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Abstract

Total Organic Carbon (TOC) content present in reserrocks is one of the
important parameters which could be used for evminaf residual production potential
and geochemical characterization of hydrocarbomitgainits. In general, organic rich
rocks are characterized by higher porosity, higlosic transit time, lower density, higher
gamma-ray, and higher resistivity than other ro¢kstrent study suggests an improved
and optimal model for TOC estimation by integratiohintelligent systems and the
concept of committee machine with an example froamdg&n and Dalan Formations, in
South Pars Gas Field, Iran. This committee machiite intelligent systems (CMIS)
combines the results of TOC predicted from intelig systems including fuzzy logic
(FL), neuro-fuzzy (NF), and neural network (NN)ckaof them has a weight factor
showing its contribution in overall prediction. Tlogtimal combination of weights is
derived by a genetic algorithm (GA). This methodllisstrated using a case study. One
hundred twenty-four data points including petroptgisdata and measured TOC from
three wells of South Pars Gas Filed were dividéd @ighty-seven training sets to build
the CMIS model and thirty-seven testing sets tduata the reliability of the developed
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model. The results show that the CMIS performsepdtian any one of the individual
intelligent systems acting alone for predicting TOC
Keywords. Total organic carbon, committee machine, genetyorihm, fuzzy logic,

neural network, neuro-fuzzy, petrophysical datajtBéars Gas Field.

1. Introduction

Hitherto, several researches have tried to makeiantjative and qualitative
correlation between well log responses and orgearbon richness of different rocks.
Among them, Beers (1945), Swanson (1960), Fert@8g), Schmoker (1981) and
Hertzog et al. (1989) used gamma-ray spectral mgdentify organic rich rocks.
Schmoker and Hester (1983) proposed the use ofitddog for estimating organic
matter content. A method involving combination esistivity, density and sonic logs has
been introduced by Meyer and Nederlof (1984). Tinisthod discriminates between
source rocks and non-source rocks without any teftoguantify organic richness from
combination of various logs. Passey et al. (198@¢mted a technique callddogR. This
techniqgue employs the overlaying of porosity lo§®r{ic, Density and Neutron) and
resistivity log for identifying and calculating &dtorganic carbon. Huang and Williamson
(1996) applied neural network modeling for sourmekrcharacterization. Lately, Kamali
and Mirshady (2004) usetlogR and neuro-fuzzy techniques for determining Tiex®n
well log data.
As it is evident from the previous studies, theyéhanainly focused on one or more
techniques, independently. A committee machineahparallel structure that produces a
final output by combining the results of individuakperts using an optimization
technique (Haykin, 1991; Sharkey, 1996). The expery be neural networks, empirical
formulas, or other algorithms (Chen and Lin, 200%), the model accuracy could be
increased in comparison with the best individugderk
The Iranian part of South Pars Gas Field, the ®rldrgest non-associated gas
accumulation, is located in the Persian Gulf, betw®atar and Iran at about 100 km
from Iranian shoreline. The Upper Permian to Lowerassic Dalan and Kangan
Formations (equivalent of Khuff formation) are twmain condensate and gas bearing

reservoirs units in this field (Aali et al., 200Bahimpour-Bonab, 2007). This study



integrates intelligent systems and the conceptbainittee to develop an improved and
more accurate model for TOC prediction in resennoiervals with an example from

Kangan and Dalan Formations in South Pars Gas.Field

2. Methodology: Committee machine with intelligent systems (CM1YS)

The proposed methodology, CMIS, consists of twoomsjeps: at the first stage
TOC parameter will be predicted from petrophysidata using intelligent systems
including fuzzy logic, neuro-fuzzy and neural netks At the next step, a CMIS will be
constructed using genetic algorithms for TOC prgalic The inputs of CMIS are the
outputs of the mentioned intelligent systems. Thethmdology described in this study
provides an improved and novel model for prediclii@C parameter using petrophysical
data from two points of view; they are, in use a@imenittee machine concept for
predicting TOC parameter and thus reaping the Itewéfall works, and genetic
algorithms for determining the contributions (weghof individual algorithms in
constructing CMIS. 1t is clear that many componenitdhe method described in this
study are based on other researcher’'s works whiemat novel in their own right. For
example, neural networks and fuzzy logic are welbwn techniques. Overall, the
integrated technique described in this study cdw#dconsidered as an efficient and
instrumental way for predicting TOC parameter.
2.1. Intelligent systems
There are several intelligent systems which depgndn the problem to be solved, could
be used for modeling and prediction in differergctplines of science. In this study,
genetic algorithms, fuzzy logic, neural network ar@lro-fuzzy methods are employed
to construct a committee machine for modeling aradligting TOC from petrophysical
data. Following section, presents a brief desaniptf the intelligent systems used in this
study.
Fuzzy logic (FL): The basic theory of fuzzy sets was first introdubgd&adeh (1965). In
recent years, it has been shown that uncertainty lmeadue to fuzziness (possibility)
rather than probability. Fuzzy logic is considetedbe appropriate to deal with the nature
of uncertainty in system and human errors, whiclreweot considered in existing

reliability theories (Nikravesh and Aminzadeh, 2D03enerally, geological data are not



clear-cut and habitually are associated with uagares. For example, prediction of core
parameters from well log responses is difficult aadusually associated with error
(Kadkhodaie et al., 2006). Fuzzy logic derives uké&iformation from this error and
applies it as a powerful parameter for increasimgeiccuracy of the predictions.

Fuzzy inference system (FIS) is a method to forteulaputs to an output using fuzzy
logic (Matlab user's guide, 2004). Takagi-Sugenthioe (1985) is a FIS in which output
membership functions are constant or linear andeateacted by a clustering process.
Each of these clusters refers to a membership ibmcEach membership function
generates a set of fuzzy if-then rules for formaofatinputs to outputs. A schematic
diagram of FIS is shown in figure 1.

Back propagation neural networks (BP-NN)Neural network is an intelligent tool for
solving complex problems. A BP-NN is a supervisaining technique that sends the
input values forward through the network then coteputhe difference between
calculated output and corresponding desired odtpuat the training dataset. The error is
then propagated backward through the net and tiightgeare adjusted during a number
of iterations, named epochs. The training ceasemiine calculated output values best
approximate the desired values (Bhatt and Helld)2R0A flowchart of training
procedure in a supervised neural network is showigure 2.

Neuro-fuzzy (NF): Hybrid neuro-fuzzy systems combine the advantagieduzzy
systems (which deal with explicit knowledge) wittose of neural networks (which deal
with implicit knowledge). On the other hand, fuziygic enhances generalization
capability of a neural network system by providimgore reliable output when
extrapolation is needed beyond the limits of tleening data. A schematic diagram of
information flows in a NF system is shown in figie

Genetic algorithms (GA):GAs are effective search methods based on theipies of
natural selection and genetics. They were develtyetbhn Holland (1975) to simulate
some of the processes observed in natural evoluBenerally, a GA works on a set of
potential solutions for a specific problem encoddd chromosome-like data structures.
Some of these solutions, chosen on the basis mfpagormance in solving the problem,
are used to create a new set of potential soluttmasigh the use of operators. A GA uses

this process repeatedly until a particular criterie met. GAs are often described in



biological terms. Potential solutions are calledoomsomes and represented by binary
strings or floating point numbers. A set of chrommoes is called a population and a
problem to be solved is represented by a fitnesstion. Choosing the individuals to be
reproduced is performed in a process called selegthich is based on the fitness values
assigned to chromosomes. Genetic operators suchraasover and mutation are
operators used to create a new population. Crospevmits the exchange of information
among individuals in the population and provides thnovative capability of a GA.
Mutation ensures desirable diversity (Reformat, 79® general flowchart of a GA is

shown in figure 4.

2.2. Committee machine with intelligent systems (CM1YS)

A CMIS consists of a group of intelligent systemiista combines the outputs of each
system and thus reaps the benefits of all work#) little additional computation. Thus,
performance of the model could be better than th&t Bingle network. A schematic
diagram of CMIS is shown in figure 5. There arefadént ways of combining the
intelligent systems outputs in the combiner. Thapé¢ ensemble averaging method is
the most popular one (Naftaly et al., 1997, Cheth lain, 2006). Proper combination of
the intelligent systems contribution (weight) iICMIS could be obtained by a GA.

The section below describes the fundamentals ofGMIS with regard to the works of
Bates and Granger (1969), Haykin (1991), Geman.€t1892), Naftaly et al. (1997),
Huang et al. (2001), Ligtenberg and Wansink (20@hatt and Helle (2002), Lim
(2005), and Chen and Lin (2006):

Assumption is that there aketrained intelligent systems with output vectpwhich are
used to predict target vectdr The prediction error could be written as

e=0,-T, (1)
i=1, ....N

The expectation of the squared error forithimtelligent systeno, is
E,=¢l(0,-T)*] = ¢le”], 2
in which £[.] is the expectation. The average error for eacthefintelligent systems

acting alone is
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Applying the averaging method, output vectprof the CMIS is

Ocms™ % iZ:,Oi : (4)

Therefore, the CMIS has the prediction squarederro
N N

Ecws= I(Ocus=T)?] = ﬂ(}{\] Zoi -T)?] = Cz[(% zei )%]. (®)
i=1 i=1

Considering Cauchy’s inequality:
(ab,+a,b,+...+a,b,)” < (a7 + a3 +...+a7).(of +bf +...+b7) (6)

and applying it to thE s

Eons= K D071 M D deT=E,, @

which indicates that the CMIS gives smaller ertbian the average of all the intelligent

systems.

3. Physical relationships between TOC and input petrophysical data

There is a logical relationship between petroplalsitata used and total organic
carbon content present in reservoir rocks (Fig.epaAccording to Fig. 6a-c,
petrophysical data including GR, NPHI and DT showlir@ct relationship with TOC.
Generally, RIld increases as TOC decreases. Thisamship is reverse for RHOB data.
But according to Fig.6d-e, these relationships matybe seen obviously for RHOB and
RIld data. These could occur due to reasons sudiocks heterogeneities, mineralogy
changes, variations in the fluid content and saturaSection below describes physical
fundaments of these relationships, briefly.
Gamma ray tool measures the radioactivity of vaifmumations. Generally, organic rich
rocks have high concentrations of radioactive el@méncludingPotassium, Thorium,
and Uranium and increase the reading of gammeogay |
Neutron log reading is a response of hydrogen atmnsentration in rocks. The volume
of organic matter in the formation has a direcatiehship with hydrogen atoms content
and porosity of the rock. Thus, neutron porosityr@ases in the organic rich intervals.



The sonic transit time (DT) is the reciprocal oé thelocity of the compressional wave
and is a function of formation lithology, porositype and distribution models of fluids
(water, gas, oil, kerogen, etc.). With apparent \&2lue increase TOC content tends to
elevate (Kamali and Mirshady, 2004).

Density log measures the bulk density of the foromata response of fluids and matrix
constituent minerals density. Organic matters havew density (about 1 gr/cihand
their concentration tends to reduce the bulk degmdithe rock.

The resistivity log indirectly measures rock rasigt through variations in fluid
saturation. Because, fluid content is a major @rin the rock resistivity. Generally,
organic matter bearing layers have higher restgtivian the other rocks. Specially, it is

true when kerogen becomes mature and generatesdayidon filling pore spaces.

4. Case study

In this study intelligent systems including NN, FLF and a CMIS were used to
predict TOC from petrophysical data including GRBHN, DT, RHOB, and RIld. For this
purpose, one hundred twenty-four samples from tugdd intervals of Kangan and
Dalan reservoirs of South Pars Gas Field were delie for Rock-Eval pyrolysis and
measuring TOC content. In the Rock-Eval pyrolysistimd during a programmed
temperature heating (in a pyrolysis oven) in amtinemosphere (helium) a small sample
(~100 mg) is heated. In this experiment geochengashmeters of the rock, from which
TOC is extracted, is determined, quantitatively.
The dataset were divided into eighty-seven trairgats to build the intelligent models,

and thirty-seven testing sets to evaluate thelbiityaof the models.

4.1. Predicting TOC by intelligent systems

Takagi-Sugeno FIS (TS-FIS) modelFor construction of a TS-FIS model, at the first
stage it is necessary to classify input and outiptdiset into groups, named cluster. In this
study, a subtractive clustering method which iseful and effective way to fuzzy logic
modeling (Chiu, 1994; Jarrah and Halawani, 20GL)ysed for extraction of clusters and
fuzzy if-then rules. The details of subtractivestaring could be found in Chiu (1994),
Chen and Wang (1999), Jarrah and Halawani (200hg important parameter in



subtractive clustering which controls number ofstdus and fuzzy if-then rules is
clustering radius. This parameter could take vahetaeen the range of [0,1]. Specifying
a smaller cluster (say 0.1) radius will usuallylgienore and smaller clusters in the data
resulting in more rules. In contrast, a large @ustdius (say 0.9) yields a few large
clusters in the data (Chiu, 1994) resulting in feles.

Effectiveness of a fuzzy model is related to sedocloptimal clustering radius which is
a controlling parameter for determing the numberfudzy if-then rules. Few rules
couldn’t cover the entire domains, and more rulds c@mplicate the system behavior
and may lead to low performance of the model. $wagcfor optimal clustering radius is
done by performing clustering process for sevénat$ on input and output data. At each
time, clustering radius is chosen as a value betvj@d]. Thus, several fuzzy models
with different number of if-then rules could beadsished. Then, the fuzzy model with
the lowest mean squared error (MSE) is selectedhasoptimal model for output
estimation problem. According to graphs of figidrehoosing value of 0.6 for clustering
radius is associated with the lowest (MSE) for test well (e.g. 0.000469) and this
generates eight fuzzy if-then rules. Thus, the TS-fodel was established by eight
membership functions (clusters) for input and otitfata resulting in eight rules (Fig. 8).
According to figure 9a-e, which shows the generatezimbership functions for TOC
modeling, Gaussian membership function is fittedtih@ extracted input clusters.

Gaussian functiorf (x) shows the normal distribution of datd: (
—(v—7N2 2
e (x=p)*lo

o2 ®

where i ando are the parameters of normal distribution shoviiregmean and standard

f(x) =

deviation of data, respectively. These Gaussian lmeeship functions are constructed
from mean and sigma values of the clusters. Meatuger centers and sigma is derived
from sigmas = (radii * (max (data) — min (data)pqgtt (8.0). The Gaussian membership
function parameters are shown in Table 1a.

In TS-FIS, output membership functions are linepragions constructed from inputs. For
example, output MF1 which is the consequent of nde 1 is constructed from five

petrophysical inputs as below:



Output MF1= ¢GR + ¢+NPHI +¢3«DT +¢4+RHOB +cs+Rlld +cs

In this equation parameters, @, C3, ¢4 andcs are coefficients corresponding to GR,
NPHI, DT, RHOB and RIld inputs, respectively. Paeden ¢ is constant in each
equation. These parameters are obtained by limest squares estimation. With these
explanations there will be 6 parameters for eadpudumembership function which are
shown in Table 1b.

The generated fuzzy if-then rules for formulatingut petrophysical data to TOC are as

below:

1.1f (GR is mf4)and ( NPHI is mf6)and (DT is mf7)and (RHOB is mf2)and ( Rlld is mf5)then (TOC is mf1)
2.1f (GR is mf6)and ( NPHI is mf8)and (DT is mf6)and (RHOB is mf4)and ( RIld is mf7)then (TOC is mf2)
3.1f (GRis mf3)and ( NPHI is mf3)and (DT is mf4)and (RHOB is mf5)and ( Rlld is mf2)then (TOC is mf3)
4.1f (GR is mf2)and ( NPHI is mf7)and (DT is mf8)and (RHOB is mfl)and ( RIld is mf3)then (TOC is mf4)
5.1f (GR is mf7)and ( NPHI is mfl)and (DT is mfl)and (RHOB is mf7)and ( Rlld is mf8)then (TOC is mf5)
6.1f (GR is mf8)and ( NPHI is mf5)and (DT is mf2)and (RHOB is mf8)and ( RIld is mf1)then (TOC is mf6)
7.1f (GR is mf5)and ( NPHI is mf2)and (DT is mf3)and (RHOB is mf6)and ( RIld is mf6)then (TOC is mf7)
8.1f (GR is mfl)and ( NPHI is mf4)and (DT is mf5)and (RHOB is mf3)and ( RIld is mf4)then (TOC is mf8)

Figure 10 is a graphical illustration showing theqgessing steps to use TS-FIS for
predicting TOC from input petrophysical data. Tlefprmance of the fuzzy model was
measured as 6.01864E-05.

After construction of the fuzzy model, input matiak the test data (GR, NPHI, DT,
RHOB, and RIld) was exposed to the TS-FIS model BOE was calculated. Measured
error using MSE function is 0.000469 and thHebRtween measured and FL predicted
TOC is 0.768 (Fig. 11). A comparison between mesaband FL predicted TOC versus
depth in the test data is shown in figure 12.

NN model: A three layered NN with back propagation algoritwas used for TOC
prediction. The dataset were divided into threaugsoincluding training (61 data points),
validation (26 data points) and testing data (3fa g@ints) from three wells. Similar to
TS-FIS, five inputs including GR, NPHI, DT, RHOB)&RIId logs data were used in the
first layer, respectively. Number of neurons in thdden layer was 3 and in the output
layer one neuron was included for TOC data. Theemetic diagram of BP-ANN
designed in this study is shown in figure 13. Afoemtioned three layered neural
network was trained using the Levenberg-Marquasdhing algorithm (TrainLM which
details of its computation process and trainingade found in Boadu (1997, 1998) and



Bishop (1995). The default MSE performance functias applied to optimize weights
and default bias values. Transfer function fromefagne to two is TANSIG and from
layer two to layer three is PURELIN. The selectpdahs were 100 and the error goal
was set to 0. In neural networks, training stogd armaximum number of epochs occurs
or the performance goal is met. After 82 epochtrahing, MSE performance function
was fixed in 5.39785E-05 (Fig. 14). Thus, until ¥}fbchs no improvement was seen in
the network performance and weights adjustmentsi@sped after 82 epochs. When the
training and optimization of the model was finishéte input well log data of the test
data were exposed to it and TOC was calculatedsied error using MSE function is
0.000336 and the Fbetween measured and NN predicted TOC is 0.804. (). A
comparison between measured and NN predicted T@€lLivelepth for the test data is
shown in figure 16.

NF model: In this study, an adaptive neuro-fuzzy inferencsteay was developed to
optimize the fuzzy model. The NF model is quiteik&nto fuzzy model, but all input and
output membership functions were derived by a gaditioning method.

Number of input (Gaussian) and output (constantnhbership functions is twenty eight.
A back propagation neural network was applied tondpe and adjust the membership
functions parameters. Error tolerance of the NF ehodhs set to 0. After 4 epochs of
training no change was found in the model perforeaand the MSE of the NF model
was fixed in 5.87121E-05. A formulation of inputs TOC using NF is shown in figure
17. Once the model was constructed, inputs mafrtketest data including GR, NPHI,
DT, RHOB, and RIld was exposed to the NF networtk 8@C was calculated. Measured
error using MSE function is 0.000361 and thelRtween measured and NF predicted
TOC is 0.780 (Fig. 18). A comparison between mesbsand NF predicted TOC versus

depth for the test data is shown in figure 19.

4.4. Predicting TOC by CMIS

In this part of research, a CMIS was constructedHe overall prediction of TOC
by integrating the results of predicted TOC fromHIS, NN, and NF, each of them has a
weight factor showing its contribution in overalediction. At the first step, the CMIS

was constructed by applying simple averaging methodhis approach, any one of the



intelligent systems has equal contribution in carging CMIS, namely each of them has
the weight value of 0.333. Thus, calculated TOCGfIGMIS was obtained by following
equation:

TOC,s =0.333*TOC . 1¢ 1st0.333* TOC . \+0.333* TOC . \+ (9)

Applying this equation has provided théRlue of 0.828 and MSE of 0.000271.

In the next step, a genetic algorithm was usedhi@io optimal combination of the

weights for constructing CMIS. The fitness function GA was defined as below:

MSECMIS = 21/ n(Wloli TW, 0, +W; 0, _Ti )2 (10)
i=1

This function shows the MSE of CMIS for trainingestpredictions whens,, w, and

w, are the weight factors corresponding to TS-Ft§)( NN (0, ), and NF QOj)

predictions, respectivelyl; is the target values (measured TOC) and the number of
training data (87 samples). Parameters of ap@i&dire described as following:

Initial population size is 20 which specifies hovamy individuals are in each generations
and initial range is [0,1] which specifies the rarg the vectors in the initial population.
The crossover function iscattered that creates a random binary vector and seleets th
genes where the vector is [1] from the first parand the genes where the vector is [0]
from the second parent, and combines the genesnod child. The value of crossover
fraction is 0.8. This parameter specifies the foacof the population that could be seen
in the crossover children. Mutation functionGaussian that adds a random number, or
mutation, from a Gaussian distribution, to eachryeof the parent vector. Parameters
controlling the mutation are specified as Heale value of 1 andshrink value of 1. The
scale value controls the standard deviation of the mutatiothat first generation. This
parameter is multiplied by the range of the inipalpulation.Shrink value controls the
rate at which the average amount of mutation deeseal he standard deviation decreases
linearly so that its final value equals 1. Stoppgeneration of GA was chosen as 120.
After 120 generations, change in the fithess fumctralues over Stall generations was
insignificant and the mean and best fithess valua® fixed in 0.000202 and 0.000198,
respectively (Fig. 20a). The best, worst and meeaares within the mentioned

generations are shown in figure 20b. Finally, aff2d generations the GA derived values

10



forw,,w, and w, are 0.232, 0.482 and 0.205, respectively. Therdmgof CMIS

designed in this study is shown in figure 21.

Then, the weights obtained from GA were appliedthe test dataset predictions of
intelligent systems and overall estimation of TOQQOMIS was calculated as below:
TOC,s =0.232* TOC . 16 110482 TOC ,__ ,+0.205* TOC s (11)

The MSE of predicted TOC from CMIS is 0.000197 theltows a significant

improvement in comparison with TS-FIS, NN, NF, &fdbetween measured and CMIS
predicted TOC is increased to 0.845 (Fig. 22). Allsghows some improvement in
comparison with constructed CMIS by simple averggirethod. A comparison between

measured and CMIS predicted TOC versus depth éotett data is shown in figure 23.

5. Conclusions

Intelligent systems including TS-FIS, NN, NF and [@vwere used for the
estimation of TOC from petrophysical data in SoRéns Gas Field. Regarding the results
of the models developed in this research, followpomts are concluded:
(a) Intelligent systems have been successful for ngakan quantitative correlation
between TOC and petrophysical data. The MSE of I55-NN and NF methods for
estimation of TOC in the test data are 0.0004690@36 and 0.000361 which
correspond to the Rvalues of 0.768, 0.801 and 0.780, respectively.oAgn the
intelligent systems which are used, NN model hawiged more accurate results than
those of the others in the test data.
(b) All the three intelligent systems which were use@restimated the most extreme
values of TOC. Such a problem could occur due Yersé¢ reasons as follows:
- Intelligent systems used in this study try tatethe relationships between a set of input
petrophysical logs and a desired output (TOC). Anywanted error in their training data
in the extreme values of TOC may have similar ¢ff@mn the intelligent models. These
lead to construction of the models which performllvea training data but perform
poorly on test data.
- In this study, number of measured TOC data imeex¢ values was limited. So, there
were not sufficient data in this range for trainithgee intelligent models. This problem

associated with rock heterogeneities such as clkaimgenineralogy, fluid content and

11



saturation could lead to unusual responses of ritedligent systems at extreme value
(over-estimation or under-estimation).

(c) The intelligent systems which were combined irommittee machine, had a weight
factor showing its contribution to constructing C34lApplying simple averaging method
for combination of the weights has provided tHevRlue of 0.828 and MSE of 0.000271
which shows some improvement in comparison witlividdal intelligent systems.

(d) The optimal combination of the weights in CMIS wasained by a GA. The GA
derived weights for TS-FIS, NN, and NF experts &@32, 0.482 and 0.205,
respectively. MSE of the CMIS for the test datf.i800197 which corresponds to theé R
value of 0.845. This indicates that CMIS had a ifiggnt improvement for the
estimation of TOC from petrophysical data. TherefdMIS performs better than any
one of the individual intelligent systems actingraé for TOC predicting problem. Also it
has provided better results than the constructetSdM simple averaging method.

(e) Due to high costs of Rock-Eval pyrolysis, limitegnmber of samples was used in this
study. However, intelligent systems (especially rabunetwork) predictions for TOC
were satisfying. So, it could be concluded that nvhikere is a logical relationship
between input and output data (such as those nmeatitor TOC and petrophysical data),
intelligent systems could recognize the patterreewvith limited data.

(f) The CMIS introduced in this study is able to estandaOC from well log data for
other wells of South Pars Gas Field which have be#n cored or their TOC are not
measured..

(g) CMIS has a simple and easy structure and when #rerenultiple ways to solve a
problem, it could provide smaller errors than thierage of all experts by combining the

outputs of each method.

6. Acknowledgements
The vice-president of Research and Technology efUhiversity of Tehran provided

financial support for this research, which we am&eful (Grant No. 6105023/1/02). We
also extend our appreciation to the POGC (Parsa®d Gas Company of Iran) for

sponsoring, data preparation, and permission ttighuthis paper.

12



7. References

Aali, J., Rahimpour-Bonab, H., Kamali, MR, 2006.06kemistry and origin of natural
gas in world’s largest non- associated gas fiebdirdal of Petroleum Science
and Engineering 50, 163-175.
Bates, J.M., Granger, C.W.J., 1969. The combinatibforecast. Operations Research
Quarterly 20, 451-468.
Beers, R.F., 1945. Radioactivity and organic cantéisome Paleozoic shales. American
Association of Petroleum Geologists Bulletin 2622—
Bhatt, A., Helle, H.B., 2002. Committee neural natks for porosity and permeability
prediction from well logs. Geophysical Prospectifly 645—660.
Bishop, C.M., 1995. Neural Networks for Pattern &gation. Clarendon Press, Oxford,
670 pp.
Boadu, F.K., 1997. Rock properties and seismicnadgon: neural network analysis.
Pure and Applied Geophysics 149, 507-524.
Boadu, F.K., 1998. Inversion of fracture densitgnir field seismic velocities using
artificial neural networks. Geophysics 63, 534 545.
Chen, C.H., Lin, Z.S., 2006. A committee machinethwempirical formulas for
permeability prediction. Computers & GeosciencesA85-496.
Chiu, S., 1994. Fuzzy model identification based abmster estimation. Journal of
Intelligent and Fuzzy Systems 2, 267-278.
Chen, M.S., Wang, S.W., 1999. Fuzzy clustering ymsl for optimizing fuzzy
membership functions. Fuzzy Sets and Systems B33224.
Fertle, H., 1988. Total organic carbon content mheileed from well logs. Society of
Petroleum Engineers Formation Evaluation 15612-401R.
Geman, S., Bienenstock, E., Doursat, R., 1992. lewtworks and the bias/variance
dilemma. Neural Computation 4, 1-58.
Haykin, S., 1991. Neural Networks: A Comprehensieundation. Prentice Hall,
Englewood Cliffs, New Jersey, 842 pp.
Hertzog, R., Colson, L., Seeman, B., O’Brian, Mcpt§, H., Mckeon, D., Wraight, P.,
Grau, J., Schweitzer, J., Herron, M., 1989. Geoet&mlogging with

13



spectrometry tools. Society of Petroleum Engindessmation Evaluation 4,
153- 162.

Holland, J.H., 1975. Adaptation in Natural and fetal Systems. University of
Michigan Press, Ann Arbor, USA, 183 pp.

Huang, Z., Williamson, M.A., 1996. Artificial nedraetwork modeling as an aid to
source rock characterization. Marine and Petrol@gulogy 13, 227-290.

Huang, Y., Gedeon, T.D., Wong, P.M., 2001. An int¢ed neural-fuzzy-genetic-
algorithm using hyper-surface membership functitmpredict permeability in
petroleum reservoirs. Engineering Applications afificial Intelligence 14, 15-
21.

Jarrah, O.A., Halawani, A., 2001. Recognition o$tgees in Arabic sign language using
neuro-fuzzy systems. Artificial Intelligence 133,7+-138.

Kadkhodaie llkhchi, A., Rezaee, M.R., Moallemi, S2006. A fuzzy logic approach for
the estimation of permeability and rock types froomventional well log data:
an example from the Kangan reservoir in Iran Offsh®as Field, Iran. Journal
of Geophysics and Engineering 3, 356-369.

Kamali, M.R., Mirshady, A.A., 2004. Total organiarbon content determined from well
logs usingAlogR and neuro fuzzy techniques. Journal of Patrol&cience and
Engineering 45, 141-148.

Ligtenberg, J.H, Wansink, A.G., 2001. Neural netvprediction of permeability in the
EL Garia Formation, Ashtart Oilfield, Offshore Taid. Journal of Petroleum
Geology 24, 389-404.

Lim, J-S., 2005. Reservoir properties determinatimsing fuzzy logic and neural
networks from well data in offshore Korea. JouraBPetroleum Science and
Engineering 49, 182-192.

Matlab user's guide, 2004. Version 4, Fuzzy Logiollbox, Math works, USA, 235 p.

Meyer, B.L., Nederlof, M.H., 1984. Identificatiorf source rocks on wireline logs by
density/resistivity and sonic transit time/residgyivcross plots. American
Association of Petroleum Geologists Bulletin 6811229.

Naftaly, U., Intrator, N., Horn, D., 1997. Optimaisemble averaging of neural networks.
Computation in Neural Systems 8, 283—-296.

14



Nikravesh, M., Aminzadeh, F., 2003. Soft Computargl Intelligent Data Analysis in
Oil Exploration. Partl: Introduction: FundamentalsSoft Computing. Elsevier,
Berkeley, USA. 744 pp.

Passey, O.R., Moretti, F.U., Stroud, J.D., 199QorActical modal for organic richness
from porosity and resistivity logs. American Assdmn of Petroleum
Geologists Bulletin 74, 1777-1794.

Rahimpour-Bonab, H., 2007. A procedure for apptacfaa hydrocarbon reservoir
continuity and quantification of its heterogeneilgurnal of Petroleum Science
and Engineering 58, 1-12.

Reformat, M., 1997. Application of Genetic Algomtls in Control Design for Advanced
Static VAR Compensator at ac/dc Interconnectionivéisity of Manitoba
Press, Canada, 129 pp.

Schmoker, J.W., 1981. Determination of organic-erattontent of Appalachian
Devonian shales from gamma-ray logs. American Assioa of Petroleum
Geologists Bulletin 65, 2165-2174.

Schmoker, J.W., Hester, T.C., 1983. Organic caihddakken Formation, United States
portion of Williston Basin. American Association &fetroleum Geologists
Bulletin 67, 2165-2174.

Sharkey, A.J.C., 1996. On combining artificial rdunets. Connection Science 8,
299-314.

Swanson, V.E., 1960. Qil yield and uranium contehtblack shales. United States
Geological Survey Professional Paper 356-A, 1-44.

Takagi, T., Sugeno, M., 1985. Identification of tgyas and its application to modeling
and control. IEEE Transaction on Systems, Man aytie@etics 15, 116-132.

Zadeh. L. A., 1965. Fuzzy Sets. Information and t@ur8, 338-353.

15



Figure captions

Fig. 1 A schematic diagram of FIS.

Fig. 2 A flowchart of training procedure in a supervisezlral network (Matlab user’s
guide, 2004).

Fig. 3 A schematic diagram of information flow in a NF &ys.

Fig. 4 A general flowchart of a genetic algorithm (frorheé@ and Lin, 2006).

Fig. 5 A schematic diagram of CMIS.

Fig. 6 Crossplots showing relationship between measure@ EOntent and GR (a),
NPHI (b), DT (c), RHOB (d) and RIld (e) in well A 8outh Pars Gas Field.

Fig. 7 Graphs showing clustering radius versus numbereatmated fuzzy if-then rules
(dotted blue) and model MSE (continuous black). é3mg value of 0.6 is
associated with lowest MSE (0.000469) resultingight fuzzy if-then rules.

Fig. 8 Diagram showing formulation of input petrophysitads to TOC by eight rules
generated by TS-FIS (“afinal: name of fuzzy modéBugeno: type of fuzzy
model”)

Fig. 9 TS-FIS generated Gaussian membership function&kira), NPHI (b), DT (c),
RHOB (d), and RIld (e).

Fig. 10 A graphical illustration showing steps to formutetiof petrophysical data inputs
to TOC using eight fuzzy if-then rules generated®yFIS.1. Fuzzfy inputs:
FIS takes inputs and determines degree to whiclutsnpelong to each
membership function2. Truncation by fuzzy operators. Applying fuzzy
operators gives a value to antecedent of each rag then output
membership function is truncated by this value éhtsmd” or “minimum”
operator).3. Aggregation: In this step, outputs of each rule that fit iatéuzzy
set are combined into a single fuzzy sét. Defuzzify. TS-FIS uses a
defuzzification method from output of aggregatioethod (in this study, a
weighted average) which is a crisp numerical value.

Fig. 11 Crossplot showing correlation coefficient betweeeasured and FL predicted
TOC.

Fig. 12 A comparison between measured and FL predicted ¥é€d€lis depth in test data.
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Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

Fig
Fig

Fig

13 Diagram showing formulation of input petrophysiciita to TOC by a three
layered NN.

14 Graph showing variations of MSE versus trainingatyso After 82 epochs of
training, MSE performance function was fixed to%.85E-05.

15 Crossplot showing correlation coefficient betweeaasured and NN predicted
TOC.

16 A comparison between measured and NN predicted V&8us depth in test
data.

17 Formulation of input petrophysical logs to TOC by Blystem.

18 Crossplot showing correlation coefficient betweeeasured and NF predicted
TOC.

19 A comparison between measured and NF predicted V&d€lis depth in test data.

20 (a) Plot showing mean and best fithess values for dgnkinction after 120

generations(b) Best, worst and mean scores within 120 generations.

. 21 Diagram showing CMIS designed in this study

22 Crossplot showing correlation coefficient betweesasured and CMIS predicted
TOC.
23 A comparison between measured and CMIS predicte@ V€sus depth in test

data.
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Tables

Table 1 Table showing input(a) and output(b) membership functions parameters
derived by TS-FIS

Table 1la

GR NPHI DT RHOB RIild

Inputs (Api) (VIv) (us/ft) (gr/cm® | (Ohm-m)
Parameters | X K X H c H c K c K
mfl | 2.83 | 20.84] 0.03§ 0018 593 51.35 0134 204 19158.40

5| mf2 | 283 2142 003§ 0019 593 5441 0134 27 1911524
Z | mf3 | 283 | 21.90] 003§ 0091 593 59.63 0134 2p3 191296.7
WL " mfa | 283 | 2247| 003§ 0.109 593 66.J4 0134 2p5 191280.6
= mf5 | 2.83 | 23.88] 0.03§ 0.120 593 7089 0134 242 191399.2
é mf6 | 2.83 | 25.31] 003§ 0.13%F 593 7316 0134 252 191397.9
= | mf7 | 283 | 25.78] 003§ 0.140 598 74.05 0134 261 191621.3
mf8 | 2.83 | 30.80] 0.03§ 0.140 598 7657 0134 267 191996.3

Table 1b
TOC (Wit%)
Output

C1 Co C3 Cs Cs Ce

mf1l -0.01 3157 -0.046  -0.22 -0.01 0
S mf2 -0.01 -3.18 001  -0.27 -0.01 1.30
z mf3 -0.04 18.29 069 -19.42 0.01 0
'-2'- mfa 0.20 0 700 2.9 -0.01 0
= mf5 0 0 0 0 001 0
= mf6 0 0 0D 0 0 0
3 mf7 0 0 1D 0 002 0
mf8 -0.29 0 0.34 -14.02 0.01 .
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