrix for generated by pore network model 

 

The 3D binary image can be stored as a 3D matrix that each element of the matrix corresponds to 

a single voxel of 3D image with respect to the resolution of the image. The 3D binary matrix for 

micro-CT image is obtained by considering 0 for elements of matrix that correspond to the 

voxels of void spaces and 1 for elements correspond to the rock. The 3D binary matrix for 
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generated pore network structure is achieved by considering 0 for elements that correspond to the 

pore and throat volumes and 1 for other elements in the domain of network. 

 

3.3 Selection of Optimization Parameters 

In the current work, locations of the pore centers are directly taken as the optimization 

parameters. Due to the large number of pores existing in the network, however, dimensionality 

reduction is an important task prior to optimization. To do so, pore radii and coordination 

numbers as well as the throat aspect ratios are described with a Weibull probability distribution 

function (PDF) and the PDF parameters are instead optimized. For example, the Weibull 

distribution function used for modeling the radii of the pores can be defined by equation 5. 

 

1 2

1 2min , ,
2

p p

t p p

asp

R R
R R R

R

  
  

 

                                                                                (5)      

rp: pore radius  

rp,min : minimum radius 

rp,max : maximum radius 

x: random number between 0 and 1 

,  : Adjustable parameters 

 

Equation 6 shows how the aspect ratios were computed in this study. 
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                                                                       (6)      
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rasp = aspect ratio = ratio between radii of connected pore and throat.  

All characteristic parameters for the pore network extraction are summarized in Table 1. In 

principle all the listed parameters could be selected as optimization variables, however some of 

them are fixed here (Table 2) according to the available information and the network generation 

assumptions; this was done to reduce the optimization search space.  

 

Table 1. Parameters used in pore network extraction process 

Table 2. Constant parameters used in pore network extraction process 

 

Equidistant image slices were prepared for the sake of convenience. The length of network is 

computed using the number of cross sections used for analysis, and the distance between the 

consecutive image slices. The pore network’s overall radius is set to match the radius of the 

micro-CT images. Minimum and maximum radii of pores and throats as will be later used as the 

lower and upper bounds respectively in the optimization algorithm, are calculated from the 

micro-CT images and the analysis of a Mercury Injection Capillary Pressure (MICP) curve. A 

variable number of pores and throats are used in this method while the number of pores is 

optimized within the GA framework. Constraining the objective function to the aspect ratio helps 

in generating realistic models since this does not allow the throat radius to exceed beyond the 

minimum radius of the pore connecting to the throat. Equation 7 shows how the throat radius is 

calculated: 
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1 2min , ,
2

p p

t p p
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R
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                                                                                           (7) 
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Rt : Throat radius  

Rp1 , Rp2 : Radius of pores connecting to the throat 

Rasp: Throat aspect ratio 

 

Rasp,min  and Rasp,max  are the lower and upper bounds of the aspect ratio that will be used during 

the optimization process. Rasp,min is set to one to consider the largest throat radius, whilst Rasp,max 

has a wide range to include all the smallest throats. These parameters are obtained by MICP 

analysis. lt,min was assumed to be two times that of the maximum pore radius. This assumption 

prohibits the pores from overlapping. lt,max was set to 10 times the maximum pore radius to avoid 

generation of unrealistically long throats.   

Bounding the coordination number is another benefit of the current optimization practice. Other 

methods however do not consider this bound consideration for the network generation, thus 

causing a nonrealistic coordination number (Dong  and Blunt, 2009). 

Other parameters selected as optimization variables are listed in Table 3. The optimization 

procedure is presented in section 4. In the second method, pore number and locations were fixed 

to the values obtained in the first step and the parameters listed in Table 3 have been chosen as 

the optimization variables in the second step. The ranges of optimization variables are limited by 

the number of bits and also by definition of a bound for each parameter in the genetic 

chromosome. 

 

Table 3. Genetic algorithm variables used for optimization 

4. Results and Discussion 
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Clashach sandstone and Indiana limestone samples are used as case studies for the GA pore 

network extraction.  

4.1 GA Parameterization  

Prior to the optimization of a pore network, it is necessary to set the GA parameters. These 

parameters are presented in Table 4. Contrary to the second step in the second method, a larger 

population size per generation is required for the first optimization method (and first step in 

method 2) due to the large number of variables. The crossover rate was determined in an ad hoc 

manner, in order to obtain the best result by the optimization method. Mutation probability was 

fixed at a low number because of the large number of variables. 

 

Table 4. GA parameters used  

 

4.2 Optimum Values for Pore Network Model 

Optimum solutions obtained for the pore network models are shown in Table 5. Pore locations 

are not displayed in this table since the number of existing pores is large (Table 5). Pore numbers 

for each case study were obtained with the first method (also first step in second method). The 

results show that this method can be used for large scale networks. Pore size distribution, 

coordination number and other pore network properties were estimated using the Weibull 

parameters that will be explained in the next sections. 

 

Table 5. Optimum values of the constructed networks 

 

4.3 Comparison with petrophysical properties 
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Petrophysical properties of the two rock samples (including porosity and absolute permeability) 

are tabulated in Table 6; this includes the experimental and simulated data. 

 

Table 6. Comparison of predicted porosity and absolute permeability with the experimental data  

 

GA has served as a reliable optimization tool for the current application; results show that the 

proposed methods provide reliable estimations for porosity and permeability for the case studies. 

More accurate results are obtained with in the second approach. This can be explained with the 

limited resolution of the micro-CT image that does not allow for the recognition of all the pores 

and especially throats in range of nanometer; it is thus necessary to look for a powerful algorithm 

which is capable of predicting these small pores; this was effectively achieved in the second 

approach of the proposed method. 

Table 7 shows the fitness values calculated with equations 3 and 4 for the constructed networks. 

Accordingly, GA has served as a reliable optimization tool for the current application. 

Furthermore, surface's errors lower than 2 percent obtained for each model indicate that the 

extracted network represents irregularity of the porous medium accurately. 

 

Table 7. Fitness values for the case studies 

 

4.4 Coordination Number Distribution 



18 
 

The coordination number histograms of the pore network structures extracted with the second 

method are displayed in Figure 5 for both rock samples. The models look realistic from the view 

point of coordination numbers, because of the surface constraint (that is the total number of 

throats connected to each pore should be such that the contacting surfaces of all throats is less 

than the surface of the pore) applied to each pore in the network. According to Figure 5, the 

coordination number distribution of the Clashach sandstone is skewed to the larger values, 

whereas the Indiana limestone histogram is skewed to smaller coordination numbers. This relates 

to the difference in permeability values of the two rock samples; Clashach sandstone is more 

permeable which is partially caused by the higher average coordination number. It is also 

possible that small throats – below the micro-CT resolution limit – which may occur in 

carbonates were not detected in the Indiana limestone. 

 

Figure 5. Histogram of pore coordination number distribution for the two rock samples, (a) 

Clashach sandstone (b) Indiana limestone 

 

4.5 Aspect ratio distribution 

The aspect ratio frequencies for each sample extracted with the second GA method are shown in 

Figure 6. The aspect ratio is very flexible in this method and can adopt any probability 

distribution, resulting in the right throat size distribution and the expected petrophysical 

properties. The minimum value of the aspect ratio was determined based on the assumption that 

the largest throat radius is capable of completely abutting the smallest connected pore. The 
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maximum value of aspect ratio was obtained using the minimum throat radius size from the 

MICP analysis (measurement) as an input. 

The aspect ratio distribution of Indiana limestone has an almost Gauss-curve shaped form with a 

maximum around 10. Clashach sandstone has a monotonically increasing aspect ratio 

distribution with a maximum at circa 30. Carbonate and sandstone diagenesis are usually quite 

different and these rocks have typically very different pore structures, consistent with our result.   

 

Figure 6. Aspect ratio frequency distributions for the two samples, (a) Clashach sandstone (b) 

Indiana limestone 

 

4.6 Pore body size distributions 

Figure 7 displays the pore size distributions extracted for each rock sample using the second GA 

approach. Clashach sandstone has a non-monotonic pore radius distribution with a maximum at 

approximately 60-70 µm, while Indiana limestone has a pore radius distribution which on 

average increases monotonically. The maximum pore radii detected in Indiana limestone are 

smaller (90 µm) than the largest radii in Clashach (130 µm). 

 

Figure 7. Pore size distributions for the two samples, (a) Clashach sandstone (b) Indiana 

limestone 
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4.7 Throat size distributions 

Throat dimensions including length and radius have a major impact on permeability values. 

Generally, throats have smaller volumes than the pores in the network models. Throat radius 

distributions for the case studies are shown in Figure 8. Normalized frequency information 

shows that approximately a quartile of throats in the Clashach sandstone has a small size, and the 

rest are distributed over a wider range. Nearly the same result was obtained for the Indiana 

limestone. 

 

Figure 8. Throat radius distributions for the two samples, (a) Clashach sandstone (b) Indiana 

limestone 

 

5. Conclusion 

Optimization-based pore network extraction was targeted in this research. Image processing is 

used for preparing images and genetic algorithms are used for the optimization of the pore 

networks. Two approaches are proposed for construction of the geometrical structure of a 

geological porous medium. Both approaches optimize the fitness function in a GA framework 

and extract the optimal network. In the first method a fitness function was set as the difference 

between micro-CT images and the sliced layers of the generated pore network. The second 

method utilizes a two-step optimization for extracting the network; in the first step, pore 

positions are set to values obtained in the first step, and then optimization is achieved using the 

same objective function as in the first approach. A second optimization is performed following 

the first step to introduce more accuracy in the final results where the locations of throats are 
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determined through minimization of the difference between the experimental and the predicted 

values of the absolute permeability. The current modeling scheme generates several properties of 

the pore geometry such as coordination number and throat size distributions. The model is 

obtained within a cylindrical framework, leading to more accurate predictions of the petro-

physical properties including porosity and permeability because the whole (cylindrical) micro-

CT image is used. Two rock samples were chosen for the application and testing of the proposed 

methods. Comparison of the results with the experiments shows a significant improvement over 

the previously proposed models. The models built by the current GA-based algorithms provide a 

more representative geometry to the real porous medium. 
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