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Abstract 

Argon isotopic  data from mica from the southern Capricorn region of Western Australia 

record complex intra- and inter- grain systematics that reflect modification due to a range of 

processes. However, 40Ar/39Ar age distributions, though complex, generally show early 

Neoproterozoic ages in the west, increasing to Mesoproterozoic ages in the east. 

Palaeoproterozoic ages associated with cooling after the c.1.8 Ga  Capricorn Orogen or c.1.6 

Ga Mangaroon Orogen are not preserved.  These data reflect cooling from a  ~300°C thermal 

overprint that took place prior to 960 Ma that is related to the enigmatic Edmunian Orogeny. 

These data, combined with sediment provenance data from the Early Neoproterozoic Officer 

Basin and U-Pb age data from the nearby Pinjarra Orogen, indicate that the late 

Mesoproterozoic - Neoproterozoic Pinjarra and Edmundian events are dynamically linked and 

reflect tectonic activity on the western margin of the amalgamated West Australian Craton. 

The temporal framework for this event suggest a link to the evolving Rodinian supercontinent 

and reflect the oblique collision of either Greater India or Kalahari cratons with the West 

Australian Craton. These results illustrate that the temporal evolution of poorly preserved 

orogens can be constrained by low-temperature thermochronology in the adjacent cratons.  
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The cratonic cores of continental interiors are commonly typified by ancient high-grade 

metamorphic rocks that have seen little tectonic activity since the Archaean. In contrast, the 

margins of these cratons often record a complex geological evolution involving cycles of 

rifting, accretion and collision due to the global reorganisation of continental fragments 

during the repeated dispersal and amalgamation of supercontinents. Geological analysis of 

craton margins therefore provides a valuable means of constraining ancient supercontinent 

cycles. However, processes such as continental rifting, subduction erosion and crustal 

reworking that may take place at cratonic margins can mask or destroy the evidence of earlier 

tectonic activity; thereby limiting the ability of such areas to successfully assist in the 

reconstruction of tectonic histories and palaeogeography. An alternative approach is to 

attempt to identify and characterise the far-field effects of craton margin tectonism within the 

craton, and use these data to constrain the temporal evolution of processes taking place at the 

margin. This approach is highlighted by presenting mica 40Ar/39Ar data from the 

Palaeoproterozoic Capricorn Orogen of West Australia to provide temporal constraints on 

tectonic activity along the western margin of the West Australian Craton during the formation 

of Rodinia.  

Geological background 

The West Australian Craton comprises the Archaean Pilbara and Yilgarn cratonic blocks and 

a series of tectonically complex basement rocks and basins of the Palaeoproterozoic 

Capricorn Orogen (Myers 1993) (Fig. 1). To the south, the West Australian Craton passes into 

the Albany-Fraser Belt, a complex series of high-grade metamorphic rocks that were strongly 

deformed during the Mesoproterozoic collision of the West Australian Craton with the South 

Australian – East Antarctic continent (Clark et al. 2000). The eastern margin of the West 

Australian Craton is overlain and completely hidden by sediments of the Proterozoic Officer 

Basin, the Phanerozoic Canning Basin and the Tertiary Eucla Basin (Trendall and Cockbain 

1990). The geological evolution of the western margin of the West Australian Craton is also 

enigmatic because basin formation associated with the rifting and dispersal of Australia and 

Greater India during the Cretaceous break-up of Gondwana (Song and Cawood 2000) masks 

the earlier history. Despite this, the presence of Mesoproterozoic and Neoproterozoic rocks of 

the Pinjarra Orogen (Fig. 1) attests to an eventful geological evolution of the western margin 
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of the craton (Myers 1990; Fitzsimons 2003) following its amalgamation in the 

Palaeoproterozoic era. 

The Capricorn Orogen lies between the Archaean Pilbara and Yilgarn cratons and contains a 

series of terranes that comprise early to late Archaean granite and granitic gneiss, 

Palaeoproterozoic metasedimentary and mafic meta-igneous rocks, granite and granitic gneiss 

(Fig. 1).  These units are locally overlain by various sedimentary units deposited in a range of 

settings between from the Palaeoproterozoic era to the Permian period (see Cawood and Tyler 

2004 and references therein). 

The Capricorn Orogen comprises rocks deformed and metamorphosed during the 2000 – 1950 

Ma Glenburgh Orogeny and the 1830 – 1780 Ma Capricorn Orogeny (Occhipinti et al. 1998; 

Occhipinti et al. 2004; Sheppard et al. 2004). Mineral assemblages throughout the range of 

basement rocks in the Capricorn Orogen indicate a regional greenschist facies metamorphic 

and deformation overprint associated with tectonic activity associated with the latest stages of 

Capricorn orogenesis (Occhipinti and Reddy 2004; Reddy and Occhipinti 2004; Sheppard et 

al. 2004). Magmatism, metamorphism and deformation during the 1680 – 1620 Ma 

Mangaroon Orogeny is also heterogeneously distributed through the region, becoming more 

significant to the north (Sheppard et al. 2005).  

In the central and eastern parts of the Capricorn Orogen a regionally extensive series of 

sediments and volcanics (the Bangemall Supergroup) unconformably overlie basement rocks. 

Dolerite sills that intruded the base of this stratigraphic sequence yield dates of 1465 ± 3 Ma 

(Wingate et al. 2002) and 1070 ± 6 Ma (Wingate et al. 2004). Some of these dykes (of 

unknown age) were deformed and metamorphosed with the sediments and the underlying 

basement at low metamorphic grades during the enigmatic Edmundian Orogeny, before being 

cut by northerly trending dolerite dykes of the 750 Ma Mundine Well dyke swarm (Wingate 

and Giddings 2000; Martin and Thorne 2004). These overprinting relationships loosely 

constrain the Edmundian event at 1070-750 Ma. 

Despite the relatively well-constrained Palaeoproterozoic evolution of the Capricorn Orogen, 

there are no published 40Ar/39Ar data from the orogen. In this paper, the results of a regional 
40Ar/39Ar study document a widespread Late Mesoproterozoic – Neoproterozoic reworking of 

the Capricorn Orogen. The data, combined with previously published sedimentological data 
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from the Officer Basin, and U-Pb zircon data from basement rocks of the Pinjarra Orogen 

constrain tectonic activity on the western margin of the West Australian Craton. 

Analytical Procedure 

A regional suite of samples from different terranes of the Capricorn Orogen and immediately 

adjacent Yilgarn Craton have been analysed by the 40Ar/39Ar dating technique. Details of the 

analysed samples, including sample localities and rock unit descriptions, are given as 

Supplementary Data. In many cases the analysed samples have an igneous origin and are 

granitic in composition, though a few samples are amphibolite – granulite facies 

metasedimentary rocks. In all samples the primary mineralogical assemblage has been 

retrogressed to greenschist facies metamorphic assemblage (see Supplementary Data). In 

many cases this reflects the Capricorn Orogeny phase of the tectonic evolution (c.1800Ma) 

(Occhipinti et al. 2004), although recent studies have illustrated potentially younger 

metamorphic overprints within the north of the Capricorn region (Sheppard et al. 2005).   

Sample preparation and analytical procedure have been described in detail elsewhere 

(Occhipinti 2004; Reddy et al. 2004) so only a brief summary is presented here. 40Ar/39Ar 

analyses were conducted on muscovite and biotite using two different analytical approaches: 

Infrared laser total grain fusion and infrared laser step-heating. In both cases, samples were 

crushed and inclusion-free mica grains were selected after examination with a binocular 

microscope. Depending on grain size, single or multiple grain aliquots were used to ensure 

sufficient Ar for measurement. All samples were cleaned in methanol, then de-ionised water 

in an ultrasonic bath. Once dry, the samples were packed in aluminium foil and loaded into an 

aluminium package with other samples. The package was then Cd-shielded (0.4mm) and 

irradiated in the H5 position of the McMaster University Reactor, Hamilton, Canada for 90 

hours. Biotite age standard Tinto B, with a K–Ar age of 409 Ma (Rex and Guise 1995) was 

placed at 5 mm intervals throughout the aluminium package to monitor the neutron flux 

gradient. Tinto B is a standard that has seen widespread use in the literature (Kelley et al. 

1994; Sherlock and Kelley 2002; Reddy et al. 2004; Downes et al. 2006). Correction factors 

are as follows: (36Ar/37Ar)Ca = 0.000255, (39Ar/37Ar)Ca = 0.00065, and (40Ar/39Ar)K = 

0.0015.  Corrections for (38Ar/39Ar)K and (38Cl/39Ar)K were not undertaken because of the 

Proterozoic age and low Cl characteristics of the samples and the short amount of time 

between irradiation and the time of analyses.  
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Following irradiation, Ar was extracted using a CW–Nd–YAG laser, fired through a 

Merchantek computer-controlled X–Y–Z sample chamber stage and microscope system. A 

defocused 200m beam (9.7-11 Amps for 120 seconds) was used for infrared laser analyses. 

Data were corrected for mass spectrometer discrimination and nuclear interference reactions. 

Errors quoted on the 40Ar/39Ar ages are 1, and ages were calculated using usual decay 

constants (Steiger and Jager 1977).  J values are noted on the supplementary data tables.  

Background Ar levels were monitored prior to and after each analysis and the mean of the two 

blanks was used to correct each sample analysis. Ar data were corrected for mass 

spectrometer discrimination, 37Ar decay, and 38Ar decay.  

Results 

Total-fusion data and step-heating age spectra are presented as accompanying supplementary 

data and are shown in Figs. 4 ,5 & 6. The 40Ar/39Ar data are also summarised in Table 1 and 

on the regional geological map (Fig. 3). Overall the data show that apparent 40Ar/39Ar ages 

measured in biotite are often older than those measured in muscovite from the same samples 

and the same range of grain sizes (Figs. 4 & 5). In addition, there is commonly a wide range 

of 40Ar/39Ar ages within individual samples.  In some cases this is directly correlated to grain 

size and indicates the potential presence of excess argon, particularly in some of the biotite 

samples, and heterogeneous Ar loss in others. In all samples, measured 36Ar differs little from 

background 36Ar levels. As a result, the use of isotope correlation diagrams (36Ar/40Ar vs 
39Ar/40Ar) is precluded as a means of recognising excess 40Ar. A detailed analysis of the 

complexity recorded at the individual sample level in the 40Ar/39Ar data has previously been 

described and analysed in considerable detail with respect to composition (associated with 

mineral and fluid inclusion contamination), grain size and excess 40Ar and Ar loss (Occhipinti 

2004).  A summary of these data and age interpretations derived by Occhipinti (2004), taking 

these variables into account, are given in Table 1. Readdressing the complexity is beyond the 

scope of this paper and we focus on the broad patterns that emerge from the data and their 

tectonic significance.  

Age data for the eastern Errabiddy Shear Zone, the western Errabiddy Shear Zone, and the 

Gascoyne Complex for single and multiple grain total-fusion show a wide range of apparent 
40Ar/39Ar ages that show complex relationships with grain size but define several distinct age 
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peaks (Figs. 4 & 5). By far the biggest peaks, and therefore age distributions, for both 

muscovite and biotite, are of early Neoproterozoic age (Fig. 5).  In detail age variations 

correspond to different regions. Biotite analysed by infrared total fusion (Fig. 6a) show well-

defined peaks between 1650 and 1580 Ma (Eastern Errabiddy Shear Zone, n=10 of 11 

analyses), 960 and 880 Ma (Western Errabiddy Shear Zone, n=40 of 51 analyses), and 1020 

and 930 Ma (Gascoyne complex, n=24 of 38 analyses). Smaller peaks are present between 

1270 and 1160 Ma (Western Errabiddy Shear Zone, n=11 of 51 analyses), and older ages up 

to c. 1350 Ma are recorded from the Gascoyne Complex (n=9). Muscovite total fusion ages 

between c. 1690 – 880 Ma are recorded for the Eastern Errabiddy Shear Zone, but do not 

define statistically valid peaks. For the Western Errabiddy Shear Zone, 15 out of 34 ages are 

between 920 – 880 Ma. This is broadly consistent with the greatest number of ages measured 

in the Gascoyne Complex between 900 – 870 Ma (n=7 of 11 analyses) (Fig. 5). 

Step-heating experiments on both biotite and muscovite yield complex age spectra (Fig.6) that 

often correlate with compositional (Ca and Cl) variations (Occhipinti 2004). Generally the 

spectra do not record statistically valid plateaux. However, the distribution of 

Mesoproterozoic and Neoproterozoic ages recorded by total fusion analyses are mimicked in 

the step-heating data, and, despite the complexity, attest to Neoproterozoic isotopic resetting. 

It is noticeable that biotite from the Narryer Terrane yields Mesoproterozoic ages that are 

considerably different to those measured in both the Gascoyne Complex and Errabiddy Shear 

Zone (Fig 6). However a single muscovite spectrum from the Narryer Terrane also yields 

Neoproterozoic ages and is similar to ages further north.  

Discussion 

Despite complexities in grain size – age relationships (Fig.4) and Ar age – composition 

spectra (Occhipinti 2004) general patterns in 40Ar/39Ar age distributions indicate differences 

in the thermal history of different parts of the orogen at a time substantially postdating the last 

major orogenic (Palaeoproterozoic) event in the region. The apparent overlap of c. 960 – 820 

Ma ages in the single-grain fusion and step-heating data from the western Errabiddy Shear 

Zone and Gascoyne Complex indicate a previously unrecognised isotopic resetting associated 

with regional heating of the western Capricorn Orogen during the early Neoproterozoic era. 

The extent of this resetting event (17,000 km2) is significant and indicates a regional, not 

local, thermal perturbation. Closure temperature models for micas suggest temperatures of 
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350 - 270ºC (calculated using a cooling history assumption of 10°C/Ma) are required to cause 

this resetting. This temperature range is consistent with the low metamorphic grades seen in 

Mesoproterozoic sedimentary rocks in the region. Older ages from the Eastern Errabiddy 

Shear Zone indicate a lesser degree of isotopic resetting but still indicate some Ar isotopic 

disturbance significantly after the c.1800 Ma greenschist facies metamorphism associated 

with Palaeoproterozoic Capricorn orogenesis. The pattern of isotopic resetting generally 

decreases towards the east, indicating that the cause of resetting was more proximal to the 

west. Mesoproterozoic aged biotites in the Narryer Terrane may also reflect incomplete 

resetting after the Capricorn event. However, a single muscovite age of 834 Ma may indicate 

a component of excess 40Ar in the biotite data. New Ar data from the Archaean rocks of the 

Narryer Terrane to the south of this study area indicates both a Capricorn (~1750Ma) 

overprint and a younger, weaker and heterogeneously distributed overprint (Spaggiari et al. 

2008). 

The Edmundian Orogeny is associated with localised north and east trending folds and faults 

recorded throughout the Capricorn region, particularly in the Bangemall Supergroup.  The age 

of this deformation event is poorly constrained but has been bracketed by age data on 

deformed and younger undeformed dolerite dykes that yield ages of 1070 Ma and 750 Ma 

respectively (Wingate and Giddings 2000; Martin and Thorne 2004; Wingate et al. 2004). 

The regional causes of Edmundian orogenesis has remained unclear. However, the 960 – 820 

Ma age range for regional mica resetting is consistent with an Edmundian thermal 

perturbation associated with early Neoproterozoic tectonism.  

The Neoproterozoic Officer Basin forms part of the Centralian Superbasin (Walter et al. 

1995). Palaeocurrent data from the base of the northwestern part of the Officer Basin, the 

Sunbeam Group, indicates that during the early Neoproterozoic era, sediments were derived 

from the west (Fig. 7). Sediment characteristics are consistent with sourcing from the eroding 

Bangemall Supergroup and a rapid increase in sediment supply (Williams 1992) and 

deposition in non-marine to shallow-marine conditions (Grey et al. 2005). Detrital zircon 

populations from the Tarcunyah Group of the Officer Basin, immediately north of the 

Sunbeam Group, also record U-Pb ages consistent with derivation from the Gascoyne 

Complex (Bagas 2003). Asymmetric sediment dispersion within the Sunbeam Group, 

coarsening upward successions, and the lack of any active volcanism associated with its 

development, together support the possibility that the sediments were deposited in an 
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intracontinental foreland basin-like setting (Jordan 1995; Miall 1995) with an evolving orogen 

situated to the west (Williams 1992). Although, alternative interpretations of deposition 

environment are possible from sedimentological observations (Bagas 2003; Grey et al. 2005), 

the available data from the age-equivalent parts of the Officer Basin are consistent with 

Neoproterozoic tectonism localised in the western Capricorn Orogen. 

To the west of the amalgamated West Australian Craton, the Pinjarra Orogen (Fig. 1) 

comprises high grade metamorphic rocks of the Northampton and Mullingarra Complexes in 

which granulite and amphibolite facies metamorphism has been dated at 1079 Ma and 1058 

Ma respectively (Bruguier et al. 1999; Fitzsimons 2003).  Zircon provenance data from 

paragneiss units within these two complexes indicate the Mesoproterozoic Albany-Fraser 

Orogen as a likely sediment source, and, combined with the limited extent of high-grade 

metamorphism, has been used to suggest that the Northampton and Mullingarra Complexes 

are allochtonous and are derived from much further south (Fitzsimons 2003). Mafic dykes 

that are emplaced both within the Northampton Complex and the Yilgarn Craton, indicate that 

tectonic juxtaposition of the two complexes with the West Australian Craton must have taken 

place prior to c. 750Ma (Wingate and Giddings 2000).  Consequently, there is some evidence 

for tectonism within the Pinjarra Orogen between 1080 and 750 Ma (Fitzsimons 2003). From 

the geometry of the 750 Ma mafic dykes and brittle–ductile northerly trending dextral shear 

zones that post-date their emplacement (Byrne and Harris 1993), Fitzsimons (2003) argues 

that dextral transpressional within the Pinjarra Orogen took place around 750 Ma. Although 

broadly consistent with this model, the Ar data presented here indicate much earlier tectonic 

activity along this western margin of the West Australian Craton.  

The coincidence of thermal resetting of Capricorn micas, the provenance of sediments from 

the Officer Basin and zircon data from the high-grade metamorphic complexes of the Pinjarra 

Orogen are consistent with tectonic activity along the western margin of the West Australian 

Craton during the early Neoproterozoic.  In this scenario the Pinjarra and Edmundian 

orogenies are linked in that they represent the local and far-field effects of this tectonism 

respectively. On a larger scale, this tectonism is likely to represent convergence of continental 

material with the West Australian Craton during the early Neoproterozoic assembly of the 

supercontinent Rodinia (Fig. 8). Depending on which Rodinian reconstruction is preferred, 

either Kalahari or Greater India are potential candidates for collision with the West Australian 

Craton during the early Neoproterozoic  (Pisarevsky et al. 2003; Li et al. 2007). Irrespective 
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of which of these may or may not be correct, the isotopic resetting associated with 

Pinjarra/Edmundian tectonism within the Capricorn Orogen suggests that deformation and 

metamorphism of the region took place considerably earlier than the 750 Ma minimum age of 

orogenesis deduced from the earlier studies (Wingate and Giddings 2000; Fitzsimons 2003; 

Martin and Thorne 2004; Wingate et al. 2004). Consequently, future testing of Rodinian 

reconstructions requires that early Neoproterozoic tectonism be used for temporal correlation 

with potential collisional candidates.  

Conclusions 

40Ar/39Ar dating of micas from the Palaeoproterozoic Capricorn Orogen yield cooling ages 

indicating early Neoproterozoic lower greenschist facies metamorphic conditions of regional 

extent. Variations in the degree of resetting suggest higher temperatures in the west of the 

region and point towards the thermal event being associated with tectonic activity on the 

western margin of the amalgamated West Australian Craton. This interpretation is supported 

by evidence from the Neoproterozoic Officer Basin and the Pinjarra Orogen. The results 

indicate the potential of low temperature thermochronology to provide within-craton evidence 

of far-field tectonic activity that may be poorly preserved at the craton margins. In this case 

the results suggest a dynamic link between the Pinjarra and Edmundian orogenies associated 

with collisional orogenesis during the early Neoproterozoic amalgamation of Rodinia.     
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Figure Captions 

Figure 1: Map showing major geological features of the West Australian Craton.  

Figure 2: Simplified geological map of the southern Capricorn Orogen showing major 

geological units. Sample locations for 40Ar/39Ar analyses from the Yilgarn craton (Narryer 

terrane), the Errabiddy Shear Zone and the Gascoyne Complex are shown.  

Figure 3: Simplified geological map of the Errabiddy Shear Zone and northern Yilgarn craton 

showing summary of 40Ar/39Ar ages of biotite and muscovite. Note that age data from CV-

065 and SO2_16A/C are not shown. Ages represent interpretation after analysis of 

compositional, excess Ar and Ar loss in detailed by Occhipinti (2004).   

Figure 4: Age - grainsize relationships for muscovite and biotite analysed by infrared laser 

total grain fusion. Samples are from the Gascoyne Complex (a-d), the western Errabiddy 

Shear Zone (e-l) and eastern Errabiddy Shear Zone (m-n). n = number of analyses for each 

sample. Where analyses plot over each other the number of analyses is noted in parentheses 

besides the analysis symbol. Note that error bars are often small and are hidden behind the 

symbol used to represent the analyses.  

Figure 5: Histograms summarising the frequency of ages measured on muscovite and biotite 

by total grain total fusion of single and occasional multiple grain fusion of small grains 

(usually <200µm) for different regions of the south Capricorn region. Distributions were 

calculated using a bin size of 20 Ma. 

Figure 6: Single and multiple grain IR-laser step-heated data from samples from the Central 

and Southern Gascoyne Complex, the Errabiddy Shear Zone and the Yilgarn Craton (Narryer 

Terrane).  

Figure 7: Summary of palaeocurrent data from the Sunbeam Group of the Neoproterozoic 

Officer Basin (modified after Williams, 1992). Arrows show the direction of flow inferred 

from palaeocurrent indicators and, along with petrological evidence, indicate provenance of 

sediments from the eroding Edmundian Orogeny.   
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Figure 8: Simplified model for development of the western margin of the West Australian 

Craton, during the Mesoproterozoic and Neoproterozoic based on data presented here and by 

Fitzsimons (2003). 1150 Ma: deposition of sediments now preserved in the proto-Mullingarra 

and Northampton Complexes. 1080 Ma: metamorphism of these sediments and continuing 

dextral transpressional deformation along the western part of Western Australia lead to 

northward migration of the Mullingarra and Northampton complexes to their current 

positions. 950 Ma: Continuing deformation on the western margin of the West Australian 

Craton caused the initiation of the Edmundian Orogeny in the Capricorn Orogen. Thermal 

effects associated with collisional activity give rise to resetting of Ar isotopes in mica. 

Increasing uplift leads to increased erosion of the evolving orogen and led to deposition of 

sedimentary detritus into the Neoproterozoic Officer Basin.  

Tables 

Table 1: Summary of 40Ar/39Ar results reported in detail in the supplementary data. Bolded 

ages are those interpreted as the best estimates of isotopic closure based on detailed analysis 

of the composition, grains size, Ar relationships by Occhipinti (2004). WM= white mica 

(muscovite); B= biotite; IRF= Infrared fusion; IRSH= Infrared step heated; SGA= single 

grain analyses; MGA= multiple grain analyses (number of grains indicated in parentheses). 

All ages are quoted at 1 For sample 142900 mean ages were not calculated because the age 

range was considerable. 
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Area Sample 
name 

Mineral Analytical 
Method 

% Atmospheric Ar 
(range) 

Weighted 
mean age 

(Ma) 
 

Unweighted 
mean age 

(Ma) 
 

Plataeux ages, 
unweighted mean ages 
using select data (Ma) 

Max age 
(Ma) 

 

Min Age 
(Ma) 

Grain 
diameter 

(µm) 

Narryer 
Terrane 
(Yilgarn 
Craton) 

SO2-2a B GR1 IRSH 0–1.60 1434±2 1440±38  1591±20 1389±10 313 

  B GR2 IRSH 0–1.0 1249±2 1255±44  1341±6 1196±5 262 
 SO2-7a WM   834±2 834±21  874±5 773±15 332 
 SO2-08 B IRSH 0–1.8 1532±2 1536±49 1552±30 (93.3% 39Ar) 1604±25 1452±6 578, 260 
Errabiddy 
Shear Zone 

          

    East 142900 WM IRF 0.03–6.53 N/A N/A  1694±16 881±4 050–200 
 142905 B IRF 0–5.01 1623±2 1626±28  1690±13 1582±5 050–150 
    West 142907 B IRF 1.47–14.01 927±1 927±23  994±6 893±10 050–125 
 142907 WM IRF 0–1.51 826±1 837±70  961±4 724±3 100–200 
 142910 B IRF 1.78–9.11 961±1 962±10  984±6 973±5 075–145 
 142910 WM IRF 0–5.81 912±1 913±20  959±4 888±5 050–200 
 142911 B IRF 0–12.22 921±1 921±20  964±8 888±7 050–115 
 168944 B IRF 1.72–7.09 1220±2 1224±26  1263±30 1178±5 050–110 
 168944 WM IRF 0–2.43 941±2 931±44  1021±4 896±9 050–200 
 168946 B IRF 2.56–10.87 902±2 905±22  935±4 877±4 030–150 
 SAO-01/67 WM         
 SO2/10 B GR1 IRSH 0–40.08 828±2 843±61 874±11 (65.6% 39Ar) 882±7 722±4 410 
  B GR2  2.90–23.9 789±1 794±46 820±14 (52.5% 39Ar) 701±3 844±4 650 
 SO2/14 WM GR1 IRSH 0–13.56 884±2 866±43 901±24  (91.7%39Ar) 942±4 801±7 260 
  WM GR2  0–5.92 902±2 896±15 903±10  (91.59%39Ar) 915±4 875±13 260 
  B IRSH 4.67–10.924 662±1 662±26  696±3 627±3 650 
 SAO-01/08 WM IRSH 0–2.16 873±1 872±6  881±5 861±5 740 
Gascoyne 
Complex  

142924 WM IRF 0.09–1.70 911±1 914±43  999±4 855±3 050–350 

 142926 B IRF 3.56–12.04 1001±1 1001±16  1032±4 964±4 075–175 
 142932 B IRF 0–8.68 936±2 933±33  999±6 889±21 100–200 
 142932 WM IRF 0–2.61 898±2 906±30  963±7 880±4 150–200 
 142933 B IRF 0.10–4.24 1102±1 1106±105  1176±5 967±6 60–290 
 SO2-16A WM GR1 IRSH 0.13–13.29 886±2 940±137 895±7 (98.4% 39Ar) 1269±16 932±3 480 
  GR2  0–1.04 950±2 966±93 925±10 (95.5% 39Ar) 1174±5 906±4 400 
 SO2-16C WM IRSH 0–9.05 1045±1 1061±76  1182±17 914±4 890 

620 
 CV-065 WM IRSH 0–15.97 834±2 845±85 832±1 (plateau age) 1071±60 750±8 Not measured 
  B GR1 IRSH 0–26.97 836±2 781±140 865±12 (61.9%39Ar) 881±4 506±12 Not measured 
  B GR2 IRSH 0–19.32 852±2 850±87 895±6 (61.1%39Ar) 903±4 831±4 Not measured 
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