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Abstract: The effect of consumption of PolyGlycopleX® (PGX®) was compared to wheat dextrin
(WD) in combination with a standard meal, on postprandial satiety and glycaemia in a double-blind,
randomised crossover trial, of 14 healthy subjects trained as a satiety panel. At each of six two-hour
satiety sessions, subjects consumed one of three different test meals on two separate occasions.
The test meals were: a standard meal plus 5 g PGX; a standard meal plus 4.5 g of PGX as softgels;
and a standard meal plus 5 g of WD. Subjects recorded fullness using a labelled magnitude scale at 0,
15, 30, 45, 60, 90, and 120 min and the total area under the curve (AUC), mean fullness vs. time was
calculated. The meals with PGX (in granular and softgel form) gave higher satiety (AUC) (477 ˘ 121
and 454 ˘ 242 cm¨ min), than the meal with WD (215 ˘ 261 cm¨ min) (p < 0.001). Subjects had blood
glucose levels measured after the meals with PGX (granules) and WD. Glucose response (AUC) was
significantly lower (p < 0.001) after the PGX meal than for the WD meal. The high viscosity reported
for PGX is a likely mechanism behind the significant satiety and blood glucose modulating effects
observed in this study.
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1. Introduction

1.1. Health Benefits of Dietary Fibre

The health benefits of dietary fibre have been observed for centuries, with Hippocrates recognising
its role in improving bowel function [1]. Both observational and intervention-based studies have
shown that dietary fibre is protective against a range of disorders including obesity, type 2 diabetes
mellitus, and colon cancer [2]. A key rheological feature of many soluble fibres is viscosity and it
has been hypothesised that viscous fibres exert their physiological health benefits by increasing the
viscosity of the gastrointestinal contents; thus inhibiting nutrient-enzyme interactions [3,4]. Soluble
fibres such as pectin, gums, and low molecular weight non-starch polysaccharides have a recognised
role in reducing digestion rates, increasing satiety, lowering cholesterol and moderating postprandial
blood glucose levels [5]. Soluble fibres such as guar gum and wheat dextrin (WD) (a digestion resistant
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glucose polymer) are generally fermented in the large intestine where they have a beneficial effect
on the composition of the intestinal flora and help normalise bowel function [6,7]. By prolonging the
transit time through the gastrointestinal tract and reducing the rate at which nutrients are digested and
absorbed from the small intestine, viscous fibres are able to increase satiety and attenuate postprandial
glucose responses [3,8].

1.2. Satiety and Soluble Fibre

Satiety has been described as the feeling of being satisfied after an eating episode, resulting
in delayed onset of the next meal [9], and thus potentially helping to modulate weight gain. In a
study investigating the effect of soluble fibre viscosity on hunger and satiety, Slavin and Green [10]
found that regardless of dose, soluble fibres that were not viscous had no effect on these parameters.
Similarly, randomised-control trials by Mattes and Rothacker [11], Marciani et al. [12], and Hoad
et al. [13], found that when solutions of different viscosities were administered, those with higher
viscosities prolonged satiety and reduced hunger most effectively. Likewise, a review of 15 trials
testing viscous fibre from psyllium, oatmeal, legumes, and guar gum, determined all fibres tested
were able to increase satiety and reduce subsequent food intake [14]. Viscous fibre has additionally
been found to be more effective at increasing satiety when volumes of water greater than 200 mL have
been provided as part of the dose. Lafond et al. [15] found no differences in postprandial appetite
response for a ready-to-eat cereal with added arabinoxylan of different viscosities and consumed with
added liquid, but suggested that the fibre may have needed to be more fully hydrated for viscosity to
have affected the satiety response. In earlier studies, a high viscosity alginate-based powder in 250 mL
water reduced hunger and provided a higher satiety effect than a lower viscosity 250 mL protein
drink [16]. Guérin-Deremaux et al. [17] reported that NUTRIOSE, a low viscosity soluble dextrin,
produced improved short-term satiety and hunger. This effect of dextrin on satiety indicates that
mechanisms other than viscosity, such as changes to blood glucose levels, may contribute to the satiety
effects of dietary fibres.

1.3. Glycaemia and Soluble Fibre

Soluble viscous fibres have a positive effect of reducing postprandial glycaemia and thus may
have a role in managing and preventing type 2 diabetes [18,19]. The correlation between fibre viscosity
and reduced postprandial blood glucose levels is well established and early studies proposed that
this beneficial effect was due to the delayed rate at which glucose was absorbed from the small
intestine [3]. This hypothesis has since been extended to consider the not only glycaemic index (GI) of
ingested foods, but increased viscosity and the improved hormonal response to nutrients, as other
potential mechanisms by which viscous fibres exert their effect [20–22]. When combatting major
chronic disorders, such as obesity and type 2 diabetes, evidence suggests that fibre-enriched products
have an important role, but fibre intakes have remained at approximately half the recommended level
for the past decade [23]. Fibre supplementation and increased consumption of everyday high fibre
food products containing functional fibres may play an important role in satiety, reducing the drive to
eat, and potentially assisting weight loss [24]. Many different types of fibres have been reported as
having satiety and glycaemia benefits but research on the mechanisms involved in these responses
and the degree of their benefit to health is limited.

1.4. PGX and Wheat Dextrin

PolyGlycopleX® (PGX) is a soluble viscous non-starch polysaccharide-based complex
manufactured from konjac glucomannan, sodium alginate, and xanthan gum using a proprietary
process (EnviroSimplex®) [20]. PGX when mixed with water results in higher viscosity than other
single dietary fibre sources when mixed with water [20]. PGX can be consumed as granules or in a
softgel form, which are gelatin-based capsules containing PGX and medium chain triglycerides as
a paste. There is evidence that PGX reduces glycaemia, with studies by Brand-Miller et al. [21,22]
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demonstrating that the addition of PGX reduced GI when added to foods and the 120 min area under
the plasma glucose curve was reduced by 50%.

The varying degrees of effect reported on different fibres for satiety and food intake may reflect
their differences in solubility and viscosity. Smith et al. [20] compared the viscosity of different fibre
types, such as guar and psyllium, to PGX (0.5% w/w) and noted that PGX had the highest viscosity
(>80 cP) after hydration followed by stirring at 658 rpm over a period of 25 min. PGX consumed as
a meal replacement drink in adolescents was reported to reduce hunger levels and ad libitum food
intake more effectively when compared to a consumption of a lower viscosity cellulose beverage [25];
and PGX resulted in greater satiety than low viscosity inulin when both were consumed with 500 mL
water [26]. In addition to viscosity, a 2014 study demonstrated a dose effect, where 2.5 g of PGX
showed a strong effect on satiety and a 7.5 g dose showed a greater effect [26].

However, it is not only the viscosity of the dietary fibre source that has demonstrated glycaemia
modulating effects. Slavin et al. [7] reported that WD, a soluble, starch based, indigestible
polysaccharide which is formed when starch is heated and treated with enzymes, was effective
in stabilising blood glucose [7]. WD has been shown to modulate the glycemic response, as well as
improve short-term satiety [27–29].

The objective of this study was to assess the use of a trained satiety panel to compare the effects
of granular PGX with WD on postprandial satiety and glycaemia, and compare the effects of granular
and softgel PGX on postprandial satiety. Research has previously demonstrated the benefits of using a
trained panel for satiety evaluation, in terms of increasing the precision of the evaluation [30] and thus
allowing smaller but clinically relevant differences between treatments to be observed. The effect of
WD versus PGX is of merit since the two fibre sources have both demonstrated potentially beneficial
effects on satiety and glycaemia but their mechanism of action is likely to be different due to their
differences in viscosity.

2. Experimental Section

2.1. Subjects

Fourteen healthy adults (2 male and 12 female); age 21.9 ˘ 4.0 years (range 19–32 years); and body
mass index 23.2 ˘ 4.3 kg/m2 (range 19–32 kg/m2), participated in this study at Curtin University,
Perth, Western Australia. Flyers, posters, information sessions, internet, and radio announcements
were used to recruit subjects. Subjects were excluded if they were: smokers; pregnant; had food
allergies or a history of cardiovascular disease; consumed excessive amounts of alcohol; or were taking
medications or dietary supplements known to affect satiety. Screening questionnaires were used to
assess these criteria and acceptance letters were sent to eligible candidates. Subjects were also screened
to ensure a low level of dietary restraint, disinhibition, and perceived hunger using a Three-Factor
Eating Questionnaire [31]. The trial was registered with the Australian New Zealand Clinical Trials
Registry (ACTRN12614000911695). The Human Research Ethics Committee of Curtin University
approved the study (HR03 2014) and informed written consent was obtained from all subjects prior to
commencement of the trial.

2.2. Study Design

The study was a randomised, crossover trial with the PGX and WD arm double-blinded. The third
arm, PGX softgel was randomised, single-blinded. Subjects participated in six breakfast and two-hour
postprandial sessions, held fortnightly. At the initial visit, subjects were assigned a three-digit number
and randomly allocated a unique meal sequence. The 19.0 cm labelled magnitude scale (LMS) [30]
(Figure 1) was used as the satiety measurement tool. At the initial visit, subjects were trained in the
use of the LMS by a primary researcher using a pre-defined scripted protocol and consensus was
reached by the subjects (satiety panel) on the meaning of the LMS descriptor words [30]. The LMS was
considered to provide better discrimination of satiety sensations compared to a visual analogue scale
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(VAS) for the trained panel, although it is important to consider “hunger” separately to “fullness” [32].
At each session, subjects consumed one of three different test meals on two occasions: a standard meal
(1205 kJ) plus 5 g PGX; the standard meal plus 4.5 g of PGX as six softgels (each containing 750 mg
PGX and 600 mg medium chain triglycerides); and the standard meal (1205 kJ) plus 5 g WD (Benefibre,
Novartis Consumer Health Australasia, Pty, Ltd., Mulgrave, Victoria, Australia) (Table 1). The standard
meal was Special K Original and Cornflakes (Kellogg’s, Ferntree Gulley, Victoria, Australia) mixed
together in equal portions (total, 45 g) and full cream milk (175 mL).
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Table 1. Nutrient composition of standard meal and water, excluding test fibre.

Special K
Original a Cornflakes b Full Cream

Milk c
Drinking

Water
Total
Meal

Mass of Serve (g) 22.5 22.5 175 500 720
Protein (g/serve) 4.4 1.7 5.6 0 117
Fat (g/serve) 0.2 0.6 6.3 0 7.1
Available Carbohydrates (g/serve) 15 18.1 8.3 0 41.4
Total Dietary Fibre (g/serve) 2.6 1.2 0 0 3.8
Energy (kJ) 350 347 508 0 1205

a,b,c were combined prior to serving.

On each test morning, subjects arrived at the School of Public Health, Curtin University having
fasted for 10 h overnight and consuming only ad libitum water. Subjects were then given instructions
about the testing protocol and had their finger prick fasting blood glucose measured by a glucometer
in the clinic room. Subjects were then seated in individual sensory booths in the sensory evaluation
laboratory where the breakfast test meals were served. Subjects rated their feeling of hunger and
fullness at baseline (before eating commenced) using the LMS. The subjects were then provided with
the test meal which consisted of the standard breakfast meal (Table 1), a 500 mL bottle of water, and a
small plastic cup containing either 5 g of WD, 5 g of PGX, or 4.5 g of PGX in the form of six softgels.
Subjects sprinkled the fibre onto the meal prior to eating or swallowed the softgels and consumed the
entire test meals including 500 mL of water within 12 min.

After consumption of the test meal, subjects moved to an adjacent room (where they were not
allowed to eat or drink but were allowed to use a computer or read) to rate their sensation of fullness
using the LMS at 15, 30, 45, 60, 90, and 120 min after commencement of eating. Immediately after each
satiety time point, subjects moved to the clinic room where finger prick blood samples were taken and
tested for blood glucose levels (BGL).

2.3. Satiety Measurement

A subjective hunger or fullness score was assessed using the validated labelled magnitude scale
(LMS) [30]. During testing, the panel was reminded that hunger involves the desire to eat and fullness
involves feelings of a physical stretch in the stomach [30,33]. Vertical lines on the scale had labelled
anchors that ranged from “Greatest Imaginable Hunger” to “Greatest Imaginable Fullness” (Figure 1).
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Panelists marked anywhere along the scale to match their perceived intensity of hunger or fullness;
and a separate LMS was used for each time point. The LMS marks were enumerated by measuring
from the centre point of the scale, which is represented numerically as 0, to where the panelist marked.
The “Greatest Imaginable Hunger” therefore equated to ´9.5 cm and “Greatest Imaginable Fullness”
to +9.5 cm.

2.4. Capillary Blood Glucose Measurement

Finger prick blood samples (several drops) were collected at each postprandial time point using a
HemoCue Glucose RT microcuvette (HemoCue Australia Pty Ltd., Wamberal, Australia). The glucose
concentration of the capillary blood samples were analysed using a Glucose 201 RT analyser (HemoCue
Australia Pty Ltd., Tumbi Umbi, NSW, Australia) which had been calibrated with a Glucotrol solution
(HemoCue Australia Pty Ltd., Tumbi Umbi, NSW, Australia).

2.5. Viscosity of PGX

The viscosity (cP) of PGX and WD was measured using a Brookfield (RVT) viscometer with
spindle number 3 (Brookfield Engineering Labs Inc., Stoughton, MA, USA). PGX granules (5 g) or
the PGX paste (5 g removed from softgel) was blended at 25 ˝C with 350 g deionised water for 30 s
at 4000 rpm and then for 30 s at 8000 rpm. The settings used for PGX from the softgel, were 10 rpm
from 0 to 5 min and then 1 rpm was used until 120 min to obtain readings. The settings used for PGX
granules were 50 rpm from 0 to 10 min, then 10 rpm until 30 min followed by 1 rpm until 120 min.
The viscosity of WD, 5 g in 350 g deionised water was measured using spindle 1 and 3 at 1000 rpm for
30 min.

2.6. Statistical Analysis

Data were generated from duplicate testing of three meals. The normality of outcome variables
was tested and confirmed as a normal distribution. The total area under the curve (AUC) of the
postprandial satiety response of the fullness rating (cm) vs. time (min), and blood glucose levels
(mmol/L) vs. time, was calculated using the trapezoidal rule [26]. The overall treatment effect of PGX
was assessed by comparing AUC for satiety and glucose using a mixed effect model. The total AUC
of satiety or blood glucose level was the dependent variable, while accounting for the correlation
between assessments at six test occasions made by the same subject. A p value < 0.05 was regarded
as statistically significant. The results from the mixed model were presented as the mean differences
between trial groups, SD with 95% confidence interval, and p values. All analyses were undertaken
using Stata statistical software (MP 13.1, StataCorp, College Station, TX, USA).

3. Results

3.1. Satiety

The self-reported fullness scores from the labelled magnitude scale (LMS) over time by treatment
group for the PGX, PGX softgel, and WD meals are presented in Figure 2. The mean fullness score
peaked at 15 min and then dropped over the time period of 30 to 120 min for all groups. The mean
fullness score of the PGX softgel meal for all time points was significantly higher than that of the WD
meal (Figure 2, all p < 0.01). The mean fullness score for the PGX (granules) meal was also significantly
higher at time points 15, 30, 45, and 60 min (5.9, 5.7, 4.9, 4.3 respectively) than for the WD meal (3.5, 2.8,
2.2, 1.4 respectively) (all p < 0.01) and showed a strong trend towards being higher at 90 min (p = 0.051).
Mean fullness scores at each time point from the PGX group did not differ significantly from those of
the PGX softgel group. The AUC for postprandial satiety (subjective hunger/fullness score vs. time)
for PGX meal and PGX softgel meal were significantly higher than for the WD meal (Table 2, both
p < 0.001). There was no significant difference in the AUC of satiety between the PGX and the PGX
softgel meal groups (p = 0.81).
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Figure 2. Comparison of self-reported fullness scores (mean ˘ standard error of mean, SEM) from
labelled magnitude scale (LMS) for WD with PGX softgel and PGX (granules). ** fullness score for PGX
and PGX softgel were significantly different (p < 0.01) to WD. * Only PGX softgel was significantly
different to WD (p < 0.01).

3.2. Blood Glucose

The postprandial capillary blood glucose responses of the PGX (granule) meal and WD meal
are presented in Figure 3. Only the granular form of PGX was used for postprandial blood glucose
response measurement. The time to peak blood glucose level for both PGX and WD was 30 min. At 15,
30, 45, and 60 min after meal consumption, the blood glucose mean values for the PGX meal were
significantly lower (6.00, 6.84, 6.47, 6.14 respectively) than those for the WD meal (6.42, 7.60, 7.43, 6.67
respectively) (p < 0.05). At 120 min, the effect reversed and the mean blood glucose level was slightly
but significantly higher for the PGX than for the WD meal (p = 0.008). Table 2 reports the mean AUC
for postprandial blood glucose levels which was significantly lower for the PGX meal than for the
WD meal.

Table 2. Area under curve (AUC) for postprandial satiety and blood glucose levels.

Satiety (Score (cm) Time (min))

AUC mean (SD) Difference from wheat dextrin Coefficient (95% CI), p value *

Wheat dextrin 215 (261)
PGX softgel 477 (121) 262 (138, 387), p < 0.001

PGX (granules) 454 (242) 240 (183, 296), p < 0.001

Glucose (mmol/L¨ min)

AUC mean (SD) Difference (PGX-wheat dextrin) Coefficient (95% CI), p value *

Wheat dextrin 713 (67)
PGX (granules) 674 (56) ´40 (´59, ´21), p < 0.001

* Results were derived from a mixed effect model.
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Figure 3. Comparison of postprandial blood glucose response (mean ˘ SEM) over time by treatment
group for wheat dextrin (control) and PGX (granules). * PGX plasma glucose level was significantly
different to that of WD (p < 0.05).

3.3. Viscosity

The PGX softgel demonstrated higher viscosity than that of the PGX (granules) after 10 min
of mixing (35,460 cP and 1050 cP respectively) and 120 min (90,000 cP and 54,850 cP respectively).
The viscosity of the WD was below the limit of detection of the viscometer, demonstrating its very
low viscosity.

4. Discussion

4.1. Postprandial Satiety

Results from this study showed that when PGX in the form of granules or softgel was co-consumed
with a standard meal, the postprandial satiety (AUC) was higher, compared to WD co-consumed with
the same meal. Several factors may have contributed to the higher satiety response of the PGX meals;
these include the mixing and hydration of PGX with fluids in the stomach, the rate of dissolution of
PGX, and the final viscosity of PGX before and after stomach emptying.

Understanding the mechanism of how a fibre, such as PGX, affects satiety is complex, particularly
in mixed meal studies [34] as in the present research. The mechanism and timeframe for dissolution
of water-soluble polysaccharides, and the rate and magnitude of viscosity developed, are key factors
influencing the effectiveness of soluble fibre on increasing satiety [20]. Different soluble viscous fibres
have different hydration rates which impact the ability and time that it takes for maximum viscosity to
be reached, particularly when they are consumed in the unhydrated form. Some guar gums take up
to five hours to reach 60% of their maximum viscosity, which is beyond the time relevant to stomach
emptying of 4.5 h [20,35]. Subjects in this research consumed 500 mL water with the PGX meals and
the viscosity results presented suggests that the meals containing PGX could become viscous in the
stomach. In the meal containing the non-viscous WD, any resulting viscosity in the stomach would only
be provided by the breakfast cereal in the standard meal. Research investigating the development of
viscosity from polysaccharides [20] showed PGX forms a viscous matrix in sufficient time to influence
feelings of fullness. In a study examining the effect of konjac glucomannan addition, on in vitro
dairy protein digestion, it was reported that the konjac glucomannan addition led to high apparent
viscosity aggregates [36] suggesting that the konjac glucomannan in PGX could also contribute to
higher viscosity aggregates during digestion. Furthermore, in the same study of adding hydrocolloids
to dairy proteins in vitro [36], the addition of alginate was hypothesised to have slowed down the
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rate of protein digestion and therefore delayed gastric emptying; both of these findings support the
postprandial satiety effect of PGX.

Peptide YY (PYY) is a physiological gut-derived satiety hormone, which slows gastric emptying,
regulates appetite, and is released in response to a meal [37]. PYY has been shown to increase in the
blood in the first 15 min following PGX consumption and peaks at 1–2 h [38]. The effects of increased
PYY may therefore have contributed to the satiety effect of PGX found in the present study. Another
mechanism for elevated PYY levels after PGX consumption may be via PGX microbial fermentation,
as products of fermentation may stimulate the release of PYY [30,39].

When considering the satiety effects of the different forms of PGX, granules versus softgel, the
nature of the food with which they are consumed must also be considered. The mouthfeel, flavour, and
odour of the food may influence the pleasantness and palatability of the two forms of PGX and this
in turn may have influenced the satiety responses [40]. In the present study, the satiety effect of PGX
did not differ from that of PGX softgel, however since the PGX in the softgels demonstrated higher
viscosity, this form of PGX may have greater potential to provide increased satiety under different
meal conditions. It was observed by the researchers that there was little change to the structure of the
PGX granules during the meal consumption time (<12 min) indicting a lack of full hydration. This was
possibly due to the fibre being dispersed in the breakfast cereal flakes and the milk being cold (5 ˝C)
limiting fibre hydration and swelling. Alternately, the breakfast cereal may have been hydrating more
rapidly and thus competed for the water in the meal. Subjects in the present research consumed 500 mL
of water with the standard meal, which assisted in the hydration of the PGX and formation of a viscous
matrix in sufficient time to influence feelings of fullness. The time taken for the PGX to fully hydrate
and reach maximum viscosity, however appears to be longer than 120 min and therefore it is suggested
that full hydration of the PGX may produce different effects from the two PGX forms, granules and
softgels, on satiety. PGX softgels have been found to be effective at providing extended satiety effects
in previous research where subsequent food intake was measured [32]. A longer postprandial period
for satiety evaluation after PGX consumption, greater than 120 min, may therefore result in higher
satiety of the softgel compared to the granular form due to the combined effects of higher viscosity
development from the softgel form slowing down digestion [36] and fermentation [39,41].

4.2. Postprandial Glycaemia

The lower peak blood glucose “spike” for PGX compared to WD may be in part due to the higher
viscosity of PGX; slowing gastric emptying and reducing the rate of starch digestion and glucose
absorption in the small intestine [36]. The higher blood glucose level for PGX at 120 min compared to
the WD meal however, may have been due to the delayed release of glucose from starch digestion.
The management and prevention of impaired glucose tolerance and type 2 diabetes requires the avoidance
of postprandial “spikes” and a more gradual drop of blood glucose over time [42], thus the postprandial
response for PGX indicates its potential benefits in relation to type 2 diabetes prevention and management.

The glycaemia results from the present study are supported by those of Brand-Miller et al. [21,22]
who reported that consumption of PGX with a bread meal was effective in reducing the postprandial
glycaemic response and that consuming PGX with water, as part of a meal, reduced the GI of the meal.
Additional support for the present findings on PGX can be found in studies of other viscous fibres,
such as β-glucan, which improved postprandial glycaemia due to the fibre’s ability to increase the
viscosity within the gut [43,44]. The ability of PGX to maintain plasma glucose concentrations after a
standard meal within a relatively narrow range, compared to WD, suggests that this highly viscous
soluble fibre may have a clinically significant role in long term blood glucose control which warrants
further research, particularly in at-risk subjects.

4.3. Trained Panel Results

The subjects in the present study were trained in an effort to carefully control factors other than
the treatments which may influence satiety. Measurements relating to feelings of fullness are highly
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subjective and depend on a number of physiological, psychological, and social factors, which makes
assessment of satiety challenging due to lack of precision. During training, all subjects consumed
45 g of breakfast cereal which resulted in a degree of fullness as recorded on the LMS and indicated
the 45 g meal was sufficient to alleviate feelings of hunger in all of the subjects. In previous research
by Solah et al. [30], training of the subjects improved the discriminatory power to detect differences
in the satiety effect between PGX and inulin, and reduced between subject variability. Training may
have contributed to the low standard error of mean (SEM) in this study (Figure 3). The low SEM for
postprandial satiety for the PGX meal versus the WD meal is reflected in low SEM for postprandial
glycaemia values.

The LMS was considered to provide better discrimination of satiety sensations compared to
a VAS for the trained panel used in this research. Furthermore, as a result of training, there is an
expectation that the trained panel can detect differences in the feelings of fullness after consuming
meals of different volumes or compositions. During training, “feelings of hunger” are considered
separate to “feelings of fullness” so the “mean fullness score” was not adjusted using the fasting hunger
score. The first reason for not adjusting the fullness score was related to the purpose of the training.
For example, to adjust a fullness score of 3.5 for the WD meal to a minus value, using the fasting score,
implies subjects were not feeling a degree of fullness at 15 min. Secondly, fasting triglycerides and
satiety are more variable than postprandial triglycerides and satiety results [45–47]. Previous research
has shown that fasting triglycerides levels have a high intra-individual day-to-day variability of 15%
to 30% [45,46]. Although training was undertaken to carefully control factors other than the treatment
which may influence satiety, the effect of difference related to gender and weight [48,49] may not be
alleviated by training.

5. Conclusions

The trained satiety panel used in this research found that when PGX in both the granular and
softgel form were consumed with a high carbohydrate breakfast, satiety was increased compared
to WD. It was also determined that PGX in granular form provided significant reductions in the
postprandial glucose response. This postprandial comparison of PGX and WD has provided additional
knowledge on the connection between postprandial satiety and glycaemia responses due to fibre
consumption and viscosity. The potential role of consumption of PGX in assisting the prevention
of obesity and development of type 2 diabetes has been strengthened by the findings of this study.
Research into the long-term effect of PGX on energy intake and blood glucose control, particularly in
at risk groups, such as the obese or those with insulin resistance, requires further investigation.
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